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Abstract: Solving nonlinear systems of equations also refers to an optimization problem. Moreover, this equiva-
lence can be interpreted as an optimal design problem. We must determine the design variables needed to reduce
the deviation between an actual vector of valued functions and a vector of desired constants. This study focuses
on these two characteristic features for solving nonlinear systems of equations. One variety of numerical two-
dimensional systems with multiple solutions helps demonstrate the effectiveness of the transformation process.
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1 Introduction
Solving nonlinear systems of equations and optimiza-
tion problems are major challenges in practical engi-
neering (see [1, 2]). Indeed in an optimal design prob-
lem (see [3]-[7]), the quality of the design is measured
by a norm of the deviation between an actual vector
function of valued design variables f(x̃) and a vector
of desired constants b, i.e., f(x̃) ≈ b. The goal is to
choose a vector of design variables x , such as the de-
viation is minimized.

Suppose we have to minimize the scalar multi-
variate function f(x). A related problem is that of
solving the system g(x) = 0, where g is the gradient
vector of f with respect to x, i.e., g ≡ ∂f/∂x. Nu-
merical techniques (e.g., Newton’s method, Newton-
Raphson, quasi Newton algorithms) usually solve
these problems by iteration (see [3]-[6]). Let G(x) be
the matrix of partial derivatives of g(x) with respect
to x. Using the root of the linear Taylor expansion
about a current value x(k) at iteration k, we get the
new approximation x(k+1) = x(k)−G(x(k))−1g(x(k)).
To ensure that G is positive definite for a minimiza-
tion problem, we solve x(k+1) = x(k) − (G(x(k)) +
λkI)−1g(x(k)), where λk is sufficiently large so that
f(x(k+1)) < f(x(k)) (see also [7]).

The vector function g might not be the gradient of
some objective function f . In that case, a relation can
be stated between the solution of a system of nonlinear
equations g(x) = 0 where g : Rn 7→ Rn , and the min-
imization of the scalar function f(x) = g(x)T g(x),
for which the functional value at the minimum so-
lution is zero. In that case, the Newton step is re-

placed by the line search strategy 1, i.e., x(k+1) =
x(k) − αkG(x(k))−1g(x(k)), where αk ∈ (0, 1).

More generally, consider the nonlinear system
f : Rn 7→ Rm, (m > n). Since it is not possible
to find an exact solution for that overdetermined sys-
tem, one possibility is to seek a best least-squares so-
lution, i.e., to find x̂ such that ∥f(x)∥22 is minimized
[8]. Approaches of least-squares trace back to the es-
timation methods from astronomical observation data.
They were initially proposed by P.S. Laplace, L. Eu-
ler in the 1750s, by A.M. Legendre in 1805 and C.F.
Gauss in 1809 to estimate motion orbits of planets (see
[8]). Aaron [9] in 1956 uses least-squares in the de-
sign of physical systems. Gradient methods as steep-
est descents (suggested by Hadamar in 1907) has been
used to solve systems of algebraic equations and least-
squares problems (see [10]). In 1949, Booth [11] ap-
plied the steepest descents to the solution of nonlinear
systems of equations.

The generalization of least-squares into pth least
approximation (p > 2) is presented by Tomes [12]
with application to electric circuits and systems. In
1972, Bandler and Charalambous [13, 14] applied
least p-th approximation to design problems and
proved higher performances.

This application-oriented article is focused on the
resolution of nonlinear systems of equations, using
pth least approximations (p ≥ 1) 2. Let a system of

1Recall that a suboptimization is implemented at each iteration
step, minimizing f(x(k+1)) with respect to αk [7].

2In the heat transfer process by [15], the resulting nonlin-
ear system is solved using the Taylor linear approximation-based
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nonlinear differentiable equations be

fi(x) = 0, i = 1, ...,m, (1)

where x ∈ Rn, n < m. Forming the semidefinite
functional J(x) =

∑m
i=1 f

2
i (x), we seek the mini-

mum of J(x). If some minimum x̂ verifies J(x̂) = 0
then x = x̂ is the solution of (1). If for every x̃, we
have J(x̃) > 0, then x = x̃ are the least-squares so-
lutions of (1). The interest of such optimization ap-
proaches is shown for different examples, for which
multiple global minima exist. In such cases of equiva-
lent global optimization problems, evolutionary algo-
rithms may be use as in [16, 17].

This article is organized as follows. Section 1
presents historical context of this study and defines the
objective . Section 2 introduces to the basic elements
of least-squares and pth least approximations. Section
3 solves different examples for which the difficulties
increase. Section 4 treats cases for which regularized
systems are considered, due to the necessity of obtain-
ing not too large parameters. The concluding remarks
are in Section 5. Finally nonlinear systems and opti-
mization problem are compared with more numerical
examples in the appendix.

2 ℓp-Norm Approximation Method
The distance approach refers to an approximation
problem for which different norms may be chosen,
such as the ℓp norms. A standard Newton’s method
is used to find a solution locally for smooth objective
functions.

2.1 Basics, Notation and Definitions
The ℓp-norm of the real vector x ∈ Rn is defined as

∥x∥p , (

n∑
i=1

|xi|p)1/p

for p ∈ N+. The usual ℓp-norms are: the ℓ1 (also
called, the ”Manhattan” or ”city block” norm) for
p = 1 , the Euclidean ℓ2 (also called, the ”root energy”
or ”least-squares” norm) for p = 2 and the Chebyshev
ℓ∞ (also called, the ”infinity”, ”uniform” or ”supre-
mum” norm) for p→∞. Figure 1 (a)-(b) picture unit
balls centered at zero B1(∥.∥) i.e.,x : ∥x∥ = 1, in the
3D and 2D spaces respectively.

Newton method, for which the implementation of numerically al-
gorithms is presented.

Figure 1: (a) 3D picture of unit balls in ℓp norm in
R3 for p ∈ {1, 2,∞};

Figure 1: (b) 2D picture of unit balls in ℓp norm in
R2 for p ∈ {1, 2,∞}

An ℓp-norm of a vector for an even p is a differen-
tiable function of its components. The function corre-
sponding to an infinity norm ℓ∞ is not differentiable.
It can be shown that [18]

∥x∥1 ≥ ∥x∥2 ≥ ∥x∥∞.
Let V be a vector space and < ., . > an inner

product on V . We define ∥v∥ =
√
< v, v >. By the

properties of an inner product, a norm satisfies
(i) ∥v∥ ≥ 0 with ∥v∥ = 0 if and only if v = 0,
(ii) ∥α v∥ = |α|.∥v∥ for α ∈ R, v ∈ V and
(iii) the triangle inequality or subadditivity ∥v +

w∥ ≤ ∥v∥+ ∥w∥, for v,w ∈ V .
The basic norm approximation problem for an

overdetermined system is [3, 19]

minimize x ∥Ax− b∥2,
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where A ∈ Rm×n with m ≫ n, b ∈ Rm, x ∈ Rn.
The norm ∥.∥2 is on Rm. A solution is an approxi-
mate solution of Ax ≈ b in the norm ∥.∥ . The vec-
tor r = Ax − b is the residual for the problem. For
Boyd and Vandenberghe [3] pp.291-292, four inter-
pretations are possible for this problem, i.e., an inter-
pretation in terms of regression, an interpretation in
terms of parameter estimation, a geometry interpre-
tation and an optimal design interpretation. Thus, in
the regression problem, we can consider that the norm
(i.e., a deviation measure) aims at approximating the
vector b by a linear combination

Ax =

n∑
j=1

ajxj

of columns of A. In the design interpretation, the xi’s
are the design variables to be determined. The goal
is to choose a vector of design variables that approxi-
mates the target results b , i.e., Ax ≈ b. The residual
vector r = Ax − b expresses the deviation between
actual and target results.

2.2 Least-Squares and Minimax Approxi-
mation Problems

We present two of the four possible interpretations,
the regression problem and the optimal design prob-
lem. The norms used for this presentation are the Eu-
clidean and the Chebyshev norms, for which we give
the formulation in terms of an approximation problem
[20].
• Least-squares approximation problem
By using the common Euclidean norm ℓ2, we ob-

tain the following approximation problem

minimize x f(x) ≡ ∥Ax− b∥22,

where the objective f(x) is the convex quadratic func-
tion:

f(x) = xTATAx− 2bTAx + bTb.

From the optimality conditions ∇f(x) = 0, we
deduce that a solution point minimizes f(x), if and
only if, it satisfies the normal equations

ATAx = ATb.

Assuming independent columns for A, a unique solu-
tion is achieved for

x̂ =
(
ATA

)−1ATb.

•Minimax approximation problem

By using the Chebyshev norm ℓ∞, the approxi-
mation problem is

minimize x ∥Ax− b∥∞.

We may also write

minimize x max
{
|A1x− b1|, . . . , |Amx− bm|

}
,

where the Ai’s are the rows of A. Let α ∈ R, we have
|Aix − bi| ≤ α for all i = 1, . . . ,m. Letting a vector
of m ones em = (1, 1, . . . , 1)T , the condition is also
written |Ax−b| ≤ α em. Therefore, an equivalent lin-
ear programming problem for the minimax problem is{

minimize α

subject to |Ax− b| ≤ α em.

2.3 Nonlinear ℓp-Norm Approximation
Problem

We introduce to the the norm equivalence of quadratic
objective functions and propose a formulation for gen-
eralized nonlinear systems.
• Quadratic objective function norm equiva-

lence
Let the problem

minimize x xTQx, (2)

where Q is a n × n symmetric semidefinite matrix.
Then, there is a matrix 3 H, such as Q = HHT , H ∈
Rn×p, p≪ n. The reformulation of (2) is

minimize x ∥HT x∥2, (3)

for which the storage and evaluation costs are more
attractive with n × p for the reformulation (3) than
(1/2)n2 in the former formulation (2). In models of
the covariance, we assume the generalization accord-
ing to which Q = D + HHT , where D is a diagonal
positive semi-definite matrix [21].
• Generalized nonlinear approximation prob-

lem
The nonlinear n-dimensional system f(x) = 0 ,

where x ∈ Rn and f : Rn 7→ Rn, has a solution when
the scalar function g(x) = f(x)T f(x) has the minimum
value of zero. Let the fi(x), i = 1, . . . , n be continu-
ous component functions in the domain x ∈ X ⊆ Rn,
we wish to determine the solution x̂ ∈ X for an ini-
tial approximation x0 . The first-order Taylor series
approximation of the vector function f(x) is

f(x) = f(x0) + J(x0)∆x +O2(∆x),

where J is a n× n Jacobian matrix, ∆x = x− x0 de-
notes a correction error vector and O2(∆x) is a negli-
gible remainder for higher terms.

3The matrix H may be the Cholesky factor.
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Example 1 Let the vector function

f(x) =

 6 + 20x1 + 4x21 +
1
5x

2
2

10 + 2x1 − 4x2 +
1
4x1x

2
2

 .

The linear approximation about one of the four
solutions of f(x) = 0 (see Table 1) e.g., with x̂4 =
(−0.3767, 2.1979), is

f̃(x) =

 4.4663 + 16.9865x1 + 0.8792x2

10.9099 + 3.2077x1 − 4.4140x2

 .

For Example 1, the scalar function g(x) =
f(x)T f(x) is pictured in Figure 2 (b).

Figure 2: (a) Four minimum solutions of the system
f(x) = 0 in Example 1;

Figure 2: (b) Nine stationary points from the system
∇g(x) = 0 in Example 1

The gradient ∇g(x) is given by
280 + 904x1 − 16x2 + 480x21 + 13x22

+64x31 − 2x32 +
26
5 x1x

2
2 +

1
8x1x

4
2

−80− 16x1 +
184
5 x2 + 26x1x2 +

4
25x

3
2

−6x1x22 + 26
5 x

2
1x2 +

1
4x

2
1x

3
2

 .

The four minimum solutions are presented in Ta-
ble 1.

Table 1: Solutions for f(x) = 0 in Example 1

♯ x̂1 x̂2 f(x̂)
1 -4.6792 0.1535 4.5× 10−7

2 -4.5090 -3.7790 2.1× 10−7

3 -1.9653 -9.4489 1.5× 10−7

4 -0.3767 2.1979 2.1× 10−10

Figure 2 (a) pictures the contours lines g(x) = C
together with the four minimum solutions. The so-
lutions are obtained by solving the system {f1(x) =
0, f2(x) = 0}. The stationary points solve the system
of gradients{

∇1g(x) = 0,∇2g(x) = 0

}
,

where ∇ig(x) = ∂g(x)/∂xi, i = 1, 2 (see Figure 2
(b)) ⊓⊔

The approximation of the quadratic function g(x)
has for expression

g(x) = f(x0)T f(x0) + (∆x)T J(x0)J(x0)T∆x

+2f(x0)T J(x0)∆x.

A point x minimizes g, if and only if, x satisfies
the normal equations

J(x0)T J(x0)∆x = −J(x0)T f(x0).

Using the Newton’s method, a step of the algo-
rithm is (e.g., [4, 5])

x(k+1) = x(k)−αk
(

J(x(k))T J(x(k))
)−1

J(x(k))f(x(k)),

where αk ∈ (0, 1) is a damping parameter. The steps
of the Newton’s approximation method in Table 2 are
pictured in Figure 3. The exact values at iteration 20
are (a) 1.7×10−7, (b) 2.1×10−5, and (c)−4.6×10−5.
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Table 2: Iteration steps of the Newton’s method to Ex-
ample 1

k x
(k)
1 x

(k)
2 f(x(k)) x

(k)
1 −x̂1 x

(k)
2 −x̂2

0 2 -4 5695.0 2.377 -6.198
1 1.373 -3.309 2750.0 1.750 -5.507
2 0.889 -2.499 1331.6 1.266 -4.696
3 0.527 -1.546 636.7 0.904 -3.744
4 0.256 -0.491 286.6 0.633 -2.688
5 0.045 0.529 112.1 0.422 -1.669
...

...
...

...
10 -0.356 2.150 0.173 0.0206 -0.0480
...

...
...

...
20 -0.377 2.198 0(a) 0(b) −0(c)

Figure 3: ℓ2-norm of f(x) in Example 1 by using the
Newton’s method

3 Numerical Examples
Numerical examples 4 consist in two-dimensional and
higher dimensional systems. The two-dimensional ex-
amples are a polynomial system with few solutions
and a trigonometric polynomial systems with much
more real solutions. The common norms are com-
pared. A three-dimensional example is reduced to a

4A collection of real-world nonlinear problems is presented
in [22], e.g., an n-stage distillation column, the Bratu prob-
lem for nonlinear diffusion phenomena in combustion and semi-
conductors, the Chandrasekhar H-equation in radiative transfer
problems, the elastohydrodynamic lubrication problem.

set of three two-dimensional subsystems by eliminat-
ing one of the variables.

3.1 Two-Dimensional Systems
Example 2 Let a residual vector be

r(x) =

 25− x21 − x22

5 + x1 − x22

 .

The two residual components equations r(x) = 0
yields three solution points at x̂1 = (−5, 0)T , x̂2 =

(4, 3)T and x̂3 = (4,−3)T . The ℓ2-norm approxima-
tion ∥ r(x) ∥2 is pictured in Figure 4 together with the
three global minimum points for which the function
values are zero. ⊓⊔

Figure 4: Polynomial Example 2 with ℓp-norm
approximation and the three solutions

Example 3 Let a residual vector be

r(x) =

 −3 + 4 cos(x1) + 2 cos(x2)

−1 + 2 sin(x1) + sin(x2)

 .

The two residual components in Figure 5 (a)-

(b) show 18 solution points at the coordinates
(
a1 ±

j2π, a2 ± j2π

)
and

(
b1 ± j2π, b2 ± j2π

)
for

j = 0, 1, where a = (0.0658, 2.0894)T and b =
(1.1102,−0.9134)T . The ℓ2-norm approximation ∥
r(x) ∥ is pictured in Figure 5 (b) together with the 18
global minimum points for which the function values
are zero. ⊓⊔
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Figure 5: (a) 3D picture of the ℓ2-norm
approximation for the polynomial trigonometric in

Example 3;

Figure 5: (b) Contours and the 18 minimum solution
points

Example 4 Let a residual vector be

r(x) =

 x1 − sin(x1 + 2x2)− cos(2x1 − 3x2)

x2 − sin(4x1 − 3x2) + cos(x1 + 2x2)

 .

The two residual components equations r(x) = 0
yield seven solution points at the coordinates given in
Table 3.

The ℓ2-norm approximation ∥ r(x) ∥ is pictured
in Figure 6 (b) together with the seven global mini-
mum points for which the function values are zero. ⊓⊔

Table 3: Solutions for r(x) = 0 in Example 4
♯ x̂1 x̂2 f(x̂)
1 -1.8446 -0.1325 2.1× 10−8

2 -0.9409 -0.0903 4.6× 10−8

3 -0.0874 1.1303 5.3× 10−8

4 0.0523 1.7879 1.4× 10−8

5 0.4254 -0.1431 8.6× 10−8

6 0.7231 0.9369 7.7× 10−8

7 1.3013 0.6190 2.1× 10−8

Figure 6: (a) 3D picture of the ℓ2 norm
approximation for the trigonometric Example 4;

Figure 6: (b) Contours and the seven minimum
solution points
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3.2 Comparison of Usual Norms

Example 5 Let a residual vector be

r(x) =

 1− 4x1 + 2x21 − 2x32

−4 + 4x2 + x41 + 4x42

 .

An approximation problem for the three common
norms ℓ1,ℓ2, and ℓ∞ is pictured in Figure 7 (a) to (c) .
The first Manhattan norm in Figure 7 (a) is defined as

∥r(x)∥1 = |r1(x)|+ |r2(x)|.

The second Euclidean norm in Figure 7 (b) is defined
as

∥r(x)∥2 =
(
|r1(x)|2 + |r2(x)|2

)1/2

.

and is pictured with the two contour lines r1(x) = 0
and r2(x) = 0. The third Chebyshev norm in Figure
7 (c) is defined as

∥r(x)∥∞ = max{|r1(x)|, |r2(x)|}

and is pictured with the exclusion lines along which
we find the discontinuities of the function.

Figure 7: Example 5 with usual norm
approximations: (a) Manhattan norm;

Figure 7: (b) Euclidean norm;

Figure 7: (c) Chebychev norm

The resulting functions of using the ℓ1 and ℓ∞
norms are nonsmooth. Then, nonderivative optimiza-
tion methods must be used (see [23] on optimization
and nonsmooth analysis and [24] on the finite dif-
ference approximation of sparse Jacobian matrices in
Newton methods).

3.3 Higher Dimensional Systems
A two-dimensional subsystem can be obtained from
a higher dimensional system, by eliminating one or
more of its variables. This procedure is illustrated
by the following three- dimensional system for which
three two-dimensional subsystems are deduced.

Example 6 Let a residual vector be

r(x) =


−2 + x1 − x2 + x3

x1x2x3

−1 + 2x2 + x3

 .
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• By eliminating x3, we obtain the two-
dimensional system

r̃(x1, x2) =

 −1 + x1 − 3x2

−x2 − x22 + 6x32

 .

• By eliminating x2, we obtain the two-
dimensional system

r̃(x1, x3) =

 −5 + 2x1 + 3x3

5x3 − 8x23 + 6x33

 .

• By eliminating x1, we obtain the two-dimensional
system

r̃(x2, x3) =

 −1 + 2x2 + x3

5x3 − 8x23 + 3x33

 .

The three solutions for these subsystems are x1 =(
0,−1

3 ,
5
3

)T , x2 =
(
1, 0, 1

)T and x3 =
(
5
2 ,

1
2 , 0
)T .

The contour maps corresponding to these subsystems
are pictured in Figure 8 (a), (b) and (c) respectively. ⊓⊔

Figure 8: Contour maps of three two-dimensional
subsystems in Example 6

4 Regularized Least-Squares
The norm approximation problem can be formalized
for a regularized linear system of equations, for which
one another objective is given.

In a regularized least-squares problem, the objec-
tives are twofold. One first objective is to find the
design variables x ∈ Rn that gives a better fit. One
another objective is to obtain not too large design vari-
ables. The vector optimization problem with respect
to the cone R2

+ is

minimize f(x) =
(
f1(x), f2(x)

)T
, (4)

where the functions f1 and f2 may represent two iden-
tical Euclidean norms (or different norms) measuring
the fitting error and the size of the design vector, re-
spectively (see[3, pp. 184-185]).
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4.1 Tikhonov Regularization
Let the deterministic 5 overdetermined system be
Ax = b, where x ∈ Rn, A ∈ Rm×n with m ≫ n,
and b ∈ Rm (e.g., in some data fitting problems). We
retain quadratic measures for the size of the residu-
als Ax − b and for that of x. The problem (4) is to
minimize the two squared norms, so that

minimize f(x) ≡
(
∥Ax− b∥22, ∥x∥22

)
.

For both Euclidean norms, the unique Pareto op-
timal point is given by x̃ = A†b, where A† denotes
the pseudoinverse of A, i.e., A† = limε→0(ATA +
εI)−1AT at ε > 0. Expanding f1(x) and f2(x), and
scalarizing with strictly positive λi’s for i = 1, 2, the
minimization problem is expressed by

minimize x∈Rn
+

{
xT
(
λ1ATA + λ2I

)
x

−2λ1bTAx + λ1bTb
}
.

The minimum solution point x̂ = (ATA +
µI)−1ATb where µ = λ2/λ1 is Pareto optimal for
any µ > 0 (see also this Tikhonov regularization tech-
nique by [3, 25]).

4.2 ℓ1-norm regularization
Different norms are used in preference for the two ob-
jectives in practical applications (e.g., image restora-
tion) as in [26, 27]. The common method is

minimize
1

2
∥Ax− b∥2 + γ∥x∥1,

where γ ∈ (0,∞). In this formulation, the cost of us-
ing large values is a penalty added to the cost of miss-
ing the goal specification. The regularization tech-
nique overcomes an ill-conditioned matrix A of data
[26]. An optimal trade-off curve for a regularized
least-squares problem may be determine, as in [3, p.
185].

5 Conclusion
Solving nonlinear systems using ℓp-norms appears
to be an effective method of resolution. The initial
problem is transformed into an optimization problem
for which we are looking for the zero global mini-
mum solutions. However, the city-block ℓ1-norm and

5In presence of noisy observations, the system becomes b =
Ax + ξ, where ξ denotes a white Gaussian noise vector.

the uniform ℓ∞-norm produce nonsmooth objective
functions, for which nonderivative optimization tech-
niques are helpful. This optimization method is ap-
plied to a variety of small size systems of nonlinear
equations. This approach is well suited, specially, for
trigonometric polynomial systems with multiple solu-
tions.

6 Appendix: Nonlinear Systems and
Optimization Problem

A.1 Problem Equivalence
Solving a nonlinear system of equation and optimiz-
ing a multivariate function include multiple similari-
ties as in Table 4. The initial formulation of the two
problems is different. In the first problem, the non-
linear system g(x) = 0 consists in a vector function
g : Rn 7→ Rn, while a multivariate scalar function
is optimized in the second problem. In both cases,
a Taylor series expansion is used. However, it is a
linear approximation for the nonlinear system, but a
quadratic approximation for the optimization. Simi-
lar assumptions are made with regards to aspects such
as smoothness functions, negligible remainders, in-
version of the squared Jacobian and Hessian matrix,
respectively. Differences are in the formula for the
Newton iteration step.

A.2 Numerical Examples
Two examples illustrate the two procedures. In Ex-
ample 7 the nonlinear system of equation g(x) = 0
allows to determine the stationary points of the mul-
tivariate function f(x) in the minimization problem.
The connection is different in Example 8 since the
objective function of the minimization problem is ex-
pressed as f(x) = r(x)T r(x) , for which the resid-
ual error function satisfies r(x) = 0. The two-
dimensional Rosenbrock’s test function is used for
this example.

Example 7 Let the bivariate function

f(x) = 3− 3x1 − 2x2 + x22 + x31,

where x ∈ [−3, 3]× [−2, 4].

The first iterations of the nonlinear system prob-
lem and that of the optimization problem are in Table

5. The gradient is g(x) =
(
−3 + 3x21,−2 + 2x22

)T
. The solutions of the nonlinear system g(x) = 0 are
the stationary points (−1, 1)T and (1, 1)T for which
the function values are respectively 4 and 0.
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Table 4: Nonlinear system problem solving and optimization problem: a comparison

Nonlinear System Solving Problem Optimization Problem
1. Formulation
• Find x such that g(x) = 0, • minimize x f(x),

where x ∈ Rn and g : Rn 7→ Rn. where x ∈ Rn and f : Rn 7→ R.
2. Approximation
• Linear Taylor series expansion about x0, i.e., • Quadratic Taylor series expansion about x0, i.e.

g(x) = g(x0) + J(x0)T∆x +O2(∆x), f(x) = f(x0) +∇f(x0)T∆x
+1

2(∆x)TH(x0)∆x +O3(∆x),
where J(x0) ≡ ∇g(x0) is the Jacobian matrix where H(x0) ≡ ∇2f(x0) is the Hessian matrix
at x0 and ∆x = x− x0, the correction vector. at x0 and ∆x = x− x0, the correction vector.

3. Assumptions
• Smoothness of the functions gi(x), i = 1, . . . , n • Smoothness of the functions f(x)
• Negligible remainder O2(∆x) for higher terms • Negligible remainder O3(∆x) for higher terms
• Inverse of the squared Jacobian J(x0)T J(x0). • Inverse Hessian and positive definite Hessian

for a minimum.
4. Normal equation

JT J∆x = −Jg(x). H∆x = −∇f(x).
5. Newton’s iteration step k = 0, 1, . . .

x(k+1) = x(k) −
(

J(x(k))T J(x(k))
)−1

J(x(k)g(x(k)). x(k+1) = x(k) − αkH(x(k))−1∇f(x(k)),

where αk ∈ (0, 1) is the step size.

The global minimum is (1, 1)T at which the Hes-

sian H =

(
6x1 0
0 2

)
is positive definite, and for

which the function value is zero.

Example 8 The bivariate Rosenbrock’s function is

f(x) = (1− x1)2 + 100(x2 − x21)2,

where x ∈ [−1.5, 1.5]2.

The residual vector function for the Rosenbrock’s
function is

r(x) =

 1− x1

10(x2 − x21

 ,

such as f(x) = r(x)T r(x). The iterations of the New-
ton’s method are in Table 6.
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