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Abstract: This paper is devoted to study nonlinear image classification methods based on support tensor machine
(STM). Firstly, a new linear method named linear least squares twin support tensor machine (LLS-TSTM) is
proposed, which is an improvement of linear STM. The utility of twin skill and least squares technology aims
to speed up the computation time (sum of training time and testing time). Secondly, in order to study nonlinear
version of LS-TSTM, a new matrix kernel function is introduced and then based on which, a nonlinear LS-TSTM
(NLS-TSTM) classification method is suggested with detailed theoretical derivation. Finally, in order to examine
the effectiveness of LLS- and NLS-TSTM, we perform a series of comparative experiments with linear STM and
linear TSTM on ORL and Yale face databases. Experiment results show that the proposed methods are effective
and efficient.
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1 Introduction
In real world, high-dimensional image data with struc-
tural information are often encountered when we deal
with pattern classification problems. How to uti-
lize the structural information is an important work.
The most existing classification methods are oriented
to vector, such as support vector machine (SVM)
[1], twin support vector machine (TSVM) [2], least
squares support vector machine (LS-SVM) [3-4], least
squares twin support vector machine (LS-TSVM) [5]
and so on [6-17]. SVM aims to find an optimal sepa-
rating hyperplane by maximizing the margin of a pair
of parallel boundary hyperplanes for binary classifi-
cation. Different from SVM, TSVM aims to find a
pair of nonparallel hyperplanes by solving two smaller
quadratic programming problems (QPPs) such that
each plane is closer to one of two classes and at least
one distance from the other. TSVM has the similar
formulation with SVM except that not all the patterns
appear in the constraints of either problem at the same
time, which makes the learning speed of TSVM is
more faster than that of SVM. LS-TSVM is a least
squares version of TSVM, in which the inequality
constraints are replaced by equality constraints and
the 1-norm of slack variables is replaced by the square
of 2-norm. This leads to solve two modified primal
problems instead of dual problems in LS-TSVM. Ex-

periments in [5] show that LS-TSVM is faster than
TSVM. In addition to this, there also exist some vec-
tor pretreatment methods before we use the above
classifiers directly, such as linear discriminant anal-
ysis (LDA) [18], principal component analysis (PCA)
[19], kernel discriminant analysis (KDA) [20], Fisher
discriminant analysis (FDA) [21]and so on.

In recent years, some interests about tensor rep-
resentation of image data have been gain attention. A
tensor-based learning framework linear support ten-
sor machine (STM) was proposed by Tao et al [22]
and Cai et al [23], which directly accepts tensors
as input in the learning model without vectoriza-
tion. The use of tensor representation helps overcome
the overfitting problem encountered mostly in vector-
based learning. Some linear classification algorithms
have been developed for pattern classification [24-32].
However, up to now nonlinear classification methods
based on STM for image data are not seen more.

Motivated by works above, in this paper, we will
first introduce a new tensor version extension for lin-
ear LS-TSVM (LLS-TSVM), termed as linear least
squares twin support tensor machine (LLS-TSTM).
The utility of twin skill and least squares technol-
ogy aims to speed up the computation time (sum of
training time and testing time). Then, we introduce
a novel matrix kernel function and, base on which,
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suggest a nonlinear LS-TSTM (NLS-TSTM) classifi-
cation method with detailed theoretical derivation. In
order to examine the effectiveness of LLS-TSTM and
NLS-TSTM, we perform a series of comparative ex-
periments with linear STM and linear TSTM on ORL
and Yale face databases.

The rest of the paper is organized as follows. In
Section 2, background and related works are intro-
duced. In Section 3, based on a new defined ma-
trix kernel function, a LLS-TSTM classification al-
gorithm is proposed in an iterative framework and a
NLS-TSTM method is suggested with detailed the-
oretical derivation. Experiments and results analysis
are performed in Section 4. Section 5 gives some con-
clusions.

2 Background and related works
2.1 Linear twin support vector machines

(Linear TSVM)

The basic idea of linear TSVM is constructing a pair
of nonparallel hyperplanes such that each one is as
close as possible to one class, and as far as possible
from the other class. A new input will be assigned to
one of the classes depending on its proximity to each
hyperplane. Let T = {(xi, yi)}mi=1 be a set of binary
sample data, where xi ∈ Rn and yi ∈ {±1} are the in-
put and the class label of the ith sample, respectively.
Let m1 and m2 be the numbers of positive and nega-
tive samples, respectively, thenm = m1+m2. We de-
note A ∈ Rn×m1 and B ∈ Rn×m2 the matrices com-
posed of positive and negative samples, respectively.
Linear TSVM seeks a pair of nonparallel hyperplanes
f1(x) = wT+x+ b+ = 0 and f2(x) = wT−x+ b− = 0
by considering the following two quadratic program-
ming problems (QPPs):

min
w+,b+,ξ2

1
2 ||A

Tw+ + e1b+||2 + c1e
T
2 ξ2

s.t. − (BTw+ + e2b+) ≥ e2 − ξ2,
ξ2 ≥ 0,

(1)

min
w−,b−,ξ1

1
2 ||B

Tw− + e2b−||2 + c2e
T
1 ξ1

s.t. (ATw− + e1b−) ≥ e1 − ξ1,
ξ1 ≥ 0,

(2)

where c1, c2 > 0 are tradeoff parameters, ξ1 ∈
Rm1 , ξ2 ∈ Rm2 are slack vectors and e1 ∈ Rm1 , e2 ∈
Rm2 are vectors of ones. By solving the Wolfe dual
forms of the problems (1) and (2), we can obtain
(w+, b+) and (w−, b−). A new input x̃ can be as-
signed the class k(k = +,−) depending on which
of the two hyperplanes is closer to, that is, k =

argmin{ |f1(x̃)|||w+|| ,
|f2(x̃)|
||w−|| }.

2.2 Linear least squares twin support vector
machines (LLS-TSVM)

LLS-TSVM is an improvement of linear TSVM, in
which inequality constraints are replaced by equality
constraints and 1-norm with weight c of slack vari-
ables is replaced by the square of 2-norm with weight
c
2 . The optimization problems corresponding to LLS-
TSVM can be stated as follows.

min
w+,b+,ξ2

1
2 ||A

Tw+ + e1b+||2 + c1
2 ξ

T
2 ξ2

s.t. − (BTw+ + e2b+) = e2 − ξ2,
(3)

min
w−,b−,ξ1

1
2 ||B

Tw− + e2b−||2 + c2
2 ξ

T
1 ξ1

s.t. (ATw− + e1b−) = e1 − ξ1.
(4)

By solving directly the problems (3) and (4) not
their Wolfe dual forms, we can obtain (w+, b+) and
(w−, b−).

2.3 Linear support tensor machines (Linear
STM)

In this subsection, we recall briefly linear support ten-
sor machines which is a tensor generalization of SVM
in the tensor space, for details see [18-19]. Different
from SVM, the main idea of STM is to deal with ten-
sor inputs directly without vectorization, which keeps
the structure information of image data and has not in-
crease time complexity. Let T = {(Xi, yi)}mi=1 be a
set of second tensor sample data, where Xi ∈ Rn1×n2

and yi ∈ {±1} are the input and the class label of the
ith second tensor sample , respectively. Linear STM
finds a tensor classifier f(X) = uTXv + b, where
u ∈ Rn1 , v ∈ Rn2 and b ∈ R, such that the two
classes can be separated with maximum margin. The
implement of STM is actually based on an iteration
procedure, which is stated as follows.

Algorithm 1. Linear STM

1. Initialization. Let t = 0, ε > 0 be small
enough and take ut = [1, · · · , 1]T ∈ Rn1 .

2. Compute vt. Let xti = XT
i u

t, i = 1, · · · ,m
and βt1 = ||ut||2. (vt, bt1) can be computed by solving
the following optimization problem with β1 = βt1 and
xi = xti:

min
v,b1,ξ

1
2β1v

T v + CeT ξ

s.t. yi(v
Txi + b1) + ξi ≥ 1,

ξi ≥ 0, i = 1, · · · ,m,
(5)

where C > 0 is a parameter, ξ ∈ Rm is a slack vector
and e ∈ Rm is the vector of ones.

3. Update ut. Let x̃ti = Xiv
t, i = 1, · · · ,m and

βt2 = ||vt||2. (ut+1, bt+1
2 ) can be computed by solving
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the following optimization problem with β2 = βt2 and
x̃i = x̃ti:

min
u,b2,ξ

1
2β2u

Tu+ CeT ξ

s.t. yi(u
T x̃i + b2) + ξi ≥ 1,

ξi ≥ 0, i = 1, · · · ,m.
(6)

4. Update vt. Let xt+1
i = XT

i u
t+1, i = 1, · · · ,m

and βt+1
1 = ||ut+1||2. (vt+1, bt+1

1 ) can be computed
by solving the problem (5) with β1 = βt+1

1 and xi =
xt+1
i .

5. If ∥ut+1 − ut∥ < ε, ∥vt+1 − vt∥ < ε, or maxi-
mum number of iteration is achieved, put u∗ ← ut+1,
b∗1 ← bt+1

1 , v∗ ← vt+1 and b∗2 ← bt+1
2 ; otherwise, put

t← t+ 1 and return back step 2.
6. Compute b∗ = 1

2(b
∗
1 + b∗2) and construct the

decision function f(X) = (u∗)TXv∗ + b∗, ∀X ∈
Rn1×n2 .

3 Least squares twin support tensor
machines (LS-TSTM)

We know that classifying image data by using vector-
based classification methods must transform image in-
puts into vectors firstly. When a m × n image data
is scanned into a mn dimensional vector, its struc-
ture information will be lost. In order to protect the
structure information of image data, in this section,
we study the tensor version extensions of LLS-TSVM.
We first propose a linear version extension named
as linear least squares twin support tensor machine
(LLS-TSTM), and then introduce a new matrix kernel
function and based on which suggest a nonlinear ver-
sion extension named as nonlinear least squares twin
support tensor machine (NLS-TSTM) with detailed
theoretical derivation.

Let T = {(Xi, yi)}mi=1 be a set of second or-
der tensor sample data, where Xi ∈ Rn1×n2 and
yi ∈ {±1} are the input and the class label of the ith
second tensor sample, respectively. Let m1 and m2

be the numbers of positive and negative samples and
I1 and I2 be the index sets of positive and negative
samples, respectively, then m = m1 +m2, |I1| = m1

and |I2| = m2. The norm of a matrix C is defined by
∥C∥2 = Tr(CTC), where Tr(C) denotes the trace
of the matrix C.

3.1 Linear LS-TSTM (LLS-TSTM)

LLS-TSTM aims to seek a pair of nonparallel hyper-
planes f1(x) = uT+Xv+ + b+ = 0 and f2(x) =

uT−Xv− + b− = 0, where u+, u− ∈ Rn1 , v+, v− ∈

Rn2 and b+, b− ∈ R, by considering the following
two QPPs:

min
u+,v+,b+,ξ

1
2

∑
i∈I+

(uT+Xiv+ + b+)
2 + c1

2

∑
j∈I−

ξ2j

s.t. − (uT+Xjv+ + b+) + ξj = 1, j ∈ I−,
(7)

min
u−,v−,b−,η

1
2

∑
j∈I−

(uT−Xjv− + b−)
2 + c2

2

∑
i∈I+

η2i

s.t. (uT−Xjv− + b−) + ηj = 1, i ∈ I+.
(8)

where c1, c2 > 0 are tradeoff parameters and ξ ∈
Rm2 , η ∈ Rm1 are slack vectors. Once (w+, b+)

and (w−, b−) are solved, a new input X̃ can be as-
signed the class k(k = +,−) depending on which
of the two hyperplanes is closer to, that is, k =

argmin{ |f1(X̃)|
||u+vT+|| ,

|f2(X̃)|
||u−vT−||}.

Next, we solve (u+, v+, b+) by an iterative
framework. Similarly, we can solve (u−, v−, b−).

We first discuss the relationships among u+, v+
and b+. Substituting the equality constraints into the
objective function of the problem (7), we have

min
u+,v+,b+,ξ

1
2

∑
i∈I+

(uT+Xiv+ + b+)
2

+ c1
2

∑
j∈I−

(uT+Xjv+ + b+ + 1)2.
(9)

Setting the gradient of the objective function of the
problem (9) with respect to (u+, v+, b+) be zero, we
can deduce that

∑
i∈I+

Xiv+v
T
+X

T
i u+ + b+

∑
i∈I+

Xiv+

+c1
∑
j∈I−

Xjv+v
T
+X

T
j u+

+(b+ 1)c1
∑
j∈I−

Xjv+ = 0,

∑
i∈I+

Xi
Tu+u

T
+Xiv+ + b+

∑
i∈I+

Xi
Tu+

+c1
∑
j∈I−

Xj
Tu+u

T
+Xjv+

+(b+ 1)c1
∑
j∈I−

Xj
Tu+ = 0,

b+ = −c0
∑
i∈I+

uT+Xiv+ − c0c1
∑
j∈I−

uT+Xjv+

−c0c1m2,

where c0 = 1
m1+c1m2

. Proceeding to the next step, we
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can get Hu+ = Fv+ and Gv+ = F Tu+, where

H =
∑
i∈I+

Xiv+v
T
+X

T
i + c1

∑
j∈I−

Xjv+v
T
+X

T
j

−c0
∑

i1,i2∈I+
Xi1v+v

T
+X

T
i2

−c0c1
∑

i∈I+,j∈I−
Xiv+v

T
+X

T
j

−c0c21
∑

j1,j2∈I−
Xj1v+v

T
+X

T
j2

−c0c1
∑

i∈I+,j∈I−
Xjv+v

T
+X

T
i ,

G =
∑
i∈I+

Xi
Tu+u

T
+Xi + c1

∑
j∈I−

Xj
Tu+u

T
+Xj

−c0
∑

i1,i2∈I+
XT
i1
u+u

T
+Xi2

−c0c1
∑

i∈I+,j∈I−
XT
i u+u

T
+Xj

−c0c12
∑

j1,j2∈I−
XT
j1
u+u

T
+Xj2

−c0c1
∑

i∈I+,j∈I−
XT
j u+u

T
+Xi,

F = c0c1m2
∑
i∈I+

Xi + c0c1
2m2

∑
j∈I−

Xj

−c1
∑
j∈I−

Xj .

This indicates that u+, v+ and b+ are dependent
on each other and cannot be solved independently.
Hence, we utilize an iteration method to solve
(u+, v+, b+), which can be described as follows.

For any given nonzero vector v+ ∈ Rn2 , let xTi =
Xiv+, i = 1, · · · ,m and A1 ∈ Rm1×n1 and B1 ∈
Rm2×n1 be matrices composed of all xi, i ∈ I+ and
all xj , j ∈ I−, respectively, then the problem (7) can
be simplified as

min
u+,b+,ξ

1
2∥A1u+ + e1b+∥2 + c1

2 ξ
T ξ

s.t. − (B1u+ + e2b+) + ξ = e2,
(10)

where e1 ∈ Rn1 , e2 ∈ Rn2 are vectors of ones.
Substituting the equality constraints into the objective
function of the problem (10) and setting the gradient
of the objective function with respect to u+ and b+ to
zero, we can deduce that

AT1 (A1u+ + e1b+) + c1B
T
1 (B1u+ + e2b+ + e2)

= 0,
eT1 (A1u+ + e1b+) + c1e

T
2 (B1u+ + e2b+ + e2)

= 0.
(11)

Let E1 = [A1 e1] and F1 = [B1 e2]. We can obtain
from (11) that[

u+
b+

]
= −

[
1
c1
ET1 E1 + F T1 F1

]−1
F T1 e2. (12)

Here, if 1
c1
ET1 E1 + F T1 F1 is singular, we use

1
c1
ET1 E1 + F T1 F1 + εI instead of 1

c1
ET1 E1 + F T1 F1,

where ε > 0 is a constant and I is an identity matrix
of appropriate dimension.

For any given nonzero vector u+ ∈ Rn1 , let x̃Ti =
XT
i u+, i = 1, · · · ,m and A2 ∈ Rm1×n2 and B2 ∈

Rm2×n2 be matrices composed of all x̃i, i ∈ I+ and
all x̃j , j ∈ I−, respectively. In this case, the problem
(7) can be simplified as

min
v+,d+,ξ

1
2∥A2v+ + e1d+∥2 + c1

2 ξ
T ξ

s.t. − (B2v+ + e2d+) + ξ = e2.
(13)

By solving the problem (13), we can obtain[
v+
d+

]
= −

[
1
c 1
ET2 E2 + F T2 F2

]−1
F T2 e2, (14)

where E2 = [A2, e1] and F2 = [B2, e2].
By solving the problem (8) with the similar way

above, we can get that[
u−
b−

]
=
[
1
c2
F T1 F1 + ET1 E1

]−1
ET1 e1. (15)

[
v−
d−

]
=
[
1
c2
F T2 F2 + ET2 E2

]−1
ET2 e1. (16)

Summing up the discussion above, we know that
ui, vi and bi, i = ± can be obtained by iteratively
solving (12) and (14), and(15)-(16). The specific pro-
cedure is as follows.

Algorithm 2. Linear LS-TSTM

1. Initialization. Let t = 0, ε > 0 small enough
and take vt+ = vt− = [1, · · · , 1]T ∈ Rn2 .

2. Calculate u and b. Calculate (ut+, b
t
+) by using

(12) and (ut−, b
t
−) by using (15) with v+ = vt+ and

v− = vt−.
3. Update v and d. Calculate (vt+1

+ , dt+1
+ ) by us-

ing (14) and (vt+1
− , dt+1

− ) by using (16) with u+ = ut+
and u− = ut−.

4. Update u and b. Calculate (ut+1
+ , bt+1

+ ) by us-
ing (12) and (ut+1

− , bt+1
− ) by using (15) with v+ =

vt+1
+ and v− = vt+1

− .
5. If ∥ut+1

+ −ut+∥, ∥ut+1
− −ut−∥, ∥vt+1

+ −vt+∥ and
∥vt+1

− − vt−∥ are all less than ε or the maximum num-
ber of iterations is achieved, put u∗+ ← ut+1

+ , v∗+ ←

vt+1
+ , u∗− ← ut+1

− , v∗− ← vt+1
− , b∗+ ←

bt+1
+ +dt+1

+

2 and

b∗− ←
bt+1
− +dt+1

−
2 ; otherwise, set t ← t + 1 and return

to step 2.
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6. Construct decision functions fi(X), i =

1, 2 by f1(X) = (u∗+)
T X̃v∗+ + b∗+ and f2(X) =

(u∗−)
T X̃v∗− + b∗−.

7. For a new input X̃ , its label y
X̃

can be obtained

by y
X̃

= argmin
i=±

|fi(X̃)|
∥u∗i (v

∗
i )

T ∥ .

3.2 Nonlinear LS-TSTM (NLS-TSTM)

In this subsection, we discuss a nonlinear tensor ver-
sion extension for LS-TSVM by introducing a new
matrix kernel function. Kernel skill is used to pre-
process image data. Let k : Rn1 ×Rn1 → R be a ker-
nel function, H (for the sake of consistency, denoted
as R∞) the reproducing kernel Hilbert space (RKHS)
of the kernel k and φ : Rn1 → R∞ the correspond-
ing feature mapping. Let ℵ = {X1, · · · , Xm}, A =
{X1

1 , · · · , X1
m1
} andB = {X2

1 , · · · , X2
m2
}, whereX1

i

and X2
j express the ith input belonging to positive

class and the jth input belonging to negative class, re-
spectively.

We first introduce a matrix kernel function. For
any matrixX ∈ Rn1×n2 , it can be divided by columns
as X = [x1, , · · · , xn2 ], where xi ∈ Rn1 is the ith
column of X . Put φ(X) = [φ(x1), · · · , φ(xn2)] ∈
R∞×n2 . For any given nonzero vector v ∈ Rn2 ,
we define a matrix kernel function kv : Rn1×n2 ×
Rn1×n2 → R with respect to v by

kv(X,Z) =< φ(X)v, φ(Z)v >= vTφ(X)Tφ(Z)v
= vTKXZv, ∀X,Z ∈ Rn1×n2 ,

where

KXZ = φ(X)Tφ(Z) = [φ(xi)
Tφ(zj)]n2×n2

= [k(xi, zj)]n2×n2 .

To facilitate the following derivation, we set

Kv(A,ℵ) =

 kv(X
1
1 , X1) · · · kv(X

1
1 , Xm)

...
. . .

...
kv(X

1
m1
, X1) · · · kv(X

1
m1
, Xm)

 ,

Kv(B,ℵ) =

 kv(X
2
1 , X1) · · · kv(X

2
1 , Xm)

...
. . .

...
kv(X

2
m2
, Xm) · · · kv(X

2
m2
, Xm)

 ,

Kv(ℵ,ℵ) =

 kv(X1, X1) · · · kv(X1, Xm)
...

. . .
...

kv(Xm, X1) · · · kv(Xm, Xm)

 ,
Kv(X,ℵ) = [kv(X,X1), · · · , kv(X,Xm)] ∈ R1×m,

∀X ∈ Rn1×n2 .

We consider uk in the subspace
span{φ(X1)vk, · · · , φ(Xm)vk} of R∞ and as-
sume that uk = φvk(ℵ)βk, where φvk(ℵ) =
[φ(X1)vk, · · · , φ(Xm)vk] ∈ R∞×m, βk ∈ Rm

and k = ±. Similarly to LLS-TSTM, NLS-TSTM
aims to seek a pair of nonparallel hyperplanes
uT+φ(X)v+ + b+ = 0 and uT−φ(X)v− + b− = 0,
where u+, u− ∈ R∞, v+, v− ∈ Rn2 and b+, b− ∈ R,
by considering the following two QPPs:

min
u+,v+,b+,ξ

1
2

∑
i∈I+

(uT+φ(Xi)v+ + b+)
2 + c1

2

∑
j∈I−

ξ2j

s.t. − (uT+φ(Xj)v+ + b+) + ξj = 1, j ∈ I−,
(17)

min
u−,v−,b−,η

1
2

∑
j∈I−

(uT−φ(Xj)v− + b−)
2 + c2

2

∑
i∈I+

η2i

s.t. (uT−φ(Xi)v− + b−) + ηi = 1, i ∈ I+.
(18)

Next, we utilize an iterative method to solve
(ui, vi, bi), i = ±.

For any given nonzero vector v1 ∈ Rn2 , let

φv+(A) = [φ(X1
1 )v+, · · · , φ(X1

m1
)v+],

φv+(B) = [φ(X2
1 )v+, · · · , φ(X2

m2
)v+],

φv+(ℵ) = [φ(X1)v+, · · · , φ(Xm)v+].

then the problem (17) can be simplified as

min
β+,b+,ξ

1
2∥Kv+(A,ℵ)β+ + b+e1∥2 + c1

2 ξ
T ξ

s.t. − (Kv+(B,ℵ)β+ + b+e2) + ξ = e2,
(19)

where φTv+(A)u+ = Kv+(A,ℵ)β+ and φTv+(B)u+ =

Kv+(B,ℵ)β+. Substituting the equality constraint
into the objective function of the problem (19) and set-
ting the gradient of the objective function with respect
to β+ and b+ to zero, we can deduce that[

β+
b+

]
= −( 1

c1
GT1G1 +HT

1 H1)
−1HT

1 e2, (20)

where G1 = [Kv+(A,ℵ), e1] and H1 = [Kv+(B,ℵ),
e2]. Once β+ is calculated, we let

u+ = φv+(ℵ)β+,

φβ+(A) = [φT (X1
1 )φv+(ℵ)β+, · · · , φT (X1

m1
)φv+(ℵ)β+],

φβ+(B) = [φT (X2
1 )φv+(ℵ)β+, · · ·, φT (X2

m2
)φv+(ℵ)β+],

and set

G2 = [φT (X1
1 )φv+(ℵ)β+, · · · , φT (X1

m1
)φv+(ℵ)βT

+, e1],

H2 = [φT (X2
1 )φv+(ℵ)β+, · · · , φT (X2

m2
)φv+

(ℵ)βT
+, e2].
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In this case, the problem (17) can be simplified as

min
v+,d+,ξ

1
2∥φ

T
β+

(A)v+ + d+e1∥2 + c1
2 ξ

T ξ

s.t. − (φTβ+(B)v+ + d+e2) + ξ = e2,

and then it can be deduced that[
v+
d+

]
= −( 1

c1
GT2G2 +HT

2 H2)
−1HT

2 e2. (21)

By solving the problem (18) with the similar way
above, we can get u− = φv−(ℵ)β− and[

β−
b−

]
=
(

1
c2
P T1 P1 +QT1Q1

)−1
QT1 e2, (22)

[
v−
d−

]
=
(

1
c2
P2P

T
2 +Q2Q

T
2

)−1
Q2e2, (23)

where P1 = [Kv−(B,ℵ), e1], Q1 = [Kv−(A,ℵ), e2],

P2 =

[
φβ−(B)
eT1

]
and Q2 =

[
φβ−(A)
eT2

]
.

Consequently, (β+, v+) and (β−, v−) can be ob-
tained by iteratively solving (20)-(21) and (22)-(23),
respectively. The specific procedure is as follows.

Algorithm 3. nonlinear LS-TSTM

1. Initialization: Let t = 0, ε > 0 small enough
and take vt+ = vt− = [1, · · · , 1]T .

2. Calculate β and b. Calculate (βt+, b
t
+) by using

(20) and (βt−, b
t
−) by using (22) with v+ = vt+ and

v− = vt−.
3. Update v and d. Calculate (vt+1

+ , dt+1
+ ) by us-

ing (21) and (vt+1
− , dt+1

− ) by using (23) with u+ = ut+
and u− = ut−.

4. Update β and b. Calculate (βt+1
+ , bt+1

+ ) by us-
ing (20) and (βt+1

− , bt+1
− ) by using (22) with v+ =

vt+1
+ and v− = vt+1

− .
5. If ∥βt+1

+ −βt+∥, ∥βt+1
− −βt−∥, ∥vt+1

+ −vt+∥ and
∥vt+1

− − vt−∥ are all less than ε or the maximum num-
ber of iterations is achieved, put β∗+ ← βt+1

+ , v∗+ ←

vt+1
+ , β∗− ← βt+1

− , v∗− ← vt+1
− , b∗+ ←

bt+1
+ +dt+1

+

2 and

b∗− ←
bt+1
− +dt+1

−
2 ; otherwise, set t ← t + 1 and return

to step 2.
6. Calculate ∥u∗i (v∗i )T ∥2 by ∥u∗i (v∗i )T ∥2 =

(β∗i )
TKv∗i

(ℵ,ℵ)β∗i ∥v∗i ∥2, i = ±.
7. Construct decision functions fi(X), i = ± by

fi(X) = [kv∗i (X1, X), · · · , kv∗i (Xm, X)]β∗i + b∗i .
8. For a new input X̃ , its label y

X̃
can be obtained

by y
X̃

= argmin
i=±

|fi(X̃)|
∥u∗i (v

∗
i )

T ∥ .

4 Experiments
In this section, in order to demonstrate the classifi-
cation accuracy and computation time of LLS-TSTM
and NLS-TSTM, we perform a series of compara-
tive experiments with linear TSTM and linear STM
on ORL and Yale face databases [33-34]. ORL face
database contains 400 face images of 40 individuals
taken between April 1992 and April 1994 at different
times, light and facial expressions. Each individual
has 10 face images. Yale face database contains 165
face images of 15 individuals with 11 images for each
one. For the convenience of calculation, we chose 11
individuals from ORL database and 7 individuals from
Yale database according to different facial details for
our experiments, which are described in Tables 1 and
2. We use successive over relaxation (SOR) algo-
rithm [35-36] for solving all QPPs and utilize 5-fold
cross-validation method in all experiments. All the
experiments are implemented in MATLAB (R2012b)
running on a PC with system configuration Intel(R)
Core(TM) i3 (2.53GHz) with 2GB of RAM.

Table 1: 11 individuals chosen from ORL database
Facial detail 1 2 3 4 5 6 7 8 9 10 11

pic

Bald no no no no no yes yes no no no yes

Mustache no no no no light no light heavy no heavy heavy

FaceSize thin mid mid mid thin mid thin mid mid fat mid

Age youngmid youngyoungyoungold youngmid youngmid mid

Glass no no yes no no yes no yes yes no yes

Table 2: 7 individuals chosen from Yale database
Facial detail 1 2 3 4 5 6 7

pic

Mustache no light heavy light light no light

FaceSize fat mid mid mid mid fat thin

Age old mid young young mid old young

Glass no no no yes no no yes

4.1 Experiments on ORL database

In this subsection, we perform the comparative exper-
iments on 8 pairs composed of 11 individuals taken
from ORL database. In each pair, we select 1, 5
and 9 images from each individual as training sam-
ples and the others as testing samples. In all experi-
ments, take ε = 10−3, c1 = c2 = 0.15 and each im-
age is cropped into 28 × 23 pixels. In NLS-TSTM,
Gaussian RBF kernel k(x, y) = exp{−∥x−y∥2

σ2 } is
used and grid search approach from 103 to 105 is em-
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ployed for selecting the optimal kernel parameter σ.
Experiment results are shown in Tables 3-4, in which
’acc’, ’time’ and ’train’ represent classification accu-
racy (%), calculation time (second) and the number of
training samples, respectively. The experiment results
of three linear classifiers are showed in Table 3 and
The results of LLS- and NLS-TSTM are showed in
Table 4.

Table 3: Experiment results of three linear classifiers
on ORL database

Pairs Classifiers acc(%)
time(s)

acc(%)
time(s)

acc(%)
time(s)

train=1 train=5 train=9

LLS-TSTM 98.50±0.06
0.80

100.00±0.00
0.96

100.00±0.00
1.26

(1,3) Linear TSTM 99.00±0.04
1.65

97.50±0.07
3.32

90.50±0.53
3.09

Linear STM 97.50±0.29
1.33

99.50±0.03
9.60

100.00±0.00
4.83

LLS-TSTM 92.50±0.35
0.80

99.50±0.03
1.40

100.00±0.00
1.22

(1,4) Linear TSTM 85.00±0.89
1.23

98.50±0.11
4.19

92.50±0.13
5.59

Linear STM 86.00±0.82
2.09

97.50±0.18
6.39

99.50±0.03
12.43

LLS-TSTM 95.50±0.75
1.34

99.00±0.04
0.98

100.00±0.00
1.24

(2,10) Linear TSTM 94.00±0.93
1.13

99.00±0.10
2.99

99.50±0.03
3.73

Linear STM 88.00±3.23
2.11

100.00±0.00
5.04

100.00±0.00
10.68

LLS-TSTM 93.50±0.23
0.80

100.00±0.00
0.97

100.00±0.00
2.10

(3,9) Linear TSTM 86.50±1.17
1.12

81.50±1.00
3.18

75.50±0.36
1.20

Linear STM 87.50±0.35
1.13

99.50±0.03
5.65

100.00±0.00
12.71

LLS-TSTM 95.50±0.47
0.82

100.00±0.00
0.97

100.00±0.00
1.12

(5,7) Linear TSTM 97.00±0.07
1.32

97.50±0.24
3.21

94.00±0.38
4.11

Linear STM 89.50±1.80
1.44

100.00±0.00
4.00

100.00±0.00
8.68

LLS-TSTM 91.50±0.11
0.81

99.00±0.04
1.95

100.00±0.00
1.14

(6,7) Linear TSTM 92.00±0.18
0.85

93.00±0.23
4.67

82.50±1.01
4.53

Linear STM 79.50±1.53
1.43

99.00±0.10
12.77

100.00±0.00
7.73

LLS-TSTM 94.50±0.64
1.00

100.00±0.00
1.47

100.00±0.00
1.92

(6,11) Linear TSTM 92.00±0.51
1.10

97.00±0.40
3.72

83.50±1.84
3.35

Linear STM 82.50±1.07
1.29

100.00±0.00
6.77

100.00±0.00
10.79

LLS-TSTM 90.00±0.56
0.80

100.00±0.00
0.98

100.00±0.00
1.14

(7,8) Linear TSTM 87.00±0.34
1.24

90.00±0.56
2.24

86.50±1.06
4.20

Linear STM 86.00±1.66
0.98

94.50±0.30
6.09

99.50±0.03
13.29

From Tables 3-4, we can see that the computa-
tion time of LLS-TSTM is obviously less than that
of linear TSTM and linear STM. For 5 or 9 training
samples case, the computation time of LLS-TSTM is
almost faster 2-3 times than that of linear TSTM and
4-8 times than that of linear STM except the pair (3,9)
with 9 training samples, and the classification accu-
racy of LLS-TSTM is better than that of linear TSTM
and almost the same with that of linear STM. For 1

Table 4: Experiment results of LLS- and NLS-TSTM
on ORL database

Pairs Classifiers acc(%) acc(%) acc(%)

train=1 train=5 train=9

(1,3) NLS-TSTM 100.00±0.00 100.00±0.00 100.00±0.00
LLS-TSTM 98.50±0.06 100.00±0.00 100.00±0.00

(1,4) NLS-TSTM 99.50±0.03 100.00±0.00 100.00±0.00
LLS-TSTM 92.50±0.35 99.50±0.03 100.00±0.00

(2,10) NLS-TSTM 97.50±0.18 100.00±0.00 100.00±0.00
LLS-TSTM 95.50±0.75 99.00±0.04 100.00±0.00

(3,9) NLS-TSTM 94.00±0.27 100.00±0.00 100.00±0.00
LLS-TSTM 93.50±0.23 100.00±0.00 100.00±0.00

(5,7) NLS-TSTM 96.50±0.89 100.00±0.00 100.00±0.00
LLS-TSTM 95.50±0.47 100.00±0.00 100.00±0.00

(6,7) NLS-TSTM 93.50±0.34 95.00±0.28 100.00±0.00
LLS-TSTM 91.50±0.11 99.00±0.04 100.00±0.00

(6,11) NLS-TSTM 99.00±0.04 100.00±0.00 100.00±0.00
LLS-TSTM 94.50±0.64 100.00±0.00 100.00±0.00

(7,8) NLS-TSTM 92.50±1.13 94.50±0.19 100.00±0.00
LLS-TSTM 90.00±0.56 100.00±0.00 100.00±0.00

training sample case, the classification accuracies of
three linear classifiers are the competition each other.
In addition, the classification accuracy of NLS-TSTM
is higher than that of three linear classifiers in gen-
eral. Especially, the accuracies of NLS-TSTM are all
100% on 8 binary classification problems in the case
of 9 training samples.

4.2 Experiments on Yale database

In this subsection, we perform the comparative ex-
periments on 6 pairs composed of 7 individuals taken
from Yale database. In each pair, we select 1, 5 or 9
images from each individual as training samples and
the others as testing samples. In all experiments, take
ε = 10−3, c1 = c2 = 0.5 and each image is cropped
into 25 × 20 pixels. In NLS-TSTM, Gaussian RBF
kernel k(x, y) = exp{−∥x−y∥2

σ2 } is used and grid
search approach from 2−8 to 28 is employed for se-
lecting the optimal kernel parameter σ. Experiment
results are shown in Tables 5-6. The experiment re-
sults of three linear classifiers are showed in Table 5
and the results of LLS- and NLS-TSTM are showed
in Table 6.

From Tables 5-6, we can see that the computa-
tion time of LLS-TSTM is apparently less than that
of linear TSTM and linear STM except the pair (1,6).
For 5 or 9 training samples case, the classification ac-
curacies of both LLS-TSTM and NLS-TSTM are al-
most the same, and they are higher than that of linear
TSTM and linear STM. For 1 training sample case,
the classification accuracies of three linear classifiers
are the competition each other, and the classification
accuracy of NLS-TSTM is higher than that of LLS-
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Table 5: Experiment results of three linear classifiers
on Yale database

Pairs Classifiers acc(%)
time(s)

acc(%)
time(s)

acc(%)
time(s)

train=1 train=5 train=9

LLS-TSTM 84.50±3.19
0.60

97.00±0.23
1.77

99.00±0.10
2.23

(1,6) Linear TSTM 80.50±2.08
0.42

78.00±1.68
1.71

80.50±2.03
3.07

Linear STM 78.00±1.84
1.65

90.00±0.61
2.95

98.50±0.11
7.36

LLS-TSTM 90.00±3.17
0.47

96.50±0.17
1.97

98.50±0.06
2.27

(2,5) Linear TSTM 86.00±3.38
0.68

85.00±1.56
3.38

80.00±4.83
4.18

Linear STM 67.00±3.40
2.65

94.50±0.25
2.91

98.50±0.06
4.80

LLS-TSTM 90.00±4.44
0.47

100.00±0.00
0.83

100.00±0.00
0.88

(2,7) Linear TSTM 80.50±5.41
0.95

71.50±3.39
2.77

67.50±2.79
1.70

Linear STM 84.50±3.53
1.05

99.50±0.03
3.08

100.00±0.00
6.76

LLS-TSTM 79.50±5.97
0.46

100.00±0.00
2.05

100.00±0.00
2.45

(3,7) Linear TSTM 71.00±4.32
0.77

77.00±5.07
3.83

93.00±1.96
4.06

Linear STM 79.00±3.38
1.38

98.00±0.07
3.09

98.50±0.06
3.17

LLS-TSTM 70.50±3.97
0.47

99.00±0.04
1.16

100.00±0.00
1.21

(4,7) Linear TSTM 83.50±4.17
0.69

70.50±4.58
2.70

67.50±2.18
2.79

Linear STM 69.50±2.80
0.84

94.50±0.08
3.58

97.50±0.13
5.60

LLS-TSTM 87.00±4.51
0.49

100.00±0.00
1.02

100.00±0.00
2.56

(5,7) Linear TSTM 89.00±4.32
1.07

68.50±3.06
5.40

55.50±0.47
3.58

Linear STM 82.50±3.63
1.29

94.00±0.10
3.90

98.50±0.06
5.04

Table 6: Experiment results of LLS- and NLS-TSTM
on Yale database

Pairs Classifiers acc(%) acc(%) acc(%)

train=1 train=5 train=9

(1,6) NLS-TSTM 95.00±0.28 98.50±0.11 100.00±0.00
LLS-TSTM 84.50±3.19 97.00±0.23 99.00±0.10

(2,5) NLS-TSTM 86.00±4.66 98.50±0.11 100.00±0.00
LLS-TSTM 90.00±3.17 96.50±0.17 98.50±0.06

(2,7) NLS-TSTM 98.00±0.18 100.00±0.00 100.00±0.00
LLS-TSTM 90.00±4.44 100.00±0.00 100.00±0.00

(3,7) NLS-TSTM 82.50±2.85 99.50±0.03 100.00±0.00
LLS-TSTM 79.50±5.97 100.00±0.00 100.00±0.00

(4,7) NLS-TSTM 91.00±1.43 99.50±0.03 100.00±0.00
LLS-TSTM 70.50±3.97 99.00±0.04 100.00±0.00

(5,7) NLS-TSTM 99.00±0.04 100.00±0.00 100.00±0.00
LLS-TSTM 87.00±4.51 100.00±0.00 100.00±0.00

TSTM in general.

5 Conclusion
In this paper, in order to protect the structure infor-
mation of image data, we first propose a tensor ver-
sion extension LLS-TSTM for linear LS-TSVM to
deal with image data classification. In LLS-TSTM,
we seek a pair of nonparallel hyperplanes by solving
4 equalities rather than solving two dual QPPs, which
reduces greatly the computation time of LLS-TSTM
and at the same time protect the classification accu-
racy. It notes that up to now nonlinear classification
methods based on STM are not seen more. In order to
consider the nonlinear extension of LLS-TSTM, we
first introduce a new matrix kernel function and then
suggest a NLS-TSTM algorithm with detailed theoret-
ical derivation by means of the defined matrix kernel
function. In addition, the successive overrelaxation
technique is used to solve QPPs in all algorithms.

In order to check the effectiveness of LLS- and
NLS-TSTM, we perform comparative experiments
with linear TSTM and linear STM on 14 group bi-
nary classification problems taken from ORL and Yale
face databases. From the experiment results in Tables
3-6, we can conclude that for classification accuracy,
NLS-TSTM is more effective than three linear clas-
sifiers and LLS-TSTM is more effective than linear
TSTM and linear STM in general. The computation
time of LLS-TSTM is the fastest. In addition, along
with the increase of the number of training samples,
the classification accuracies of LLS- and NLS-TSTM
are increased obviously.

At present, there are a lot of work to do in this re-
search field, such as, definition method of matrix ker-
nel function, generalization and improvement of algo-
rithms, optimization selection of parameters in mod-
elings and so on.
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