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Abstract: Given an k-tuple of vectors, S = (v1, v2, . . . , vk), the neighbourhood adjacency code of a vertex v
with respect to S, denoted by ncS(v) and defined by (a1, a2, . . . , ak) where ai is 1 if v and vi are adjacent and
0 otherwise. S is called a neighbourhood resolving set or a neighbourhood r-set if ncS(u) ̸= ncS(v) for any
u, v ∈ V (G). The least(maximum) cardinality of a minimal neighbourhood resloving set of G is called the
neighbourhood(upper neighbourhood) resolving number of G and is denoted by nr(G) (NR(G)). In this article,
we consider the nr-excellent graphs. For any Graph G, G is nr-excellent if every vertex of G is contained in
a minimum neighbourhood resolving set of G. We first prove that the union and join of two given nr-excellent
graphs is nr-excellent under certain conditions. Also we prove that a non nr-excellent graph G can be embedded
in a nr-excellent graph H such that nr(H) = nr(G) + number of nr- bad vertices of G. Some more results are
also discussed.
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1 Introduction

Let G = (V,E) be a simple graph. Given a k-
tuple of vertices (v1, v2, . . . , vk), assign to each vertex
v ∈ V (G), the k-tuple of its distances to these ver-
tices, f(v) = (d(v, v1), d(v, v2), . . . , d(v, vk)). Let-
ting S = (v1, v2, . . . , vk), the k-tuple f(v) is called
the S-location of v. A set S is a locating set for G, if
no two vertices have the same S-location and the loca-
tion number L(G) is the minimum cardinality of a lo-
cating set. This concept was introduced by P. J. Slater
in [25] [27] [26]. It can be easily seen that L(G) = 1
if and only if G is a path and any path Pn, (n ≥ 2)
has two L(Pn)-sets, each consisting of an end vertex.
Also for any tree T with at least three vertices, a sub-
set S is a locating set if and only if for each vertex u
there are vertices in S, contained in at least deg(u)−1
of the deg(u) components of T − u.

Slater [25] described the usefulness of locating
sets when working with U.S. sonar and Coast Guard
Loran stations. Independently Harary and Melter [14]
found these concepts as well but used the term metric
dimension, rather than location number, the terminol-
ogy which has been adopted by subsequent authors.
Recently, these concepts were rediscovered by M. A.
Johnson [18] [19] of the pharmacia company while
attempting to develop a capability of large datasets of
chemical graphs.

If V is a finite dimensional vector space over a
field F and B = (v1, v2, . . . , vk) is an ordered ba-
sis, then every vector v in V can be associated with
a unique k-tuple (λ1, λ2, . . . , λk) where v = λ1v1 +
λ2v2 + . . . + λkvk. If v and w are distinct vectors,
then their associated k-tuples of scalars are distinct.
Thus any ordered basis gives rise to a coding for the
elements of the vector space. The dimension of the
vector space is the order of a basis. Since locating
sets in a graph play the same role as bases in a vec-
tor space, the locating number is termed as metric di-
mension. Chartrand et al [4] called locating sets as
resolving sets and retained the term metric dimension
for locating number.

Many papers have appeared in this area since
2000. For example dominating resolving sets, inde-
pendent resolving sets, acyclic resolving sets, con-
nected resolving sets, resolving partitions and resolv-
ing decompositions were studied by many [4], [5],
[6],[7], [8], [9], [11], [12], [13], [2], [3], [44].

In all these studies, the graph considered are
connected and the codes of the vertices are k-tuples
whose entries are positive integers ranging from 0 to
the diameter of the graph. An alternate coding of the
vertices using 0 and 1 (binary digits) can be thought
of, which is possible in disconnected graphs also.

A new type of binary coding for vertices is de-
fined through adjacency. A vertex u in a graph
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G with respect to a k-tuple of vertices (say) S =
(v1, v2, . . . , vk) is assigned the code(which is written
as ncS(u)) (a1, a2, . . . , ak) where ai is 1 if u and vi
are adjacent and 0 otherwise. If ncS(u) ̸= ncS(v)
for any u ̸= v, u, v ∈ V (G), then S is called a neigh-
bourhood resolving set ofG. If we consider the vector
spaces over the field Z2, then the code of any vector
is a binary code. Thus neighbourhood resolving sets
correspond to bases in a vector space over Z2. Ob-
viously neighburhood resolving sets can be defined in
disconnected graphs also. But not all graphs can admit
neighbourhood resolving sets. For example, a graph
G in which N(u) = N(v), for two non-adjacent
vertices u, v ∈ V (G) will not have any neighbour-
hood resolving set. But these graphs can be embed-
ded in graphs having neighbourhood resolving sets.
Obviously a graph with more than one isolated vertex
will not have neighbourhood resolving sets. The min-
imum cardinality of a neighbourhood resolving set
in a graph G which admits nieghbourhood resolving
sets is called the neighbourhood resolving number of
G and is denoted by nr(G). Any nr-set of G with
nr(G) ≥ 2 cannot be independent. Graphs are of-
ten used to model different physical networks. nr-sets
can be used to detect intruders on models of networks
of facilities and it is used to detect the failures on net-
works of routers or processors.

Suk J. Seo and P. Slater [34] defined the same type
of problem as an open neighborhood locating domi-
nating set (OLD-set), is a minimum cardinality ver-
tex set S with the property that for each vertex v its
open neighborhood N(v) has a unique non-empty in-
tersection with S. But in Neighbourhood resolving
sets N(v) may have the empty intersection with S.
Clearly every OLD-set of a graph G is a neighbour-
hood resolving set of G, but the converse need not be
true.

M.G. Karpovsky, K. Chakrabarty, L.B. Levitin
[20] introduced the concept of identifying sets using
closed neighbourhoods to resolve vertices of G. This
concept was ellaborately studied by A. Lobestein [21].

Let µ be a parameter of a graph. A vertex
v ∈ V (G) is said to be µ-good if v belongs to a µ-
minimum (µ-maximum) set of G according as µ is a
super hereditary (hereditary) parameter. v is said to
be µ-bad if it is not µ-good. A graph G is said to be
µ-excellent if every vertex ofG is µ-good. Excellence
with respect to domination and total domination were
studied in [10], [15], [30],[31], [32], [33] . N. Sridha-
ran and Yamuna [31], [32], [33], have defined various
types of excellence. In this paper, definition, examples
and properties of nr-excellent graphs is discussed.

2 Neighbourhood Resolving sets in
Graphs

Definition 1 Let G be any graph. Let S ⊂ V (G).
Consider the k-tuple (u1, u2, . . . , uk) where S =
{u1, u2, . . . , uk}, k ≥ 1. Let v ∈ V (G). Define a
binary neighbourhood code of v with respect to the k-
tuple (u1, u2, . . . , uk), denoted by ncS(v) as a k-tuple
(r1, r2, . . . , rk) where

ri =

{
1, if v ∈ N(ui), 1 ≤ i ≤ k
0, otherwise

.

S is called a neighbourhood resolving set or a neigh-
bourhood r-set if ncS(u) ̸= ncS(v) for any u, v ∈
V (G).

The least cardinality of a minimal neighbourhood
resloving set of G is called the neighbourhood resolv-
ing number of G and is denoted by nr(G). The max-
imum cardinality of a minimal neighbourhood resolv-
ing set ofG is called the upper neighbourhood resolv-
ing number of G and is denoted by NR(G).

Clearly nr(G) ≤ NR(G). A neighbourhood
resolving set S of G is called a minimum neighbour-
hood resolving set or nr-set if S is a neighbourhood
resolving set with cardinality nr(G).

Example 2

u u

uu

uu1

u2

u3u4

u5
G :

Now S1 = {u1, u2, u5} is a neighbourhood re-
solving set of G, since ncS(u1) = (0, 1, 1); ncS(u2)
= (1, 0, 1);
ncS(u3) = (0, 1, 0); ncS(u4) = (0, 0, 1) and
ncS(u5) = (1, 1, 0). Also S2 = {u1, u3, u4} ,
S3 = {u1, u2, u4}, S4= {u1, u3, u5} are neigh-
bourhood resolving sets of G. For this graph,
nr(G) = NR(G) = 3.

Observation 3 The above definition holds good even
if G is disconnected.

In the following theorem characterisation of con-
nected graphs which admit neighbourhood resolving
sets is given.
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Theorem 4 [38] LetG be a connected graph of order
n ≥ 3. Then G does not have any neighbourhood
resolving set if and only if there exist two non adjacent
vertices u and v in V (G) such that N(u) = N(v).

Definition 5 [40] A subset S of V (G) is called an nr-
irredundant set of G if for every u ∈ S, there exist
x, y ∈ V which are privately resolved by u.

Theorem 6 [40] Every minimal neighbourhood re-
solving set of G is a maximal neighbourhood resolv-
ing irredundant set of G.

Definition 7 [40] The minimum cardinality of a max-
imal neighbourhood resolving irredundant set of G
is called the neighbourhood resolving irredundance
number of G and is denoted by irnr(G). The max-
imum cardinality is called the upper neighbourhood
resolving irrundance number of G and is denoted by
IRnr(G).

Observation 8 [40] For any graph G,

irnr(G) ≤ nr(G) ≤ NR(G) ≤ IRnr(G).

Theorem 9 [41] For any graph G,

nr(G) ≤ n− 1.

Theorem 10 [39] Let G be a connected graph of or-
der n such that nr(G) = k. Then log2n ≤ k

Observation 11 [39] There exists a graphG in which
n = 2k and there exists a neighbourhood resolving
set of cardinality k such that nr(G) = k. Hence all
the distinct binary k-vectors appear as codes for the
n vertices.

Theorem 12 [41] Let G be a connected graph of or-
der n admitting neighbourhood resolving sets of G
and let nr(G) = k. Then k = 1 if and only if G is
either K2 or K1.

Theorem 13 [41] Let G be a connected graph of or-
der n admitting neighbourhood resolving sets of G.
Then nr(G) = 2 if and only if G is either K3 or K3 +
a pendant edge or K3 ∪K1 or K2 ∪K1.

Result 14 [40] For a complete graph Kn,

nr(Kn) = n− 1, n ≥ 2.

Result 15 [40] For a path Pn, n ≥ 6,

nr(Pn) = ⌊
2n

3
⌋.

3 nr-excellent graphs

Definition 16 Let G = (V,E) be a simple graph. Let
u ∈ V (G). Then u is said to be nr-good if u is con-
tained in a minimum neighbourhood resolving set of
G. A vertex u is said to be nr-bad if there exists no
minimum neighbourhood resolving set of G contain-
ing u.

Definition 17 A graph G is said to be nr-excellent if
every vertex of G is nr-good.

Example 18 Consider the graph G:

r r r r r r
r 1

2 4 5 6 73

G :

The nr-sets of G containing the vertices
1, 2, 3, 4, 5, 6, 7 are {1, 2, 3, 4}, {1, 5, 6, 7},
{1, 3, 4, 6}, {1, 3, 5, 6}, {1, 2, 3, 5}, {1, 4, 6, 7},
{1, 2, 3, 6} and {3, 4, 5, 6}.

Therefore every vertex of G belongs to some nr-
set of G and hence nr-good. Therefore G is nr-
excellent.

Theorem 19 The following results are obvious from
the definition.

(i) Kn is nr-excellent, for every n.
(ii) Pn is nr-excellent if n ∼= 0, 2, 3, 4 (mod 6)

and Pn is non-nr-excellent if n ∼= 1, 5 (mod 6).
(iii) Cn is nr-excellent, for every n ̸= 4.

Remark 20 Consider the graph G obtained from two
complete graphs Km and Kn, m,n ≥ 4 having ex-
actly one vertex in common. Then nr(G) = m+n−4.
G is not nr-excellent, since there is no nr-set contain-
ing the common vertex.

Remark 21 Suppose G has a unique nr-set. Then G
is not nr-excellent.

Theorem 22 Any vertex transitive graph is nr-
excellent.

Proof: Let G be a vertex transitive graph. Let S
be an nr-set of G. Let u ∈ V (G). Suppose u /∈ S.
Select any vertex v ∈ S. As G is vertex transitive,
there exists an automorphism ϕ of G which maps v to
u. Let S1 = {ϕ(w)/w ∈ S}. Since S is a nr-set and ϕ
is an automorphism, S1 is also a nr-set. Since v ∈ S,
ϕ(v) = u ∈ S1. Hence G is nr-excellent. ⊓⊔

Remark 23 Any vertex transitive graph is regular.
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Remark 24 1. There exists a regular graph which is
nr-excellent, but not vertex transitive.

s s
ss s

s s
s

s
1 2

3 4

9

5 6

87

G :

The nr-sets of G are {1, 2, 5, 6, 9} and 3, 4, 7, 8, 9}.
G is nr-excellent but not vertex transitive.

2. The path Pn where n ∼= 1, 5 (mod 6) are
not nr-excellent and not vertex trasitive, but Pn where
n ∼= 0, 2, 3, 4 (mod 6) are nr-excellent but not vertex
transitive.

3. There are regular graphs which are not vertex
transitive without neighbourhood resolving sets. The
follwing gaph G is an example.

s
ss s s

s
s

sss �
��

1
2

3 4

5

6
7

8 9

10G :

Since 1 and 4 are non-adjacent and N(1) =
N(4), G has no neighbourhood resolving sets.

Theorem 25 Let G1 and G2 be nr-excellent graphs.
ThenG1∪G2 is nr-excellent if and only if at least one
of G1, G2 satisfies one of the follwing conditions

(i) If every nr-set of G1 (G2) containing a vertex
x ∈ V (G1)(V (G2)) admits a 0-code, then there ex-
ists an nr-set of G2(G1) not allowing 0-code for any
vertex of V (G2)(V (G1)).

(ii) Every nr-set S of Gi, i = 1, 2, allows 0-code.

Proof: Let G1 and G2 be nr-excellent graphs.
Suppose (i) holds. Then nr(G1 ∪ G2) =

nr(G1) + nr(G2). Let u ∈ V (G1). Suppose there
exists an nr-set S of G1 containing u and not admit-
ting 0-code. Then for any nr-set T of G2, S ∪ T is an
nr-set of G1 ∪G2 containing u.

Suppose every nr-set of G1 containing u admits
0-code. Then by condition (i), there exists an nr-set T
ofG2 not allowing 0-code. Then S∪T is an nr-set of
G1 ∪ G2 containing u. A similar proof holds for any
vertex in V (G). Therefore G1 ∪G2 is nr-excellent.

Suppose (ii) holds. Then for any nr-set S of G1

and an nr-set T ofG2, S∪T∪{x}where x ∈ V (G1∪
G2) and x is adjacent to at least one of the two vertices
which receive 0-code with respect to S or with respect

to T , is an nr-set of G1 ∪ G2. Since G1 and G2 are
nr-excellent, we get that G1 ∪G2 is nr-excellent.

Conversely, Suppose G1 ∪G2 is nr-excellent.
Case (i) : nr(G1 ∪ G2) = nr(G1) + nr(G2).

Therefore at least one of G1, G2 has an nr-set for
which there exists a vertex that receives 0-code with
respect to S. Without loss of generality, let S ⊆
V (G1). Suppose there exists a vertex u ∈ V (G1)
such that every nr-set of G1 containing u admits 0-
code. Since G1 ∪ G2 is nr-excellent, there exists an
nr-set of S1 of G1 ∪G2 containing u.

Let S1
1 = S1 ∩ V (G1) and S1

2 = S1 ∩ V (G2).
By our assumption, S1

1 admits 0-code. Since S1 is an
nr-set of G1 ∪ G2, S1

2 is an nr-set of G2 which does
not allow 0-code in G2. Hence condition (i) hold.

Case (ii) : nr(G1∪G2) = nr(G1)+nr(G2)+1.
Therefore every nr-set of G1 as well as that of G2,
allows 0-code. Hence (ii) holds. ⊓⊔

Definition 26 A graphG is said to be of type-I if there
exists an nr-set S in G such that no vertex in V − S
is adjacent to every vertex of S. (That is every vertex
in V − S is not adjacent to at least one vertex of S.)

Definition 27 A graph G is said to be of type-II if
there exists an nr-set S in G such that there exists
a vertex in V − S which is adjacent to every vertex of
S.

Definition 28 (i) A graph G is of type-I nr-full if for
every nr-set S in G, every vertex outside S is not ad-
jacent to at least one vertex in S.

(ii) A graph G is type-II nr-full if for every nr-
set S in G, there exists a vertex outside S adjacent to
every vertex of S.

Example 29 (i) Kn, n ≥ 3 is of type-II nr-full, but
type-I non-nr-full.

(ii) Consider the following graph G.

t t
t

tt
1 2

34

5

G :

The nr-sets ofG are {1, 3, 4}, {1, 2, 3}, {1, 2, 4},
{2, 3, 4}, 1, 4, 5}, {3, 4, 5} and {1, 3, 5}. For an nr-
set S = {1, 3, 4} there exists a vertex 2 outside S
such that 2 is adjacent to 1,3,4. Similarly the prop-
erty holds for other nr-sets also.

Therefore, G is type-II nr-full, but not type-I nr-
full.
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(iii)

s s s s

s

1 2 3 4

5

G :

The nr-sets ofG are {1, 2, 4}, {1, 3, 4}, {1, 3, 5},
{1, 2, 5}.

The type-I nr-sets are {1, 3, 4}, {1, 3, 5} and
{1, 2, 5}, since every vertex outside the nr-set is not
adjacent to at least one vertex of the set.

The only type-II nr-set is {1, 2, 4}, since there ex-
ists a vertex 5 outside the set {1, 2, 4} such that 5 is
adjacent to 1,2 and 4.

Therefore G is type-II non-nr-full and type-I non-
nr-full.

(iv)

u u u u
u u

1 2 3 4

5 6

G :

The type-II nr-sets of G are {1, 2, 4}, {1, 3, 4},
{1, 5, 3}, {2, 5, 6}, {3, 5, 6} and {2, 4, 6}.

The type-I nr-sets are {3, 4, 6} and {1, 2, 5}.
Therefore G is type-II non-nr-full and type-I non-

nr-full.
(v) Pn and Cn are type-I nr-full, but type-II non-

nr-full.
(vi) Consdier the graph G.

s

s s s s

s s s2 3 41

5 6 7 8

G :

The nr-sets of G are S1 ∪ S2 where S1 and S2
are 3-element subsets of {1, 2, 3, 4} and {5, 6, 7, 8}
respectively.

G is type-I nr-full and type-II non-nr-full.

Remark 30 IfG is type-I nr-full then it is type-II non-
nr-full and vice versa.

Definition 31 Let G be a graph. A vertex u ∈ V (G)
is said to be type-I (type-II) nr-good if u belongs
to some type-I(type-II) nr-set. Otherwise u is type-
I(type-II) nr-bad.

A graph G is type-I (type-II) nr-excellent if every
vertex of G is type-I (type-II) nr-good.

Example 32 (i) Kn is type-II nr-excellent, but not
type-I nr-excellent.

(ii) Consider the following graph G.s
s
s

s
s s

s

1

2

3

4

5

7

6

G :

The type-I ne-sets of G are {1, 2, 4, 5},
{1, 3, 4, 6}, {1, 2, 3, 4}, {1, 2, 5, 7}, {1, 4, 5, 6},
{1, 2, 3, 6}, {1, 2, 5, 6}, {1, 2, 3, 7}, {1, 3, 6, 7},
{1, 5, 6, 7}, {2, 4, 5, 7}, {3, 4, 6, 7}, {2, 3, 4, 5},
{3, 4, 5, 6}, {2, 3, 4, 7}, {4, 5, 6, 7}, {2, 3, 5, 7},
{3, 5, 6, 7}, {2, 3, 6, 7} and {2, 5, 6, 7}. The only
type-II nr-set is {2, 3, 5, 6}. Note that G is both
type-II and type-I non-nr-full. Therefore G is type-I
nr-excellent but not type-II nr-excellent.

(iii) Consider the following graph G:

t t
t

t
t
t

1

2

34

5

6
G :

The only type-I nr-set of G is {1, 2, 6} and the
only type-II nr-set of G is {1, 2, 4}. Therefore G is
neither type-I nr-excellent nor type-II nr-excellent.
Note that G is not nr-full.

Theorem 33 Let G and H be nr-excellent graphs.
Then G+H is nr-excellent if and only if

(i) G and H are type-I nr-full. (or)
(ii) G and H are type-II nr-full. (or)
(iii) G is type-I nr-full and H is not nr-full. (or)
(iv) H is type-I nr-full and G is not nr-full. (or)
(v) G is type-II nr-full, H is not nr-full and for

every vertex u ∈ V (H), there exists a type-I nr-set in
H containing u. (or)

(vi) G is not nr-full, H is type-II nr-full and for
every vertex u in V (G), there exists a type-I nr-set in
G containing u. (or)

(vii) G and H are not nr-full and for every vertex
u in V (G), there exists a type-I nr-set inG containing
u and for every vertex v ∈ V (H), there exists a type-I
nr-set in H containing v.
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Proof: Suppose G and H are nr-full.
Case (i) : G and H are type-I nr-full.
Then for any nr-set S1 of G and any nr-set S2 of

H , S1 ∪ S2 is an nr-set of G+H . Therefore G+H
is nr-excellent.

Case (ii) : G and H are type-II nr-full.
Then for any nr-set S1 of G and any nr-set of S2

of H , S1 ∪ {u} ∪ S2 and S1 ∪ S2 ∪ {v} is an nr-set
of G + H , where u ∈ V (G) − S1 is adjacent with
every vertex of S1 and v ∈ V (H) − S2 is adjacent
with every vertex of S2.

Therefore nr(G + H) = nr(G) + nr(H) + 1.
Clearly G+H is nr-excellent.

Case (iii) : G is not nr-full and H is nr-full.
Therefore there exist nr-sets S1 and S2 in G such

that there exists a vertex u ∈ V (G) − S1 which is
adjacent to every vertex of S1 and for any vertex v ∈
V (G)−S2 , v is non-adjacent with some vertex of S2.
Let S3 be any nr-set of H .

Subcase (i) : H is type-I nr-full.
Then for every vertex w ∈ V (H) − S3, w is not

adjacent to some vertex of S3. In this case for any nr-
set S of G and any nr-set S of H , S ∪ S! is an nr-set
of G+H . Therefore G+H is nr- excellent.

Subcase (ii) : H is type-II nr-full.
Let S1 be any nr-set of H . Then S2 ∪ S1 is an

nr-set ofG+H and S1∪S1 is not an nr-set ofG+H .
If for every vertex u inG, there exists a type- I nr-

set Tu in G containing u, then G+H is nr-excellent.
If there exists a vertex u in G such that if it is

contained only in type-II nr-sets, then G + H is not
nr-excellent.

Case (iv) : G is nr-full and H is not nr-full.
If G is type-I then arguing as in Subcase (i) of

Case (iii), we get that G +H is nr-excellent. If G is
type-II, then arguing as in Subcase (ii) of Case (iii), if
for every vertex u inH , there exists a type-I nr-set Tu
in H containing u, then G+H is nr-excellent.

Case (v) : G and H are not nr-full.
Then the union of any two type-II nr-sets in G

andH will not be an nr-set inG+H . If there exists a
vertex u ∈ V (G) such that it is contained only in type-
II nr-sets of G (or) there exists a vertex v ∈ V (H)
such that it is contained only in type-II nr-sets of H ,
then G+H is not nr-excellent. Otherwise G+H is
nr-excellent. Converse is obviously true. ⊓⊔

The above theorem can be restated as follows:

Theorem 34 Let G and H be nr-excellent graphs.
Then G+H is nr-excellent if and only if

(i) G and H are type-II nr-full. (or)
(ii) G or H is type-I nr-full. (or)
(iii) G is type-II nr-full and H is type-I nr-

excellent or vice versa. (or)

(iv) G and H are non-nr-full and both are type-I
nr-excellent.

Remark 35 LetG be a non-nr-excellent graph. Then
the number of nr-bad vertices of G ≤ n− nr(G).

When nr(G) = 1, G = K1 or K2 and hence G
is nr-excellent. Therefore nr(G) ≥ 2 and number of
nr-bad vertices of G ≤ n− 2.

When nr(G) = 2, G is K3 or K3 + a pendant
edge or K3 ∪K1 or K2 ∪K1.

When G = K3 + pendant edge or K3 ∪ K1 or
K2 ∪K1, then G is not nr-excellent.

The number of nr-bad vertices of G is 2 or 1.
Therefore the number of nr-bad vertices when G

is K3 + pendant edge = 2 = n− 2, since n = 4.

Theorem 36 Let G be a non nr-excellent graph.
Then G can be embedded in a nr-excellent graph
(say) H such that nr(H) = nr(G) + number of nr-
bad vertices of G.

Proof: Let G be a non-nr-excellent graph. Let B
= {u1, u2, . . . , uk} be the set of all nr-bad vertices of
G. Add a vertex v1 to V (G) and join v1 with every
vertex of N(u1).

Let the resulting graph be G1. Let S be an nr-set
of G. Then NS(u1) = NS(v1). Therefore S is not a
neighbourhood resolving set of G.

Let S11 = S ∪ {u1} and S12 = S ∪ {v1}. Let
x, y ∈ V (G). Then ncS11(x) = (a1, a2, . . . , ar, l1);
ncS11(y) = (b1, b2, . . . , br, l2); ncS11(u1) =
(c1, c2, . . . , cr, 0); ncS11(v1) = (c1, c2, . . . , cr, 1).

Since S is an nr-set of G, there exist i, j, k such
that 1 ≤ i ≤ r and ai ̸= bi, 1 ≤ j ≤ r and
aj ̸= cj and 1 ≤ k ≤ r and bk ̸= ck. Therefore
S11 is a neighbourhood resolving set of G1. Similarly
S12 is a neighbourhood resolving set ofG1. Therefore
nr(G1) ≤ nr(G) + 1.

Let D be an nr-set of G1. If D ⊆ V (G), then
ncD(u1) = nrD(v1), a contradiction, since D is an
nr-set of G. Therefore D must contain either u1 or
v1.

Case (i) : u1 ∈ D and v1 /∈ D. Then D ⊆ V (G).
Clearly D is neighbourhood resolving set of G.

Since u1 is a nr-bad vertex of G, D is not an nr-
set of G. Therefore nr(G) < |D| = nr(G1) and
hence nr(G) + 1 ≤ nr(G1). Therefore nr(G1) =
nr(G) + 1.

Case (ii) : v1 ∈ D and u1 /∈ D.
Let x, y ∈ V (G). If x, y ∈ N [u1], x, y ̸= u1

or x, y /∈ N [u1], then x and y have the same code
with respect to v1 and hence v1 does not resolve x and
y. Let x = u1 and y /∈ N [u1]. Then v1 resolves u1
and y. Suppose v1 privately resolves u1 and y where
y /∈ N [u1]. Then ncD−{v1}(u1) = ncD−{v1}(y) =
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ncD−{v1}(v1). Since u1 is not adjacent to y, v1 is
not adjacent to y. Therefore ncD(y) = ncD(v1), a
contradiction, since D is an nr-set of G1. Therefore
v1 resolves only u1 and v1 in G1. Thus D − {v1}
is a neighbourhood resolving set of G and nr(G) ≤
|D| − 1 = nr(G1)− 1 which implies that nr(G1) ≥
nr(G) + 1. Therefore nr(G1) = nr(G) + 1.

Case (iii) : u1, v1 ∈ D.
As in Case(ii), v1 resolves only u1 and v1 in G.

Since u1 ∈ D, u1 resolves u1 and v1 inG1. Therefore
D − {u1} is a neighbourhood resolving set of G1, a
contradiction. Thus S11 = S ∪ {u1} and S12 = S ∪
{v1} are nr-sets of G1, which means u1 and v1 are
nr-good in G1.

Since any nr-good vertices of G belongs to an
nr-set of G, these vertices are also nr-good in G1.
More over G is an induced subgraph of G1 and
nr(G1) = nr(G) + 1. Let B1 be the set of all nr-
bad vertices of G1. Then B1 = {u2, u3, . . . , uk}.
Proceeding as before, construct a graph G2 in which
there is a new vertex v2 /∈ V (G1) such thatNG2 [v2] =

NG1 [u2] = NG[u2] and S(1)
21 = S11 ∪ {u2} ; S(1)

22 =

S12 ∪ {v2} S(2)
21 = S11 ∪ {v2} S(2)

22 = S12 ∪ {u2} are
nr-sets ofG2. Therefore u2 and v2 are nr-good inG2

and all nr-good vertices in G1 are also nr-good in G2

and G1 and hence G is an induced subgraph of G2.
Also nr(G2) = nr(G) + 2.

Proceeding in this way, the kth stage yields a
graph Gk such that Gk is nr-excellent, G is an in-
duced subgraph of Gk and nr(Gk) = nr(G) + k. ⊓⊔

Corollary 37 Let G be a non nr-excellent graph and
let H be a nr-excellent graph containing G as an in-
duced subgraph. Then

nr(G) < nr(H) ≤ nr(G) + n− 2.

Theorem 38 Let G be a connected non-nr-excellent
graph. Let {u1, u2, . . . , uk} be the set of all nr-bad
vertices of G. Add vertices v1, v2, v3, v4 with V (G).
Join vi with vj , 1 ≤ i, j ≤ 4, i ̸= j. Join ui with v1,
1 ≤ i ≤ k. Let H be the resulting graph. Suppose
there exists no nr-set T of H such that v1 privately
resolves nr-good vertices and nr-bad vertices of G.
Then H is nr-excellent, G is an induced subgraph of
H and nr(H) = nr(G) + 3.

Proof: LetG be a connected non-nr-excellent graph.
Let {u1, u2, . . . , uk} be the set of all nr-bad vertices
of G. Add vertices v1, v2, v3, v4 with V (G). Join vi
with vj , 1 ≤ i, j ≤ 4, i ̸= j. Join ui with v1, 1 ≤ i ≤
k. Let H be the resulting graph.

Suppose there exists no nr-set of T of H such
that v1 privately resolves nr-good vertices and nr-bad
vertices of G. Let S be an nr-set of G. Let A =

{v1, v2, v3, v4}. Let S1 = S ∪ T where T is a three
element subset of A containing v1. Let S2 = S ∪
{ui, vi1 , vi2} where vi1 , vi2 ∈ {v2, v3, v4}, 1 ≤ i ≤ k
and S3 = S∪{v2, v3, v4}. Let x, y ∈ G where x, y ̸=
ui, 1 ≤ i ≤ k.

Now ncS1(x) = (a1, a2, . . . , ar, 0, 0, 0);
ncS1(y) = (b1, b2, . . . , br, 0, 0, 0).
ncS1(ui) = (c1, c2, . . . , cr, 1, 0, 0);
ncS1(uj) = (d1, d2, . . . , dr, 1, 0, 0).
ncS1(v1) = (0, 0, . . . , 0, 0, 1, 1); ncS1(v2) =
(0, 0, . . . , 0, 1, l1, l2). ncS1(v3) =
(0, 0, . . . , 0, 0, l11, l

1
2); ncS1(v4) =

(0, 0, . . . , 0, 1, l111 , l
11
1 ). l1, l2 are not both 0.

similarly l11, l
1
2 and l111 , l

11
2 are not both 0. Therefore

S1 is a neighbourhood resolving set of H .
Suppose S2 contains v2 and v3. Then

ncS2(x) = (a1, a2, . . . , ar, ar+1, 0, 0);
ncS1(y) = (b1, b2, . . . , br, br+1, 0, 0).
ncS1(ui) = (c1, c2, . . . , cr, 0, 0, 0); ncS1(uj) =
(d1, d2, . . . , dr, dr+1, 0, 0). ncS1(v1) =
(0, 0, . . . , 0, 1, 1, 1); ncS1(v2) = (0, 0, . . . , 0, 0, 0, 1).
ncS1(v3) = (0, 0, . . . , 0, 0, 1, 0); ncS1(v4) =
(0, 0, . . . , 0, 0, 1, 1). Therefore S2 is a neighbourhood
resolving set of H .

Now ncS2(x) = (a1, a2, . . . , ar, 0, 0, 0);
ncS1(y) = (b1, b2, . . . , br, 0, 0, 0). ncS1(ui) =
(c1, c2, . . . , cr, 0, 0, 0); ncS1(uj) =
(d1, d2, . . . , dr, 0, 0, 0). ncS1(v1) =
(0, 0, . . . , 0, 1, 1, 1); ncS1(v2) = (0, 0, . . . , 0, 0, 1, 1).
ncS1(v3) = (0, 0, . . . , 0, 1, 0, 1); ncS1(v4) =
(0, 0, . . . , 0, 1, 1, 0). Therefore S3 is a neighbourhood
resolving set of H . Therefore nr(H) ≤ nr(G) + 1.
Let D be an nr-set of H .

Case (A) : D contains at most two elements from
{u1, u2, . . . , uk, v1, v2, v3, v4}.

Subcase (i) : D contains ui, uj , 1 ≤ i, j ≤ k, i ̸=
j. Then ncD(v2) = ncD(v3) = ncD(v4) = (0, 0, 0),
a contradiction.

Subcase (ii) : D contains ui, vj , 1 ≤ i ≤ k, 2 ≤
j ≤ 4. Then ncD(vr) = ncD(vs) = (0, 0, . . . , 0, 1)
where r, s ̸= j, r ̸= s, 2 ≤ r, s ≤ 4, a contradiction.

Subcase (iii) : D contains vi, vj , 1 ≤ i, j ≤ 4,
i ̸= j. Then ncD(vr) = ncD(vs) = (0, 0, . . . , 1, 1)
where r, s ̸= i, j, r ̸= s, 1 ≤ r, s ≤ 4, a contradiction.

Subcase (iv) : D contains ui, v1, 1 ≤ i ≤ k.
Then ncD(v2) = ncD(v3) = (0, 0, . . . , 0, 1), a con-
tradiction.

Therefore D contains at least three vertices from
{u1, u2, . . . , uk, v1, v2, v3, v4}.

Case (B) : D contains more than three elements
from {u1, u2, . . . , uk, v1, v2, v3, v4}.

Subcase (i) : D ⊂ {u1, u2, . . . , uk}. Then v2, v3
and v4 have 0-code with respect to D, a contradiction.

Subcase (ii) : D contains v2, v3, v4 and the re-
maining vertices from {u1, u2, . . . , uk}. Then D −
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{v2, v3, v4} is a neighbourhood resolving set of G.
Since D contains nr-bad vertices of G, nr(G) <
|D| − 3 = nr(H)− 3. That is nr(H) ≥ nr(G) + 4,
a contradiction.

Subcase (iii) : D contains two of the vertices
from {v1, v2, v3, v4} and at least two vertices from
{u1, u2, . . . , uk}.

Subcase (iiia) : D contains v2, v3 and at least
two vertices from {u1, u2, . . . , uk}. Then D1 =
D − {v2, v3} is a neighbourhood resolving set of G.
SinceD1 contains nr-bad vertices ofG, nr(G)+1 ≤
|D1| = nr(H)− 2 and nr(H) ≥ nr(G) + 3. There-
fore nr(H) = nr(G)+3. IfD contains v3, v4; v2, v4,
similar proof as in Subsubcase(i) can be given.

Subcase (iiib) : D contains v1, v2 and at least
two vertices from {u1, u2, . . . , uk}. Then ncD(v3) =
ncD(v4) = (0, 0, . . . , 0, 1, 1), a contradiction.

Similarly ifD contains v1, v3; v1, v4, then it leads
to a contradiction.

Subcase (iiic) : D contains v1, v2, v3 and at least
one vertex from {u1, u2, . . . , uk}. Then D1 = D −
{v2, v3} is a neighbourhood resolving set of G.

As in Subcase (iiia), nr(H) = nr(G) + 3. If D
contains v1, v3, v4; v1, v2, v4, similar result is arrived
at.

Case (C) : D contains exactly three vertices from
{u1, u2, . . . , uk, v1, v2, v3, v4}.

Subcase (i) : D contains ui1 , ui2 , ui3 , 1 ≤
i1, i2, i3 ≤ k. Then ncD(v2) = ncD(v3) =
ncD(v4) = (0, 0, . . . , 0), a contradiction.

Subcase (ii) : D contains u1, u2, v1. Then
ncD(v2) = ncD(v3) = ncD(v4) = (0, 0, . . . , 0, 1),
a contradiction. Similarly if D contains {u1, u2, v2}
or {u1, u2, v3} or {u1, u2, v4}, it gives rise to a con-
tradiction.

Subcase (iii) : D contains u1, v1, v2. Then
ncD(v3) = ncD(v4) = (0, 0, . . . , 0, 1, 1), a contra-
diction. If D contains {u1, v1, v3} or {u1, v1, v4},
then these cases also lead to a contradiction.

Subcase (iv) : D contains u1, v2, v3. Then D1 =
D − {v2, v3} is a neighbourhood resolving set of
G. Since D1 contains nr-bad vertex u1 of G, then
nr(G) + 1 ≤ |D1| = nr(H) − 2. Hence nr(H) ≥
nr(G)+3. Therefore nr(H) = nr(G)+3. The same
result is true ifD contains {u1, v3, v4} or {u1, v2, v4}.

Subcase (v) : D contains v2, v3, v4. Then D1 =
D − {v2, v3, v4} is a neighbourhood resolving set of
G. Therefore nr(G) ≤ |D1| = |D|−3 = nr(H)−3.
That is nr(H) ≥ nr(G) + 3. Therefore nr(H) =
nr(G) + 3.

Subcase (vi) : D contains v1, v2, v3. Since D is
an nr-set of H , by hyphothesis v1 does not resolve
privately any ui, xi where xi ̸= ui and xi ∈ V (G),
1 ≤ i ≤ k. ThereforeD−{v1, v2, v3} is a neighbour-
hood resolving set of G. Therefore nr(G) ≤ |D1| =

|D| − 3 = nr(H)− 3. That is nr(H) ≥ nr(G) + 3.
Therefore nr(H) = nr(G) + 3. Hence in all cases,
nr(H) = nr(G) + 3.

Since |S1| = |S2| = |S3| = nr(G) + 3, S1, S2
and S3 are nr-sets of H containing ui, 1 ≤ i ≤ k,
v1, v2, v3, v4. Therefore ui, 1 ≤ i ≤ k, v1, v2, v3, v4
are nr-good in H , also all nr-good vertices in G are
also nr-good in H and G is an induced subgraph of
H . Therefore H is nr-excellent graph containing G
as an induced subgraph and also nr(H) = nr(G)+3.
⊓⊔

Theorem 39 Let G be a graph with |G| = 2nr(G).
Then ∆(G) ≥ 2nr(G)−1.

Proof: Let S be an nr-set of G. Let u1 be the first
vertex in the ordered set S. Since 2nr(G) distinct codes
are associated with the vertices of G, any vertex of G
with the first element of its code with respect to S is
1, is adjacent to u1. Since there are 2nr(G)−1 vertices
with first element of its code 1, u has degree exactly
2nr(G)−1. Hence ∆(G) ≥ 2nr(G)−1. ⊓⊔

Remark 40 Every vertex of S has degree 2nr(G)−1.

Remark 41 There exists a graph G with |G| =

2nr(G) and ∆(G) = 2nr(G)−1.
Consider the graph G :

s s
s

s s

ss

s
G :

1 2

34

5 6

78

S = {1, 2, 3} is an nr-set of G. ncS(1) = (0, 1, 1)
; ncS(2) = (1, 0, 1) ; ncS(3) = (1, 1, 0); ncS(4) =
(1, 1, 1) ; ncS(5) = (1, 0, 0) ; ncS(6) = (0, 1, 0);
ncS(7) = (0, 0, 1) ; ncS(8) = (0, 0, 0).

ThereforeG is a graph with |G| = 2nr(G) = 23 =

8 and ∆(G) = 4 = 2nr(G)−1 = 22.

Remark 42 There exists a graph G with |G| =

2nr(G) and ∆(G) > 2nr(G)−1.
Consider the graph G:

t t
t t

1

3 4

2

G =
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S = {1, 2} is an nr-set of G. ncS(1) = (0, 1) ;
ncS(2) = (1, 0) ; ncS(3) = (1, 1); ncS(4) = (0, 0) .
Therefore G is a graph with |G| = 2nr(G) = 22 = 4

and ∆(G) = 3 > 2nr(G)−1 = 2.

Remark 43 Let G be a nr-excellent graph with
|G| = 2nr(G). Then G is regular with degree of regu-
larity 2nr(G)−1.

Proof: SupposeG is a nr-excellent graph with |G| =
2nr(G). Then every vertex belongs to an nr-set of G.
Therefore degree of every vertex is 2nr(G)−1. ⊓⊔

4 Conclusion

Using the concept of excellence in graphs and neigh-
bourhood resolving set of a graph nr(G), we have
defined nr-excellent graphs. we have characterized
graphs G and H for which G ∪ H and G + H are
nr-excellent, when G and H are nr-excellent. We
have also proved that a non nr-excellent graph G
can be embedded in a nr-excellent graph H such
that nr(H) = nr(G)+ number of nr-bad vertices
of G. Also a new graph H can be constructed from
a connected non nr-excellent graph G such that H
is nr-excellent, G is an induced subgraph of H and
nr(H) = nr(G) + 3. Some more results are also
discussed.

References:

[1] P. S. Buczkowski, G. Chartrand, C. Poisson and
P. Zhang, On k-dimensional graphs and their
bases, Period. math. Hungar., 46:1 (2003), 9-15.

[2] J. Caceres, C. Hernando, M. Mora, M. L. Puer-
tas, I. M. Pelayo, C. Seara and D. R. Wood,
On the metric dimenstion of some families of
graphs, Electronic Notes in Discrete Math., 22
(2005), 129-133.

[3] J. Caceres, C. Hernando, M. Mora, M. L. Puer-
tas, I. M. Pelayo, C. Seara and D. R. Wood, On
the metric dimenstion of Cartisian products of
graphs, SIAM Journal on Discrete Math., 21(2),
(2007), pp.423-441.

[4] G. Chartrand, L. Eroh, M. Johnson, O.R. Oeller-
mann, Resolvability in graphs and the metric di-
mension of a graph, Discrete Appl. Math., 105,
(2000), pp.99-113.

[5] G. Chartrand, C. Poisson, P. Zhand, Resolvabil-
ity and the upper dimension of graphs, Inter-
national J. Comput. Math. Appl., 39, (2000),
pp.19-28.

[6] G. Chartrand, E. Salehi. P. Zhang, On the parti-
tion dimension of a graph, Congr. Numer. 130,
(1998), pp.157-168.

[7] G. Chartrand, E. Salehi. P. Zhang, The partition
dimension of a graph, Aequationes Math., 59,
(2000), No.1-2, pp.45-54.

[8] G. Chartrand, V. Saenpholphat and P. Zhang, Re-
solving edge colorings in graphs, Ars Combin.,
74, 2005, J. Combin. Math. Combin. Comput.
65 (2008), 139-146.

[9] G. Chartrand, Varaporn Saenpholphat and Ping
Zhang, The independent resolving number of a
graph, Mathematica Bohemica, Vol.128, (2003),
No. 4, pp.379-393.

[10] G. H. Fricke, Teresa W. Haynes, S. T. Hedet-
niemi, S. M. Hedetniemi and R. C. Laskar, Ex-
cellent trees, Bull. Inst. Combin. Appl., vol. 34,
(2002), pp.27-38.

[11] Gary Chartrand, Ping Zhang, Kalamazoo, The
forcing dimension of a graph, Mathematica Bo-
hemica, 126, No. 4, 2001, pp.711-720.

[12] Gary Chartrand, David Erwin, Michael A. Hen-
ning, Peter J. Slater and Ping Zhang, Graphs of
order n with locating-chromatic number n− 1 ,
Discret Mathematics, 269, 2003, 65-79.

[13] F. Harary, Graph Theory, Addison Wesley,
Reading Mass (1972).

[14] F. Harary, R. A. Melter, On the metric dimen-
stion of a graph, Ars Combin., 2, (1976), pp.191-
195.

[15] M. A. Henning and T. W. Haynes, Total domi-
nation excellent trees, Discrete Math., Vol .263,
(2003), 93-104.

[16] James Currie and Ortrud R. Oellermann, The
metric dimension and metric independence of a
graph, J. Combin. Math. Combin. Comput., 39,
(2001), pp.157-167.

[17] Joel Peters-Fransen and Ortrud R. Oellermann,
The metric dimension of the cartesian product
of graphs, Utilitas Math., 69, (2006), pp.33-41.

[18] M. A. Johnson, Structure-activity maps for vi-
sualizing the graph variables arising in drug de-
sign, J. Biopharm. Statist, 3, (1993), pp.203-236.

[19] M. A. Johnson, Browsable structure-activity
datasets, Advances in Molecular Similarity (R.
CarboDorca and P. Mezey, eds.), JAI Press,
Connecticut, 1998, pp. 153-170.

[20] M.G. Karpovsky, K. Chakrabarty, L. B. Lev-
itin On a new class of codes for identifying ver-
tice singraphs, IEEE Trans. Information Theory,
1998,pp.599-611.

[21] A. Lobstein: http://www.infres.enst.fr/ lob-
stein/debutBIBidetlocdom.pdf

WSEAS TRANSACTIONS on MATHEMATICS S. Suganthi, V. Swaminathan, G. Jothi Lakshmi, A. P. Pushpalatha

E-ISSN: 2224-2880 644 Volume 13, 2014



[22] O. Ore, Theory of Graphs, Amer. Math. Soc.
Colloq. Publication, 38, Providence, (1962).

[23] Robert C. Brigham, Orlando, Gary Chartrand,
Kalamazoo, Ronald D. Dutton, Orlando, Ping
Zhang, Kalamazoo, Resolving domination in
Graphs, Mathematica Bohemica, 128. No. 1,
(2003), pp.25-36.

[24] E. Sambathkumar and Prabha S. Neeralagi,
Domination and Neighbourhood critical, fixed,
free and totally free points, The Indian Journal
of Statistics, Special volume 54, (1992), pp.403-
407.

[25] P. J. Slater, Leaves of trees , Congress Num, 14,
(1975), pp.549-559.

[26] P. J. Slater, Dominating and reference sets in
graphs, J. Math. Phys. Sci., 22, (1988), no. 4,
pp.445-455.

[27] P. J. Slater, Domination and location in acyclic
graphs ,Networks, 17, (1987), no.1, pp.55-64.

[28] Peter J. Slater, Fault-tolerant locating-
dominating sets, Discrete Mathematics, vol.249,
(2002),n.1-3, pp.179-189.

[29] B. Sooryanarayana, On the metric dimenstion
of a graph, Indian J. Pure Appl. Math., 29(4),
(1998), pp.413-415.

[30] N. Sridharan and K.Subramanian, γ-graph of a
graph , Bulletin of Kerala Mathematics Associa-
tion, Volume.5, 1,(2008, June), pp.17-34.

[31] N. Sridharan and M. Yamuna, Excellent- Just
Excellent -Very Excellent Graphs , Journal of
Math. Phy. Sci., vol.14, No.5, 1980, pp.471-475.

[32] N. Sridharan and M. Yamuna, A Note on Excel-
lent graphs, ARS Combinatoria, 78, (2006), pp.
267-276.

[33] N. Sridharan and M. Yamuna, Excellent- Just
Excellent -Very Excellent Graphs, Ph.D Thesis,
Alagappa University, 2003.

[34] Suk J. Seo and P. Slater, Open neighbor-
hood locating-dominating sets, The Australasian
Journal of Combinatorics, Volume 46, (2010),
pp.109–119.

[35] Suk J. Seo , Peter J. Slater, Open neighborhood
locating-dominating in trees, Discrete Applied
Mathematics, v.159 n.6, (2011), pp.484-489.

[36] Suk J. Seo and P. Slater, Open neighborhood
locating-dominating sets for grid-like graphs,
Bulletin of the Institute of Combinatorics and its
Applications, Volume 65, (2012), pp.89-100.

[37] Suk J. Seo, Peter J. Slater, Open neighbor-
hood locating-domination for infinite cylinders,
ACM-SE ’11, Proceedings of the 49th Annual
Southeast Regional Conference, (2011), pp.334-
335.

[38] S. Suganthi, V. Swaminathan, A. P. Pushpalatha,
G. Jothilakshmi, Neighbourhood Resolving sets
in Graphs, International Journal of Computing
Technology, Vol. 1, No. 4, (2011), pp.117-122.

[39] S. Suganthi, V. Swaminathan, Neighbourhood
Resolving sets in Graphs, International Journal
of Logistics and Supply Chain Management, Ac-
cepted.

[40] S. Suganthi, V. Swaminathan, A. P. Pushpalatha,
G. Jothilakshmi, Neighbourhood Resolving sets
in Graphs-I, J. Math. Comput. Sci., 2, (2012),
No. 4, pp.1012-1029.

[41] S. Suganthi, V. Swaminathan, A. P. Pushpalatha,
G. Jothilakshmi, Neighbourhood Resolving sets
in Graphs-II, AMO-Advanced Modeling and
Optimization, Volume 15, Number 1, (2013),
pp.45-61.

[42] S. Suganthi, V. Swaminathan, A. P. Pushpalatha,
G. Jothilakshmi, Resolving sets in Graphs, In-
ternational journal of Graph Theory, Volume 1,
Issue 2, April 2013, pp.58-71.

[43] Terasa W. Haynes, Stephen T. Hedetneimi, Pe-
ter J. Slater, Fundamentals of Domination in
Graphs, Marcel Dekker Inc. (1998).

[44] Varaporn Saenpholphat and Ping Zhang, Condi-
tional Resolvability in Graphs: A Survey, Inter-
national Journal of Mathematics and Mathemat-
ical Sciences, 38, (2004), pp.1997-2017.

WSEAS TRANSACTIONS on MATHEMATICS S. Suganthi, V. Swaminathan, G. Jothi Lakshmi, A. P. Pushpalatha

E-ISSN: 2224-2880 645 Volume 13, 2014




