
Efficient Evaluation of Sparse Jacobians by Matrix Compression
Part II: Implementation and Experiments

NIKOLAI STROGIES
Humboldt-Universitt zu Berlin

Department of Applied Mathematics
Berlin, Germany

strogies@math.hu-berlin.de

ANDREAS GRIEWANK
Humboldt-Universitt zu Berlin

Department of Applied Mathematics
Berlin, Germany

griewank@math.hu-berlin.de

Abstract: The accurate and efficient calculations of Jacobians matrices at a sequence of arguments is a key ingre-
dient of numerical methods for nonlinear problems in scientific computing. It has been known since the seminal
work of Curtis Powell and Reid [1] that once their sparsity pattern is known Jacobians can be estimated on the basis
of divided differences for a set carefully chosen directions. The number p of such seed directions and thus extra
function evaluations can often be limited a priori to a smallish number, which is typically much smaller than the
number of independent variables and unaffected by grid sizes and other discretization parameters. The cost factor p
is bounded below by the maximal number of nonzeros per row, which is actually sufficient for Jacobian estimation
using Newsam-Ramsdell compression. This NR approach is numerically less stable than the CPR method, which
was therefore preferred in practice as divided differences are strongly affected by truncation and round off errors.
However now, using automatic or algorithmic differentiation, one obtains directional derivatives with working ac-
curacy and can thus utilize the more economical NR approach.
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1 Introduction
In [9] we introduced a matrix compression method
based on seed matrices of generalized Vandermonde
form

S =
[
Pk
(
λj
)]j=1...n

k=1...ρ
∈ IRn×ρ. (1)

where ρ denotes the maximal number of nonzeros
per row of the Matrix to be compressed. Let χ =
n ≥ ρ represent the chromatic number of the col-
umn incidence graph. We define the abscissa values
{λi}χi=1 ∈ [−1, 1] and the Lagrange polynomials

Pk(λ) =
∏

k 6=q=1...ρ

λ− λd(q)

λd(k) − λd(q)
. (2)

Here the mapping d : [1..ρ] 7→ [1..χ] selects a certain
subset of Cartesian colors. By this technique we can
reconstruct the nonzero entries of a sparse Jacobian
F ′ ∈ IRm×n. Utilizing finite differences or, which is
more preferable, algorithmic differentiation (e.g. [9,
Section 3]), we can evaluate the Matrix

B = F ′S (3)

at a cost proportional to ρ times the complexity of F
itself. Then one can reconstruct the entries of the orig-
inal Jacobian according to

āi =
(
e>i F

′(x)ej

)
j∈J̄i

= biS̄
−1
i (4)

with

S̄i =
[
Pk (λc(j))

]j∈J̄i
k=1...ρ

∈ IRρ×ρ.

Here Ji, i = 1..m, denotes the index set of
nonzero entries in row i with cardinality |Ji| = ρi.
J̄i, i = 1..m, denotes the augmented index sets
where each Ji is enlarged by ρ − ρi indices from
{1, ..., n} such that |J̄i| = ρ holds for all i. Finally,
c : [1, ..., n] 7→ [1, ..., χ] represents the mapping as-
signing the columns to the corresponding color. This
special choice of the seeding matrix allows for a direct
representation of the inverse matrices

S̄−1
i =

 ∏
j 6=q=1...ρ

λd(k) − λc(q)
λc(j) − λc(q)

k=1...ρ

j∈J̄i

.

Moreover, partitioning every J̄i into Ĵi and J̌i with
Ĵi containing the noncartesian indices of J̄i we obtain
the following. For recovering the ith row of the Jaco-
bian we may reorder the columns of the compressed
matrix such that the first |Ĵi| entries of J̄i are the non-
cartesian ones. Then S̄i and S̄−1

i take the block trian-
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gular form

S̄i =

[
Ŝi Ši
0 I

]
S̄−1
i =

[
Ŝ−1
i −Ŝ−1

i Ši
0 I

]
.

(5)

with Ŝi ∈ IR|Ĵi|×|Ĵi|.
This paper is organized as follows. In Section 2 we
illustrate the method introduced in the first part [9] by
an example. Section 3 provides the algorithm used by
the authors for determining the ordering of the col-
ors and selecting the Cartesian ones. This procedure
is based on several heuristics, which are discussed in
detail. In Section 4 we provide examples from [3] and
report on the performance of the algorithm of Section
3 in several stages. The paper closes with remarks on
extensions to two-sided compression and Hessian ma-
trices in section 5.

2 An Illustrative Example
Consider a small example where χ = n, a situa-
tion, which is always arrived at after the rows of an
original m × n matrix have been compressed by the
CPR scheme (cf. equation (6) and the explanation
in [9]). Then we may have the 7 × 6 matrix dis-
played in Figure 1. Its column incidence graph is
complete because no two columns are structurally or-
thogonal as one can check easily. However, the max-
imal number of nonzeros per row is clearly ρ = 4,
and the Newsam-Ramsdell approach allows the re-
duction of the evaluation effort from six to four direc-
tional derivatives. Since each color is associated with

Figure 1: Sparse System with m = 7, n = 6 = χ,
ρ = 4; Boxed Entries are Identifiable

a single column we may number them in the given or-
der from 1 . . . 6. Therefore the sparsity is described
by the index sets J1 = {4, 5, 6}, J2 = {2, 3, 4},
J3 = {1, 4}, J4 = {2, 3, 5, 6}, J5 = {1, 3}, J6 =
{1, 2, 5}, J7 = {1, 6}. Suppose we pick the first,
third, fifth and sixth color as Cartesian , so that only
the second and forth are noncartesian . Then the seed

matrix takes the form displayed in the center of Fig-
ure 1 irrespective of the actual abscissa values cho-
sen. The resulting compressed Jacobian on the right
has only two special rows, namely the fifth and the
seventh. They are CPR style compressions of the cor-
responding rows in the Jacobian whose two nonzeros
are simply transferred to the boxed entries without any
modifications. In contrast, all other rows are linearly
combined to dense 4-vectors.

They can be reconstructed by solving linear sys-
tems of the form bi = āiS̄i with Si displayed in Figure
2. For the sixth row the system has the same struc-
ture as for i = 1 where there are also there nonzero
entries of which only one noncartesian column is in-
volved. The augmentations below the dashed lines are
somewhat arbitrary as one could pick any one of the
remaining rows in S. To reduce the number of opera-
tions it makes sense to augment only by Cartesian col-
ors. For conditioning it is important that the four re-
sulting colors are more or less nicely spread amongst
the four Cartesian ones, namely 1, 3, 5, and 6, which
we have selected. For the first row that is a little bit
of a problem as the naturally occurring colors 4, 5, 6
are all on the right end of the range. The matrices S̄i
represent polynomial extrapolation from the values at
the Cartesian abscissas to those at the λi with j ∈ J̄i.

i = 1 3 : 5 : 6 : 1 :

4 : × × × ×

5 : 0 1 0 0

6 : 0 0 1 0

1 : 0 0 0 1

i = 2 1 : 5 : 3 : 6 :

2 : × × × ×

4 : × × × ×

3 : 0 0 1 0

6 : 0 0 0 1

i = 3 3 : 1 : 5 : 6 :

4 : × × × ×

1 : 0 1 0 0

5 : 0 0 1 0

6 : 0 0 0 1

i = 4 1 : 3 : 5 : 6 :

2 : × × × ×

3 : 0 1 0 0

5 : 0 0 1 0

6 : 0 0 0 1

Figure 2: Permuted Submatrices S̄i for i = 1, 2, 3, 4

Conversely, the inverses S̄−1
i represent the extrap-

olation process in the opposite direction. Therefore,
we have picked the free color i = 1 to augment the
set J1 = {4, 5, 6}. In general we will strive to include
the endpoints λ1 and λχ into the augmented sets J̄i
whenever that is possible at all. The boxed entries in
Figure 2 represent the individual entries and the 2× 2
matrix that need to be inverted in the sense of linear
equation solving.

Their conditioning is essential for the condition-
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ing of the whole scheme. Then we choose the six ab-
scissas as the Chebyshev points

− cos((k − 0.5)π/6) for k = 1 . . . 6.

As one can see they can attain values greater than one
and that is even more so true for the sum of their ab-
solute values. These sums are called Legendre func-
tions, which are well understood when their support
grid is uniform or otherwise regular. In contrast we
choose them as ρ elements amongst χ Chebyshev
points, because other choices were less successful in
our experience. On our little example the two noncar-
tesian rows in the seed matrix of our small example
take the values

2 : (0.464, 0.732, −0.464, 0.268)
4 : (−0.072, 0.464, 1.071, −0.464)

(6)

The only comparatively small entry−0.072 would be-
come a pivot if we had augmented J1 = {4, 5, 6}
with 3 rather than 1. With our choice division is re-
quired by pivots with the same absolute value 0.464
for rows 1, 3, and 4. For row 2 one has to solve a lit-
tle 2 × 2 system whose determinant is also given by
(0.464 ·1.079−0.072 ·0.464) = 0.464 with its largest
entry of size 1.071.

Also, the remaining off-diagonal entries are all
small, so that the linear equations solving provides
no numerical difficulties whatsoever. Notice that the
parts beyond the dashed line may be left out of the
computation. The total number of numerical opera-
tions is 17 = 3 · 3 + 8, which must be compared
with the effort for solving one 4 × 4, three 3 × 3,
and two 2 × 2 Vandermonde system in the classi-
cal Newsam-Ramsdell variant. Obviously, this effort
would be much higher, including in particular quite a
few divisions. Naturally, the condition numbers and
operations counts are extremely small on this toy ex-
ample.

They are bound to be significantly larger on real
problems. However, we should keep in mind that the
dense linear sub-systems that need to be solved are
maximally of dimension χ− ρ. If this discrepancy
is significant the little extra solving effort will quite
likely pay off by avoiding the evaluation of χ−ρ di-
rectional derivatives.

3 Algorithmic Approach
In the following discussion we will again assume
without loss of generality that the Jacobian has been
precompressed by CPR grouping so that now n = χ.
Moreover, the sparsity pattern of the precompressed
Jacobian is given by the sets {Ji}mi=1. There is a rather

well-developed theory on the conditioning of poly-
nomial interpolation schemes starting with ground
breaking papers by Erdös and Gautschi (see e.g. [4],
[5] and [6]). However, none of these results seem di-
rectly applicable to our situation because they concern
a single linear system for which the abscissas may be
chosen appropriately. Here we first have to choose ab-
scissas (λj)j=1...χ, and then select ρ of them as Carte-
sian denoted by (λ̂j)j=1..ρ such that these interpolate
well with the m subsets (λj)j∈J̄i . By interpolate well
we mean that the values of a polynomial of order ρ can
be transformed back and forth stably between the sets
of abscissas (λ̂j)j=1..ρ and the m subsets (λj)j∈J̄i .

Covering the Extremes:
Geometric intuition strongly suggests that this will
only be possible if the two abscissa sets are nicely
intertwined rather than occupying disparate parts of
the real line. For the color ordering of the columns

Figure 3: Lagrange polynomials for various roots

of the matrix to compress, the following step is cru-
cial. Figure 3 indicates, that ideally a common pair of
indices should be contained in all the sets J̄i. Since
we are forced to augment the index sets Ji by at most
ρ − ρi ≥ 2 indices, the above task can be per domed
as follows.

Given m subsets Ji ⊂ {1, ..., χ} with |Ji| =
ρi ≤ ρ we are looking for a covering pair {j, k} of
indices such that {j, k} ⊂ Ji for all i referring to so
called maximal rows (ρi = ρ) and {j, k} ∩ Ji 6= ∅
for all i referring to so called long rows (ρi = ρ− 1).
After identifying these elements, all index sets Ji are
joined with {j, k} (and probably more Cartesian ab-
scissas) to obtain the sets J̄i, each containing {j, k}.
These indices are included in the set of Cartesian col-
ors and further identified with the left-most and right-
most abscissa value. Thus we stabilize the behavior of
the Lagrangian polynomials. However, the existence
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of a covering pair is not guaranteed at all which leads
to the consideration of covering sets which are disjoint
k tuples K1 and K2 satisfying |K1| ≤ |K2| = k and

K1 ∩ Ji 6= ∅ and K2 ∩ Ji 6= ∅

if i refers to a maximal row and

K1 ∩ Ji 6= ∅ or K2 ∩ Ji 6= ∅

if i refers to a long row. Determining the covering
sets is equivalent to the Hitting Set Problem which
is known to be NP complete [10]. Consequently, we
use a greedy strategy for the determination of this set
which works as follows.

First, set K1 = K2 = ∅. Then both are filled al-
ternately by the index which occurs most frequently
in all maximal and long rows. Afterward, this index
will not longer be considered and we look for the next
most frequent index. As soon as two indices from a
maximal row or one from a long row was selected,
the corresponding row is not longer considered. The
k left-most and right-most colors are related to the el-
ements in the covering sets according to the frequency
with with the corresponding indices occur among the
maximal and long rows. Thus we cover as many rows,
maximal or long, as possible with values as close as
possible to −1 and 1. At this point we have to real-
ize, that there are examples of sparse matrices where
the cardinality of the covering set exceeds ρ which is
the number of available Cartesian colors. In section 5,
examples of matrices with this property are given.

Reordering the interior columns:
Next we discuss the reordering procedure for the un-
covered columns. Let C = {d(k)}k=1...ρ denote the
so far not specified set of Cartesian indices. Then we
have for each i the partition

J̄i = Ĵi ∪ J̌i with J̌i = J̄i ∩ C.

The linear transformations described by the matrix S̄i
and its inverse S̄−1

i represent polynomial interpolation
from the nodes C to J̄i and back. Large entries in
some S̄i and thus S itself are undesirable because, as
we have seen in [9, Section 3], they cause compara-
tively large errors in the evaluation or approximation
of the corresponding directional derivatives by AD or
differencing, respectively. Large entries in S̄−1

i open
the chance that these errors are enlarged during the
reconstruction of the Jacobian rows ai from the com-
pressed rows bi. The more specific analysis in [9, Sec-
tion 3] showed that what matters for either differentia-
tion method in the end are the l1 norms of the inverses
of the pre-scaled versions of the matrices S̄i.
Their columns s(i)

k must be rescaled either by the l∞

norms of the s(i)
k themselves or the norm of the under-

lying full column sk. Again we see, that the entries of
the matrices S̄i have to be small which depends on the
distribution of the Cartesian abscissa values. Ideally
we would like to minimize the following dissimilarity
measure. For each index set Ji we may find an injec-
tive mapping ϕ : Ji → C that minimizes the distance

σ(C,Ji) ≡ max
j∈Ji

∣∣ϕi(j)− j∣∣ (7)

over all such assignments. Striving to make all linear
subsystems well conditioned we could try to minimize

σ
(
C, (Ji)i=1...m

)
≡ max

1≤i≤m
σ(C,Ji) (8)

by a suitable ordering of the colors and selection
of the Cartesian subset C. Of course, a direct at-
tack on this combinatorial problem seems rather hope-
less. Therefore, we will make the assumption that
the ρ Cartesian colors should in any case be spread
with an approximately even distance of χ/ρ amongst
all χ colors. Consequently, reasonable assignments
ϕi : Ji → C can be found provided the index sets Ji
are nowhere densely clustered. Ideally, the distances
between its element should also be about χ/ρ or pos-
sibly larger. However, we have already fixed the order
of |K1| + |K2| columns of the Jacobian according to
the previous step and have to fix the remaining ones.

The TSP heuristic:
We aim to avoid having adjacent colors in each of the
index sets Ji as described above. This problem can
be regarded as an instance of the symmetric Traveling
Salesman Problem (TSP) with fixed start- and end-
point. Starting point is the right-most index of K1 and
endpoint is the left-most index inK2 while the objects
to order are the remaining χ−|K1|− |K2| columns of
the Jacobian.

The distance between two columns is the number
of rows, where both columns have a nonzero. One
easily checks, that this metric does not fulfill the tri-
angle inequality. The TSP is NP hard but can never-
theless be solved quite reliably for tens of thousands
of nodes. For small numbers of free columns we have
implemented a brute force (BF) and a greedy strategy
which is also used for moderate and large numbers of
free columns since the effort of BF grows exponen-
tially in this number.

Complete and partial Chebyshev seeds:
Since our S always contains exactly ρ distinct Carte-
sian rows it has in each column at least one 1. To
keep the columns of S at a similar size we have to
watch its largest elements. It was shown in [11] that
the l∞ norm of S is proportional to 2 log(ρ)/π when
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the Cartesian abscissas (λk)k∈C are the roots of the
Chebyshev polynomial of degree ρ, i.e.

λd(k) = − cos((k − 0.5)π/ρ) (9)

for k = 1 . . . ρ. Moreover, the asymptotic bound
2 log(ρ)/π cannot be undercut by any other system
of abscissas. Especially in view of difference quotient
calculations one may wish to keep the seed matrix S
nicely balanced. Also, large entries in the seed ma-
trix might be disconcerting to the user. Hence we may
chose the seed matrix S by first selecting the Carte-
sian abscissa as Chebyshev points and then placing
the remaining χ−ρ ones more or less evenly amongst
them. This strategy, which we will refer to as com-
plete Chebyshev seed, may be especially useful in
the context of differencing where it should allow the
use of the same δ in all test directions. However, in
our preliminary tests we had even more success with
the following strategy, which we will refer to as par-
tial Chebyshev seed. Define the full set of abscissas
(λk)k=1...χ as the Chebyshev points of degree χ and
then select the Cartesian ones as roughly every (χ/ρ)-
th of them.
More specifically, we set

d(k) =
(
k − 1

2

)
χ/ρ (10)

for k = 1, 2, . . . , ρ.
For the example given in section 2 the latter distribu-
tion of abscissas would provide the symmetric distri-
bution d(1) = 1, d(2) = 3, d(3) = 4, and d(4) = 0
rather than the slightly more interesting choice d(1) =
1, d(2) = 3, d(3) = 5, and d(4) = 6 we used for this
example.
Summing up, we arrive at the following procedure
given the sparsity pattern {Ji}i=1...m.

1. Precompression:
Color the column incidence graph by some
heuristic using χ colors yielding the grouping
matrix G. Then determine the weighted reduced
column incidence graph of the precompressed
Jacobian F ′(x)G.

2. Covering Sets:
Determine maximal and long rows, compute the
covering set according to the discussion above,
join the long rows with a suitable element from
the covering set.

3. Reordering:
Order the colors by approximately solving the
traveling salesman problem on the weighted re-
duced column incidence graph.

4. Fixing Abscissa Values:
Select the Cartesian colors d(j) according to the
rule (10) and compute the compression matrix C
as defined in (1). Finally obtain the seed matrix
S = GC.

5. Augmentation:
Augment all remaining index sets Ji with |Ji| <
ρ by Cartesian indices.

The reconstruction of the Jacobian can then be per-
formed according to (4).

4 Experimental results
The coloring number was calculated by ColPack [7]
version 1.04 which is distributed under the GNU
Lesser General Public License. We have chosen this
tool because it directly provides the precompressed
Jacobian. In order to justify the proposed approach,
we first present several matrices we encountered in
the Florida Sparse Matrix Collection [3], where the
gap between coloring number and maximal number
of nonzeros per row is significant.

Table 1: Sparsity parameters of example matrices

In Table 1 we show the maximal number of
nonzeros per column, and in Table 2 the chromatic
number of the column incidence graph, the corre-
sponding difference and ratio.
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Table 2: Chromatic number and max row lengths

For these matrices, the application of the pre-
sented seeding technique is promising since we need
significantly less rows in the seeding matrix for most
of them. However, most of the matrices we used from
this collection satisfy χ−ρ = 1 and we therefore did
not include them in our experiments.
Note that according to the first part of Section 5 even
the consideration of matrices with this small gap pays
off. For completeness we mention, that there are in
addition several examples (e.g. baxter, ulevimin and
pre2), where the coloring of the column incidence
graph yields optimal results, meaning that χ = ρ
equals the lower bound maximal nonzeros per row.
For these matrices, the presented approach does not
yield any improvement.

Next we report on the performance of the greedy
algorithm for the determination of the covering sets.
The corresponding results are depicted in Table 3
where also the number of maximal and long rows
(mm and ml) is listed. Here we especially highlight
cis-n4c6-b13 with |K1|+|K2| = ρ and nug08-3rd and
graphics both satisfying |K1|+ |K2| > ρ as examples
for matrices where all special abscissas are located at
the ends of the interval [−1, 1].
Table 4 provides information about the improvement
we could achieve in our tests with the reordering pro-
cess. We listed most of the matrices from Table 3

Table 3: Size of covering sets

again, where the gap was significant.

Table 4: Reordering of Uncovered Columns

In the column Average distance we provide the
mean value of the products

Gi =

ρi−1∏
k=1

(gi(k + 1)− gi(k))

where gi maps {1, ..., ρi} to the actual colors
{1, ..., χ} such that {gi(k)}ρik=1 = Ji holds for all
i = 1, ...,m. This quantity is given before we re-
order the Jacobian with the pair of covering sets and
the TSP and after. The values in this column are thus
(
∑m

i=1Gi)/m at the two different stages for the con-
struction of S. The Travel cost, we observe at the same
stages of the process, are the sum of all column dis-
tances our Traveling Salesman model travels in the
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current column order, i.e. we see the total number of
neighboring nonzeros. Without having to pick specific
examples, we see that our approach of reordering by
covering sets and trying to avoid only directly neigh-
boring nonzeros shows a considerable improvement in
the distribution of the nonzeros over the whole spar-
sity pattern. In this part a run time analysis for the
construction of S, the preparation of S−1

i in a suitable
form and the solves per Jacobian evaluation remain
to be done. Also the numerical conditioning of S−1

i
should be computed explicitly rather than deduced
from the traveling distance, which is a measure of the
size of the interpolation denominators. It is also not
yet quite clear what is the best general purpose scheme
for effecting the multiplications S̄−1

i . One may of
course compute and store the inverses explicitly, or
apply fast interpolation algorithms from scratch every
time, i.e. at each new Jacobian evaluation and recon-
struction.

5 Summary and Outlook
In this two part paper we have considered the task
of reconstructing Jacobians from a minimal number
of directional derivatives, be they estimated by di-
vided differences or evaluated in the forward mode
of algorithmic differentiation. The total resulting er-
ror is structurally similar but considerably larger due
to truncation and round-off in case of divided differ-
ences. While CPR coloring typically reduces the col-
umn number χ of the precompressed Jacobian to a
fraction of the number n of independent variables one
needs Newsam-Ramsdell type seeding to reach the ab-
solutely minimal Jacobian width ρ. Based on interpo-
lation at Chebyshev points we have developed a seed
matrix S that has a minimal number of nonzero en-
tries according to the total linear independence condi-
tion. They are all of moderates size to limit the eval-
uation and differencing error. Moreover, by suitable
augmenting the sparsity pattern without increasing ρ
and reordering the columns at least conceptually we
can ensure that the relevant square submatrices of S
have also comparatively few nonzero entries, which
are again all of moderate size. To achieve these goals
at least approximately we employ heuristic methods
for achieving small coloring numbers short total dis-
tances in a traveling salesman variation. We verified
the effectiveness of the overall approach on a signifi-
cant number of test cases from the Florida matrix col-
lection.

When the sparsity pattern is not hundred percent
certain or the accumulation of round off is a reason for
concern one might add an extra column to S so that
the compressed Jacobian contains some redundant in-

formation that can be checked for consistency. This
could be selected as an extreme and Cartesian color so
that the covering problem would become much easier.
Like for all augmentations we can then check whether
the extra components of bi are zero up to the error size
suggested by our analysis. If not we can conclude that
the sparsity pattern was wrongly specified, possibly
due to control flow variations in the evaluation proce-
dure for F . Serious implementation with this feature
is currently under development.

Besides the Jacobian vector products (3) which
corresponds to the forward mode of AD providing a
column compression of the Jacobian, one also can aim
for a row compression defining matrices

C = W>F ′. (11)

The reverse mode of AD provides the matrix C for
an arbitrary weight matrix W ∈ IRq×m. By C> =
F ′>W we see, that for this type of compression the
nonzeros per column and the chromatic number of the
row incidence graph have to be considered. Then the
whole procedure from section 4 can be applied to ob-
tain W . Note that the computation of the compressed
matrix C cannot be based on divided differences.
When F ′ has (almost) dense columns the forward
mode is more efficient, when it has (almost) dense
rows the reverse mode is preferable. If it has both
one can apply two-sided compression as suggested
by Coleman and Verma [2], now again with minimal
complexity in the NR fashion suggested here.
Similarly, two-sided compression can be applied to
evaluate sparse Hessians of functions f : IRn → IR
or the corresponding complete second derivative ten-
sor of vector valued functions F : IRn → IRm [8].
For this gradients and second order adjoints can be
evaluated in the reverse mode, each at a complexity
comparable to the cost of the underlying partially sep-
arable function.
Of course, for second derivatives, approximation by
divided differences is even more inaccurate than for
first, but a mixed mode with second order adjoints ap-
proximated by differencing on gradients obtained via
AD or hand coding is certainly feasible. Again the
coloring and ordering strategies developed in this pa-
per should be very useful.
To the best of our knowledge third and higher deriva-
tive tensors are rarely used in scientific computing,
though ADOL-C provides tools for their dense evalu-
ation and the methods employed here could naturally
also be generalized to such scenarios. They might oc-
cur for example in bifurcation and stability calcula-
tions.
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