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Abstract: Given an k-tuple of vectors, S = (v1,v2,...,v), the neighbourhood adjacency code of a vertex v
with respect to S, denoted by ncg(v) and defined by (a1, as, ..., ar) where a; is 1 if v and v; are adjacent and

0 otherwise. S is called a neighbourhood resolving set or a neighbourhood r-set if ncg(u) # ncg(v) for any
u,v € V(G). The least(maximum) cardinality of a minimal neighbourhood resloving set of G is called the
neighbourhood(upper neighbourhood) resolving number of G and is denoted by nr(G) (N R(G)). In this article,
we consider the nr-excellent graphs. For any Graph G, G is nr-excellent if every vertex of GG is contained in
a minimum neighbourhood resolving set of (G. We first prove that the union and join of two given nr-excellent
graphs is nr-excellent under certain conditions. Also we prove that a non nr-excellent graph G can be embedded
in a nr-excellent graph H such that nr(H) = nr(G) + number of nr- bad vertices of G. Some more results are
also discussed.
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1 Introduction If V is a finite dimensional vector space over a
field F and B = (v1,v9,...,vk) is an ordered ba-
Let G = (V,E) be a simple graph. Given a k- sis, then every vector v in V' can be associated with
tuple of vertices (v1, vo, . . ., V), assign to each vertex a unique k-tuple (A1, A2, ..., Ax) where v = A\jvg +
v € V(Q), the k-tuple of its distances to these ver- Agvg + ... + Agvg. If v and w are distinct vectors,
tices, f(v) = (d(v,v1),d(v,v2),...,d(v,v)). Let- then their associated k-tuples of scalars are distinct.
ting S = (v, va,...,vx), the k-tuple f(v) is called Thus any ordered basis gives rise to a coding for the
the S-location of v. A set S is a locating set for G’ if elements of the vector space. The dimension of the
no two vertices have the same S-location and the loca- vector space is the order of a basis. Since locating
tion number L(G) is the minimum cardinality of a lo- sets in a graph play the same role as bases in a vec-
cating set. This concept was introduced by P. J. Slater tor space, the locating number is termed as metric di-
in [25] [27] [26]. It can be easily seen that L(G) = 1 mension. Chartrand et al [4] called locating sets as
if and only if G is a path and any path P,, (n > 2) resolving sets and retained the term metric dimension
has two L(P,)-sets, each consisting of an end vertex. for locating number.
Also for any tree 1" with at least three vertices, a sub- Many papers have appeared in this area since
set S is a locating set if and only if for each vertex u 2000. For example dominating resolving sets, inde-
there are vertices in S, contained in at least deg(u) — 1 pendent resolving sets, acyclic resolving sets, con-
of the deg(u) components of 7" — w. nected resolving sets, resolving partitions and resolv-
Slater [25] described the usefulness of locating ing decompositions were studied by many [4], [5],
sets when working with U.S. sonar and Coast Guard [6].[7], (8], [9], [11], [12], [13], 2], [3], [44].
Loran stations. Independently Harary and Melter [14] In all these studies, the graph considered are
found these concepts as well but used the term metric connected and the codes of the vertices are k-tuples
dimension, rather than location number, the terminol- whose entries are positive integers ranging from 0 to
ogy which has been adopted by subsequent authors. the diameter of the graph. An alternate coding of the
Recently, these concepts were rediscovered by M. A. vertices using 0 and 1 (binary digits) can be thought
Johnson [18] [19] of the pharmacia company while of, which is possible in disconnected graphs also.
attempting to develop a capability of large datasets of A new type of binary coding for vertices is de-
chemical graphs. fined through adjacency. A vertex u in a graph
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G with respect to a k-tuple of vertices (say) S =
(v1,v2,...,vg) is assigned the code(which is written
as ncs(u)) (a1, a9, ...,ax) where a; is 1 if u and v;
are adjacent and 0 otherwise. If ncg(u) # ncs(v)
for any u # v, u,v € V(G), then S is called a neigh-
bourhood resolving set of GG. If we consider the vector
spaces over the field Z, then the code of any vector
is a binary code. Thus neighbourhood resolving sets
correspond to bases in a vector space over Zy. Ob-
viously neighburhood resolving sets can be defined in
disconnected graphs also. But not all graphs can admit
neighbourhood resolving sets. For example, a graph
G in which N(u) = N(v), for two non-adjacent
vertices u,v € V/(G) will not have any neighbour-
hood resolving set. But these graphs can be embed-
ded in graphs having neighbourhood resolving sets.
Obviously a graph with more than one isolated vertex
will not have neighbourhood resolving sets. The min-
imum cardinality of a neighbourhood resolving set
in a graph G' which admits nieghbourhood resolving
sets is called the neighbourhood resolving number of
G and is denoted by nr(G). Any nr-set of G with
nr(G) > 2 cannot be independent. Graphs are of-
ten used to model different physical networks. nr-sets
can be used to detect intruders on models of networks
of facilities and it is used to detect the failures on net-
works of routers or processors.

Suk J. Seo and P. Slater [34] defined the same type
of problem as an open neighborhood locating domi-
nating set (OLD-set), is a minimum cardinality ver-
tex set S with the property that for each vertex v its
open neighborhood N (v) has a unique non-empty in-
tersection with S. But in Neighbourhood resolving
sets N(v) may have the empty intersection with S.
Clearly every OLD-set of a graph G is a neighbour-
hood resolving set of G, but the converse need not be
true.

M.G. Karpovsky, K. Chakrabarty, L.B. Levitin
[20] introduced the concept of identifying sets using
closed neighbourhoods to resolve vertices of G. This
concept was ellaborately studied by A. Lobestein [21].

Let 1 be a parameter of a graph. A vertex
v € V(G) is said to be u-good if v belongs to a y-
minimum (u-maximum) set of G according as p is a
super hereditary (hereditary) parameter. v is said to
be p-bad if it is not p-good. A graph G is said to be
u-excellent if every vertex of GG is p-good. Excellence
with respect to domination and total domination were
studied in [10], [15], [30],[31], [32], [33] . N. Sridha-
ran and Yamuna [31], [32], [33], have defined various
types of excellence. In this paper, definition, examples
and properties of nr-excellent graphs is discussed.
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2 Neighbourhood Resolving sets in
Graphs

Definition 1 Ler G' be any graph. Let S C V(G).
Consider the k-tuple (uy,us,...,ur) where S =
{ui,ug,...,up}, k > 1. Let v € V(G). Define a
binary neighbourhood code of v with respect to the k-
tuple (uq,us, . .., uy), denoted by ncg(v) as a k-tuple
(r1,72,...,7) Where

{1, ifveNw),1<i<k
r; =

0, otherwise

S is called a neighbourhood resolving set or a neigh-
bourhood r-set if ncg(u) # neg(v) for any u,v €
V(QG).

The least cardinality of a minimal neighbourhood
resloving set of G is called the neighbourhood resoly-
ing number of G and is denoted by nr(G). The max-
imum cardinality of a minimal neighbourhood resolv-
ing set of G is called the upper neighbourhood resolv-
ing number of G and is denoted by N R(G).

Clearly nr(G) < NR(G). A neighbourhood
resolving set S of G is called a minimum neighbour-
hood resolving set or nr-set if S is a neighbourhood
resolving set with cardinality nr(Q).

Example 2
uy
us u9
G:

U4 U3
Now S; = {uj,u2,us} is a neighbourhood re-
solving set of G, since ncg(ui) = (0,1,1); ncg(uz)
=(1,0,1);

nes(uz) = (0,1,0); neg(uq) = (0,0,1) and

nes(us) = (1,1,0).  Also Sy = {ui,us,uqs} ,
S3 = {ui,uz,us}, Se= {u1,us,us} are neigh-
bourhood resolving sets of G. For this graph,
nr(G) = NR(G) = 3.

Observation 3 The above definition holds good even
if G is disconnected.

In the following theorem characterisation of con-
nected graphs which admit neighbourhood resolving
sets is given.
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Theorem 4 [38] Let G be a connected graph of order
n > 3. Then G does not have any neighbourhood
resolving set if and only if there exist two non adjacent
vertices u and v in V(QG) such that N(u) = N (v).

Definition 5 [40] A subset S of V(G) is called an nr-
irredundant set of G if for every u € S, there exist
x,y € V which are privately resolved by u.

Theorem 6 [40] Every minimal neighbourhood re-
solving set of G is a maximal neighbourhood resolv-
ing irredundant set of G.

Definition 7 [40] The minimum cardinality of a max-
imal neighbourhood resolving irredundant set of G
is called the neighbourhood resolving irredundance
number of G and is denoted by ir,,(G). The max-
imum cardinality is called the upper neighbourhood
resolving irrundance number of G and is denoted by
IR, (G).

Observation 8 [40] For any graph G,
irnr(G) < nr(G) < NR(G) < IR, (G).
Theorem 9 [41] For any graph G,
nr(G) <n-—1.

Theorem 10 [39] Let G be a connected graph of or-
der n such that nr(G) = k. Then logan < k

Observation 11 [39] There exists a graph G in which
n = 2k and there exists a neighbourhood resolving
set of cardinality k such that nr(G) = k. Hence all
the distinct binary k-vectors appear as codes for the
n vertices.

Theorem 12 [41] Let G be a connected graph of or-
der n admitting neighbourhood resolving sets of G
and let nr(G) = k. Then k = 1 if and only if G is
either K5 or K.

Theorem 13 [41] Let G be a connected graph of or-
der n admitting neighbourhood resolving sets of G.
Then nr(G) = 2 if and only if G is either K3 or K3 +
a pendant edge or K3 U Ky or Ko U K.

Result 14 [40] For a complete graph K,,
nr(K,)=n—-—1,n>2.
Result 15 [40] For a path P,,, n > 6,

2n

nr(Pa) = 5]
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3 nr-excellent graphs

Definition 16 Let G = (V, E) be a simple graph. Let
u € V(Q). Then u is said to be nr-good if u is con-
tained in a minimum neighbourhood resolving set of
G. A vertex u is said to be nr-bad if there exists no
minimum neighbourhood resolving set of G contain-
ing u.

Definition 17 A graph G is said to be nr-excellent if
every vertex of G is nr-good.

Example 18 Consider the graph G:
1
o Aﬁ\

The nr-sets of G containing

the vertices

1,2,3,4,5,6,7 are {1,2,3,4},  {1,5,6,7},
{1,3,4,6}, {1,3,5,6}, {1,2,3,5}, {1,4,6,7},
{1,2,3,6} and {3,4,5,6}.

Therefore every vertex of G belongs to some nr-
set of G and hence nr-good. Therefore G is nr-
excellent.

Theorem 19 The following results are obvious from
the definition.

(i) K, is nr-excellent, for every n.

(ii) P, is nr-excellent if n = 0,2,3,4 (mod 6)
and P,, is non-nr-excellent if n = 1,5 (mod 6).

(iii) Cy, is nr-excellent, for every n # 4.

Remark 20 Consider the graph G obtained from two
complete graphs K,, and K,, m,n > 4 having ex-
actly one vertex in common. Then nr(G) = m+n—4.
G is not nr-excellent, since there is no nr-set contain-
ing the common vertex.

Remark 21 Suppose G has a unique nr-set. Then G
is not nr-excellent.

Theorem 22 Any vertex transitive graph is nr-
excellent.

Proof: Let G be a vertex transitive graph. Let S
be an nr-set of G. Let u € V(G). Suppose u ¢ S.
Select any vertex v € S. As (F is vertex transitive,
there exists an automorphism ¢ of G which maps v to
u. Let S* = {¢(w)/w € S}. Since S is anr-set and ¢
is an automorphism, S1is also a nr-set. Since v € S,
#(v) = u € S. Hence G is nr-excellent. O

Remark 23 Any vertex transitive graph is regular.
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Remark 24 [. There exists a regular graph which is
nr-excellent, but not vertex transitive.

~—

e
e
,,,,,

~~~~~~~~~
S,

The nr-sets of G are {1,2,5,6,9} and 3,4,7,8,9}.
G is nr-excellent but not vertex transitive.

2. The path P, where n 1,5 (mod 6) are
not nr-excellent and not vertex trasitive, but P,, where
n = 0,2,3,4 (mod 6) are nr-excellent but not vertex
transitive.

3. There are regular graphs which are not vertex
transitive without neighbourhood resolving sets. The
follwing gaph G is an example.

1 2 g 7

>~

G: 10

3 4 8 9

Since 1 and 4 are non-adjacent and N (1)
N (4), G has no neighbourhood resolving sets.

Theorem 25 Let G and G5 be nr-excellent graphs.
Then G1UGY3 is nr-excellent if and only if at least one
of G1, Gg satisfies one of the follwing conditions

(i) If every nr-set of G1 (G2) containing a vertex
x € V(G1)(V(G2)) admits a 0-code, then there ex-
ists an nr-set of Go(G1) not allowing 0-code for any
vertex of V(G2)(V(Gh)).

(ii) Every nr-set S of G;, © = 1,2, allows 0-code.

Proof: Let G and G be nr-excellent graphs.

Suppose (i) holds. Then nr(Gi U Ga)
nr(Gi1) + nr(G2). Let u € V(G1). Suppose there
exists an nr-set S of G1 containing % and not admit-
ting 0-code. Then for any nr-set T of Go, S UT is an
nr-set of G; U G2 containing u.

Suppose every nr-set of G containing v admits
0-code. Then by condition (i), there exists an nr-set T’
of G not allowing 0-code. Then S UT' is an nr-set of
(G1 U G2 containing u. A similar proof holds for any
vertex in V(G). Therefore G; U G5 is nr-excellent.

Suppose (ii) holds. Then for any nr-set S of (G1
and an nr-set T of G2, SUTU{x} where z € V(G U
G2) and z is adjacent to at least one of the two vertices
which receive 0-code with respect to S or with respect
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to 7', is an nr-set of G; U G9. Since GG1 and G5 are
nr-excellent, we get that G1 U G4 is nr-excellent.
Conversely, Suppose GG1 U G is nr-excellent.
Case (i) : nr(G1 U Ga) = nr(Gy1) + nr(Gs).
Therefore at least one of (1, G2 has an nr-set for
which there exists a vertex that receives 0-code with
respect to S. Without loss of generality, let S C
V(G1). Suppose there exists a vertex u € V(G1)
such that every nr-set of (1 containing v admits O-
code. Since G7 U G4 is nr-excellent, there exists an
nr-set of S of G1 U G2 containing u.
Let Sll =51 N V(G1> and S% =51 N V(Gg)
By our assumption, S admits O-code. Since S is an
nr-set of G1 U Go, 521 is an nr-set of G5 which does
not allow 0-code in 5. Hence condition (i) hold.
Case (ii) : nr(G1UG3) = nr(G1) +nr(Gs) + 1.
Therefore every nr-set of G as well as that of Ga,
allows 0-code. Hence (ii) holds. O

Definition 26 A graph G is said to be of type-I if there
exists an nr-set S in G such that no vertexin V. — S
is adjacent to every vertex of S. (That is every vertex
in V — S is not adjacent to at least one vertex of S.)

Definition 27 A graph G is said to be of type-II if
there exists an nr-set S in G such that there exists
a vertex in V. — S which is adjacent to every vertex of

S.

Definition 28 (i) A graph G is of type-I nr-full if for
every nr-set S in G, every vertex outside S is not ad-
Jjacent to at least one vertex in S.

(ii) A graph G is type-II nr-full if for every nr-
set S in G, there exists a vertex outside S adjacent to
every vertex of S.

Example 29 (i) K,, n > 3 is of type-II nr-full, but
type-I non-nr-full.
(ii) Consider the following graph G.

The nr-sets of G are {1, 3,4}, {1,2,3}, {1,2,4},
{2,3,4}, 1,4,5}, {3,4,5} and {1,3,5}. For an nr-
set S = {1,3,4} there exists a vertex 2 outside S
such that 2 is adjacent to 1,3,4. Similarly the prop-
erty holds for other nr-sets also.

Therefore, G is type-II nr-full, but not type-1 nr-
Sull.
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(iii)

1 2 3 4

The nr-sets of G are {1,2,4}, {1, 3,4}, {1,3,5},
{1,2,5.

The type-I nr-sets are {1,3,4}, {1,3,5} and
{1,2,5}, since every vertex outside the nr-set is not
adjacent to at least one vertex of the set.

The only type-1I nr-set is {1,2, 4}, since there ex-
ists a vertex 5 outside the set {1,2,4} such that 5 is
adjacent to 1,2 and 4.

Therefore G is type-1I non-nr-full and type-I non-
nr-full.

(iv)

The type-II nr-sets of G are {1,2,4}, {1,3,4},
{1,5,3}, {2,5,6}, {3,5,6} and {2,4,6}.

The type-1 nr-sets are {3,4,6} and {1,2,5}.

Therefore G is type-1I non-nr-full and type-I non-
nr-full.

(v) P, and C,, are type-I nr-full, but type-II non-
nr-full.

(vi) Consdier the graph G.

The nr-sets of G are S1 U Sy where S1 and So
are 3-element subsets of {1,2,3,4} and {5,6,7,8}
respectively.

G is type-1 nr-full and type-1I non-nr-full.

Remark 30 If G is type-I nr-full then it is type-II non-
nr-full and vice versa.

Definition 31 Ler G be a graph. A vertex u € V(G)
is said to be type-1 (type-II) nr-good if u belongs
to some type-I(type-11) nr-set. Otherwise u is type-
I(type-1I) nr-bad.
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A graph G is type-I (type-1I) nr-excellent if every
vertex of G is type-I (type-1I) nr-good.

Example 32 (i) K,, is type-II nr-excellent, but not
type-I nr-excellent.
(it) Consider the following graph G.

1

6 2
G:

5 3

4
The type-I ne-sets of G are {1,2,4,5},
(1,3,4,6), {1,2,3,4}, {1,2,5,7}, {1,4,5,6),
{1,2,3,6}, {1,2,5,6}, {1,2,3,7}, {1,3,6,7},
{1,5,6,7}, {2,4,5,7}, {3,4,6,7}, {2,3,4,5},
13,4,5,6), {2,3.4,7), {4,5,6,7}, {2.3,5,7}

{3,5,6,7}, {2,3,6,7} and {2,5,6,7}. The only
type-1I nr-set is {2,3,5,6}. Note that G is both
type-1I and type-1 non-nr-full. Therefore G is type-1
nr-excellent but not type-1I nr-excellent.

(iii) Consider the following graph G:

1

G:
4 3
The only type-I nr-set of G is {1,2,6} and the
only type-II nr-set of G is {1,2,4}. Therefore G is
neither type-1 nr-excellent nor type-II nr-excellent.
Note that G is not nr-full.

Theorem 33 Let G and H be nr-excellent graphs.
Then G + H is nr-excellent if and only if

(i) G and H are type-I nr-full. (or)

(ii) G and H are type-II nr-full. (or)

(iii) G is type-I nr-full and H is not nr-full. (or)

(iv) H is type-1 nr-full and G is not nr-full. (or)

(v) G is type-1I nr-full, H is not nr-full and for
every vertex u € V(H), there exists a type-I nr-set in
H containing u. (or)

(vi) G is not nr-full, H is type-II nr-full and for
every vertex u in V(G), there exists a type-I nr-set in
G containing u. (or)

(vii) G and H are not nr-full and for every vertex
win V (G), there exists a type-I nr-set in G containing
w and for every vertex v € V(H), there exists a type-I
nr-set in H containing v.
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Proof: Suppose GG and H are nr-full.

Case (i) : G and H are type-I nr-full.

Then for any nr-set S1 of G and any nr-set Sy of
H, S, U Sy is an nr-set of G + H. Therefore G + H
is nr-excellent.

Case (ii) : G and H are type-II nr-full.

Then for any nr-set S1 of G and any nr-set of So
of H, S U{u} USyand S; U Sy U {v} is an nr-set
of G + H, where u € V(G) — S; is adjacent with
every vertex of S; and v € V(H) — Sy is adjacent
with every vertex of Ss.

Therefore nr(G + H) = nr(G) + nr(H) + 1.
Clearly G + H is nr-excellent.

Case (iii) : GG is not nr-full and H is nr-full.

Therefore there exist nr-sets S7 and S5 in G such
that there exists a vertex u € V(G) — S which is
adjacent to every vertex of S; and for any vertex v €
V(G)—S2, v is non-adjacent with some vertex of Ss.
Let S3 be any nr-set of H.

Subcase (i) : H is type-I nr-full.

Then for every vertex w € V(H) — S3, w is not
adjacent to some vertex of S3. In this case for any nr-
set S of G and any nr-set S of H, S U S' is an nr-set
of G + H. Therefore G + H is nr- excellent.

Subcase (ii) : H is type-II nr-full.

Let S' be any nr-set of H. Then S, U S! is an
nr-set of G+ H and S;US? is not an nr-set of G+ H.

If for every vertex u in G, there exists a type- [ nr-
set Ty, in G containing u, then G + H is nr-excellent.

If there exists a vertex u in G such that if it is
contained only in type-II nr-sets, then G + H is not
nr-excellent.

Case (iv) : G is nr-full and H is not nr-full.

If G is type-I then arguing as in Subcase (i) of
Case (iii), we get that G + H is nr-excellent. If G is
type-1I, then arguing as in Subcase (ii) of Case (iii), if
for every vertex u in H, there exists a type-I nr-set T},
in H containing u, then G + H is nr-excellent.

Case (v) : G and H are not nr-full.

Then the union of any two type-II nr-sets in G
and H will not be an nr-set in G+ H. If there exists a
vertex u € V(G) such that it is contained only in type-
II nr-sets of G (or) there exists a vertex v € V(H)
such that it is contained only in type-II nr-sets of H,
then G + H is not nr-excellent. Otherwise G + H is
nr-excellent. Converse is obviously true. g

The above theorem can be restated as follows:

Theorem 34 Let G and H be nr-excellent graphs.
Then G + H is nr-excellent if and only if

(i) G and H are type-1I nr-full. (or)

(ii) G or H is type-I nr-full. (or)

(iii) G is type-1l nr-full and H is type-I nr-
excellent or vice versa. (or)
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(iv) G and H are non-nr-full and both are type-1
nr-excellent.

Remark 35 Let GG be a non-nr-excellent graph. Then
the number of nr-bad vertices of G < n — nr(G).

When nr(G) = 1, G = K or Ky and hence G
is nr-excellent. Therefore nr(G) > 2 and number of
nr-bad vertices of G <n — 2.

When nr(G) = 2, G is K3 or K3 + a pendant
edge or K3 U K1 or Ko U K.

When G = K3 + pendant edge or K3 U K; or
Ko U Kj, then G is not nr-excellent.

The number of nr-bad vertices of G is 2 or 1.

Therefore the number of nr-bad vertices when G
is K3 + pendant edge =2 =n — 2, sincen = 4.

Theorem 36 Let G be a non nr-excellent graph.
Then G can be embedded in a nr-excellent graph
(say) H such that nr(H) = nr(G) + number of nr-
bad vertices of G.

Proof: Let GG be a non-nr-excellent graph. Let B
={u1,us,...,u} be the set of all nr-bad vertices of
G. Add a vertex v to V(G) and join v, with every
vertex of N (uy).

Let the resulting graph be GG1. Let S be an nr-set
of G. Then Ng(u1) = Ng(v1). Therefore S is not a
neighbourhood resolving set of G.

Let S;1 = S U {ul} and S1o = S U {Ul}. Let

z,y € V(G). Then ncg,, (z) = (a1,a2,...,ar,01);
ncsu(y) - (bl7 ba, ..., by, 12); nesy,y (ul) -
(c1y¢2y...,¢0,0);nCs,, (1) = (c1,¢2,. .50, 1).

Since S is an nr-set of G, there exist 4, j, k such
that 1 < ¢ < randa; # b, 1 < j < r and
aj # c¢jand 1 < k < r and b, # c. Therefore
S11 is a neighbourhood resolving set of 1. Similarly
S12 is a neighbourhood resolving set of GG1. Therefore
nr(Gi) < nr(G) + 1.

Let D be an nr-set of G1. If D C V(G), then
nep(ui) = nrp(vy), a contradiction, since D is an
nr-set of G. Therefore D must contain either uy or
V1.

Case (i): u; € Dand vy ¢ D. Then D C V(G).
Clearly D is neighbourhood resolving set of G.

Since w7 is a nr-bad vertex of GG, D is not an nr-
set of G. Therefore nr(G) < |D| = nr(G1) and
hence nr(G) + 1 < nr(Gy). Therefore nr(Gi) =
nr(G) + 1.

Case (ii): v1 € Danduy ¢ D.

Let z,y € V(GQ). If z,y € N[w], z,y # w
or z,y ¢ N[uy], then z and y have the same code
with respect to v; and hence v; does not resolve x and
y. Let x = u; and y ¢ N[ui]. Then vy resolves u;
and y. Suppose v privately resolves u; and y where

y ¢ Nlui]. Then ncp_gy3(u1) = nep_o3(y) =
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NCp_gy,}(v1). Since uy is not adjacent to y, vy is
not adjacent to y. Therefore ncp(y) = nep(vy), a
contradiction, since D is an nr-set of G1. Therefore
vy resolves only uj and vy in Gy. Thus D — {v;}
is a neighbourhood resolving set of G and nr(G) <
|D| — 1 = nr(G1) — 1 which implies that nr(G1) >
nr(G) + 1. Therefore nr(G1) = nr(G) + 1.

Case (iii) : uq,v1 € D.

As in Case(ii), v resolves only w1 and v; in G.
Since u; € D, uq resolves up and v in Gy. Therefore
D — {u;} is a neighbourhood resolving set of G1, a
contradiction. Thus S1; = S U {u;} and S15 = SU
{v1} are nr-sets of G1, which means u; and v; are
nr-good in Gy.

Since any nr-good vertices of G belongs to an
nr-set of GG, these vertices are also nr-good in Gj.
More over G is an induced subgraph of G and
nr(G1) = nr(G) + 1. Let B; be the set of all nr-
bad vertices of G;. Then By = {ug,us,...,u}.
Proceeding as before, construct a graph G2 in which
there is a new vertex vy ¢ V(G1) such that Ng, [va] =
Ng, [UQ] = Ng[uﬂ and Sg) =S U {UQ} ; Sg) =
S12 U {Uz} Sg) =S U {Uz} Sg) = S1p U {UQ} are
nr-sets of Go. Therefore uy and vo are nr-good in G
and all nr-good vertices in GG; are also nr-good in G
and G and hence G is an induced subgraph of Gb.
Also nr(G2) = nr(G) + 2.

Proceeding in this way, the k! stage yields a

graph Gy, such that Gy is nr-excellent, G is an in-
duced subgraph of Gy, and nr(Gy) = nr(G) + k. O

Corollary 37 Let G be a non nr-excellent graph and
let H be a nr-excellent graph containing G as an in-
duced subgraph. Then

nr(G) <nr(H) <nr(G) +n— 2.

Theorem 38 Let G be a connected non-nr-excellent
graph. Let {uy,ua,...,u;} be the set of all nr-bad
vertices of G. Add vertices vy, va,v3,vs with V(G).
Join v; with vj, 1 <4,j < 4,1 # j. Join u; with vy,
1 < ¢ < k. Let H be the resulting graph. Suppose
there exists no nr-set T' of H such that vy privately
resolves nr-good vertices and nr-bad vertices of G.
Then H is nr-excellent, G is an induced subgraph of
H and nr(H) = nr(G) + 3.

Proof: Let G be a connected non-nr-excellent graph.
Let {u1,ug, ..., u;} be the set of all nr-bad vertices
of G. Add vertices vy, v9,v3,v4 with V(G). Join v;
withv;, 1 <14,5 <4, # j. Join u; withvy, 1 <7 <
k. Let H be the resulting graph.

Suppose there exists no nr-set of T' of H such
that v; privately resolves nr-good vertices and nr-bad
vertices of G. Let S be an nr-set of G. Let A =
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{v1,v2,v3,v4}. Let S1 = S UT where T is a three
element subset of A containing vy. Let S = S U
{wi, vi,, vi, } where v, vi, € {va,v3,04},1 <0<k
and S = SU{vy,v3,v4}. Letz,y € G where x,y #

Now neg, (x) = (a1,a2,...,a,,0,0,0);
TZCSl(y) = (b17b27 ,br,0,0,0).
ncsl(ul) = (617027 767‘717070);
ncsl(u]) = (d17d27 '7d7”717070)
neg, (v1) = (0,0,...,0,0,1,1); ncg, (v2) =
(0,0,. ,0,1,[1,12). TLCSl(Ug) =
(0707 ,0,0,Z%,l%); nes, (U4) =
(0,0,...,0,1,11%, 13h). li,lo are not both O.

» V1
similarly /},1} and /}!, 13! are not both 0. Therefore
S is a neighbourhood resolving set of H.

Suppose Sy contains ve and wvs. Then
nCS2(‘T) - (a17a2)"'7a1“7a7‘+17070);
ncsl(y) = (bl)b27"‘7b7‘)b?“+17070)'
nes, (w;)) = (c1,¢2,...,¢,0,0,0); ncg, (u;) =
(dl,dQ,...,dr,dr+1,0,0). ncsl(vl)

(0,0,...,0,1,1,1); neg, (v2) = (0,0,...,0,0,0,
nes, (v3) (0,0,...,0,0,1,0); mncs, (v4)
(0,0,...,0,0,1,1). Therefore S is a neighbourhood
resolving set of H.

D,

Now ncg,(x) = (a1,a9,...,a,,0,0,0);
’I’LCSl(y) = (bl,bg,...,br,0,0,0). ncsl(ui) =
(c1,¢2,...,¢4,0,0,0); nes, (uj) =
(dl,dg,...,dr,0,0,0). TLCSl(Ul) =
(0,0,...,0,1,1,1); neg, (v2) = (0,0,...,0,0,1,1).
nes, (v3) = (0,0,...,0,1,0,1); ncg,(va) =

(0,0,...,0,1,1,0). Therefore Ss is a neighbourhood
resolving set of H. Therefore nr(H) < nr(G) + 1.
Let D be an nr-set of H.

Case (A) : D contains at most two elements from
{’LLI, uz, . .., Uk, v1, V2, V3, ’U4}.

Subcase (i) : D contains u;,u;, 1 <i,j <k, i #
j. Then nep(ve) = nep(vs) = nep(vg) = (0,0,0),
a contradiction.

Subcase (ii) : D contains u;,v;, 1 <i <k, 2 <
j < 4. Then nep(v,) = nep(vs) = (0,0,...,0,1)
where r, s # j,r # 5,2 < r,s < 4, a contradiction.

Subcase (iii) : D contains v;,v;, 1 < 4,7 < 4,
i # j. Then ncp(vy) = nep(vs) = (0,0,...,1,1)
wherer, s #£ i,j,r # 5,1 <r, s < 4,acontradiction.

Subcase (iv) : D contains u;,v1, 1 < i < k.
Then ncp(ve) = nep(vs) = (0,0,...,0,1), a con-
tradiction.

Therefore D contains at least three vertices from
{U1,’LL2, SRR Uk,Ul,UQ,Ug,U4}.

Case (B) : D contains more than three elements
from {ul, ug,y...,Uk,01,02,03, U4}.

Subcase (i) : D C {u1,ug,...,ur}. Then ve, vs
and v4 have 0-code with respect to D, a contradiction.

Subcase (ii) : D contains vy, v3, v4 and the re-
maining vertices from {uy,us,...,ux}. Then D —
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{va,v3,v4} is a neighbourhood resolving set of G.
Since D contains nr-bad vertices of G, nr(G) <
|D| —3 =nr(H) — 3. Thatis nr(H) > nr(G) + 4,
a contradiction.

Subcase (iii) : D contains two of the vertices
from {v1,ve,vs3,v4} and at least two vertices from
{ur,ug, ..., ug}.

Subcase (iiia) : D contains v, v3 and at least
two vertices from {uj,us,...,ur}. Then D! =
D — {vy,v3} is a neighbourhood resolving set of G.
Since D' contains nr-bad vertices of G, nr(G) +1 <
|DY| = nr(H) — 2 and nr(H) > nr(G) + 3. There-
fore nr(H) = nr(G)+3. If D contains v3, v4; v2, v4,
similar proof as in Subsubcase(i) can be given.

Subcase (iiib) : D contains v, v and at least
two vertices from {uy, ug, ..., ux}. Then ncp(vs) =
nep(ve) = (0,0,...,0,1,1), a contradiction.

Similarly if D contains vy, vs; v1, v4, then it leads
to a contradiction.

Subcase (iiic) : D contains v, v, v3 and at least
one vertex from {u1,us,...,ux}. Then D' = D —
{v2, v3} is a neighbourhood resolving set of G.

As in Subcase (iiia), nr(H) = nr(G) + 3. If D
contains v, v3, V4; U1, U2, V4, similar result is arrived
at.

Case (C) : D contains exactly three vertices from

{u1,ug, ..., up, v1,v2,v3, v4}.

Subcase (i) : D contains u;,, Uiy, Uiy, 1 <
il,ig,ig < k. Then TLCD(UQ) = nCD(Ug) =
nep(vy) = (0,0,...,0), a contradiction.

Subcase (ii) : D contains uq,us,vi. Then
nCD(UQ) - TLCD('U?,) = TLCD('U4) = (0707'--7071)’

a contradiction. Similarly if D contains {u1, ua, va}
or {uy,us,v3} or {uy,ug, vy}, it gives rise to a con-
tradiction.

Subcase (iii) : D contains ui,v1,v2. Then
nep(vs) = nep(vg) = (0,0,...,0,1,1), a contra-
diction. If D contains {uj,v1,vs} or {uy,vi,vs},
then these cases also lead to a contradiction.

Subcase (iv) : D contains w1, v, v3. Then D! =
D — {vy,v3} is a neighbourhood resolving set of
G. Since D' contains nr-bad vertex u; of G, then
nr(G) +1 < |DY = nr(H) — 2. Hence nr(H) >
nr(G)+ 3. Therefore nr(H) = nr(G)+ 3. The same
result is true if D contains {u1, vs, v4} or {uy, va, v4}.

Subcase (v) : D contains vo, v3,v4. Then D! =
D — {vq,v3,v4} is a neighbourhood resolving set of
G. Therefore nr(G) < |D'| = |D|—3 = nr(H) - 3.
That is nr(H) > nr(G) + 3. Therefore nr(H) =
nr(G) + 3.

Subcase (vi) : D contains v, ve, v3. Since D is
an nr-set of H, by hyphothesis v; does not resolve
privately any w;,x; where z; # w; and x; € V(G),
1 <4 < k. Therefore D — {v1, va, v3} is a neighbour-
hood resolving set of G. Therefore nr(G) < |D!| =
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|D| — 3 =nr(H) — 3. Thatis nr(H) > nr(G) + 3.
Therefore nr(H) = nr(G) + 3. Hence in all cases,
nr(H) =nr(G) + 3.

Since |S1]| = |S2| = |S3] = nr(G) + 3, S1, So
and S5 are nr-sets of H containing u;, 1 < ¢ < k,
v1, V2, V3, V4. Therefore u;, 1 < i < k, v1,v9,v3, 04
are nr-good in H, also all nr-good vertices in G are
also nr-good in H and G is an induced subgraph of
H. Therefore H is nr-excellent graph containing G
as an induced subgraph and also nr(H) = nr(G)+3.
O

Theorem 39 Let G be a graph with |G| = 2"(&),
Then A(G) > 2m(G)-1,

Proof: Let S be an nr-set of G. Let uy be the first
vertex in the ordered set S. Since 2""(%) distinct codes
are associated with the vertices of G, any vertex of G
with the first element of its code with respect to S is
1, is adjacent to u;. Since there are 2n7(G)~1 yertices
with first element of its code 1, u has degree exactly
27(@)=1 Hence A(G) > 27(@)—1, O
Remark 40 Every vertex of S has degree 27 (G)~1,
Remark 41 There exists a graph G with |G| =
277(&) and A(G) = 27 (@)1,
Consider the graph G :

8 7
S = {1,2,3} is an nr-set of G. ncs(1) = (0,1,1)
;nes(2) = (1,0,1) 7 nes(3) = (1,1,0); nes(4) =
(1,1,1) ; neg(5) = (1,0,0) ; neg(6) = (0,1,0);
nes(7) = (0,0,1) ; nes(8) = (0,0,0).
Therefore G is a graph with |G| = 2"(¢) = 23 —
8and A(G) = 4 = 27(G)—1 = 922,

Remark 42 There exists a graph G with |G| =

27 (@) and A(G) > 27 ()1,
Consider the graph G:
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S = {1,2} is an nr-set of G. ncs(1) = (0,1) ;
neg(2) = (1,0) ; nes(3) = (1, 1), nes(4) = (0,0) .
Therefore G is a graph with |G| = 2"(G) = 22 = 4

and A(G) = 3 > 27(@)~1 = 9,

Remark 43 Let G be a nr-excellent graph with
|G| = 27, Then G is regular with degree of regu-
larity 27 (@)1,

Proof: Suppose G is a nr-excellent graph with |G| =

277(&) . Then every vertex belongs to an nr-set of G.
Therefore degree of every vertex is 2" (G) 1, a

4 Conclusion

Using the concept of excellence in graphs and neigh-
bourhood resolving set of a graph nr(G), we have
defined nr-excellent graphs. we have characterized
graphs G and H for which G U H and G + H are
nr-excellent, when G and H are nr-excellent. We
have also proved that a non nr-excellent graph G
can be embedded in a nr-excellent graph H such
that nr(H) = nr(G)+ number of nr-bad vertices
of GG. Also a new graph H can be constructed from
a connected non nr-excellent graph GG such that H
is nr-excellent, GG is an induced subgraph of H and
nr(H) = nr(G) + 3. Some more results are also
discussed.
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