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Abstract: In this paper, we develop a theory of the Fourier integral transforms with piecewise-homogeneous
trigonometric kernels. Formulas for Integral transforms are obtained in a Hermite-type orthogonal polynomials
series form. The resulting formulas are new for both the classical and piecewise- homogeneous cases. In the sec-
ond part of the article method of Hermite-type orthogonal polynomials series expansion is used to solve the direct
and inverse Cauchy problems for the heat equation in a piecewise- homogeneous medium. The inverse Cauchy
problem is ill-posed and requires regularization. Formulas for solving direct and inverse Cauchy problems are
obtained by the developed method and have advantages: first, they do not contain derivatives, can serve as a basis
for regularizing algorithms , and secondly, these formulas are mutually symmetrical.
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1 Introduction

In the first part of the article we prove a new formu-
las for the direct and inverse Fourier integral trans-
forms on the real axis with n contact points. The proof
is based on the theory of orthogonal Hermite poly-
nomials series. In the proof the generating function
for the Hermite polynomials playes the key role. Ini-
tially, authors deduce a new formulas for the Fourier
transforms on the bases of the Hermite-type polyno-
mials series theory. Direct and inverse Fourier inte-
gral transforms are obtained as a series of biorthog-
onal system of Hermite-type polynomials and have a
symmetry. Piecewise-homogeneous analogues of the
Hermite polynomials played a key role in this con-
struction.Then, new formulas for the direct and in-
verse Fourier integral transforms on the real axis with
n contact points are constructed upon the Sturm - Li-
ouville problem with piecewise-constant coefficients.
Hermite- type polynomial is replaced the power func-
tion on its piecewise-homogeneous analog. We prove
the Hermite-type polynomials and Hermite-type func-
tions form a biorthogonal system.

New methods for direct and inverse Fourier in-
tegral transform for piecewise-homogeneous axis are
developed in this article. Solutions of the problems
are obtained in the form of Hermite- type polyno-
mial series. A well-known classical Fourier integral
transform in homogeneous axis are represented in the

form of Dirichlet integral. In this case Dirichlet for-
mula is proved on the basis of classical Fourier inte-
gral trasform method [14]-[16]. For our main results,
we need to develop a Fourier integral trasforms with
discontinuous coefficients and based on them to prove
the expansion theorems in piecewise-homogeneous
axis. Integral transforms with discontinuous coeffi-
cients are appeared in the mathematical literature in
the 70th of the last century in the works of Uflyand
Y.S. [1], Lenuk M.P. [2]; Nayda L.S. [3] , Protsenko
V.S. [4], [7].

Direct and adjoint Sturm-Liouville problems with
inner contact conditions are considered, their solu-
tions serve as a kernels of direct and inverse Fourier
integral transforms with discontinuous coefficients.
Expansion theorems are formulated.

We will use required information from the au-
thor’s work [7]. First note that the structure of in-
tegral transforms with the relevant variables are de-
termined by the type of differential equation and the
kind of environment where the problem is consid-
ered. Therefore decision of integral transforms with
discontinuous coefficients are the problem for math-
ematic modeling in piece-wise homogeneous axis. It
is clear this method is an effective for obtaining the
exact solution of boundary-value problems for piece-
wise homogeneous structures mathematical physics.
In second part of the article the orthogonal Hermite-
type polynomials series are used to solve the direct
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and inverse Cauchy problem for the heat equation in a
piecewise-homogeneous medium. Formulas obtained
by authors for inverse Cauchy problems solving in a
piecewise homogeneous medium have symmetry with
respect to the formulas for the corresponding direct
Cauchy problems. In contrast to the classical formu-
las for the solution of the inverse Cauchy problem, the
derivatives are not involved into new formulas. Thus,
the new formulas for the inverse problems solving can
serve as a basis for regularizing computational algo-
rithms.

2 Integral Fourier transforms at the
real axis

In order to prove the new formulas of direct and in-
verse Fourier transforms, we use well-known theorem
[6] on the decomposition of functions into a Hermite
polynomials series.

Theorem 1 If f (x) ∈ L2 (−∞,∞), then then for
each α > 0 this function can be expanded into Her-
mite polynomials series

f (x) =
exp

(
− x2

8α

)
2
√
πα

∞∑
j=0

1

2jj!
Hj

(
x

2
√
α

)
fj ,

with coefficients:

fj =

∫ ∞

−∞
exp

(
− ξ

2

8α

)
Hj

(
ξ

2
√
α

)
f (ξ) dξ.

Now we can prove a new formula for the Fourier
transform.

Theorem 2 Let f (x) ∈ L2 (−∞,∞)

F (λ) =

∫ ∞

−∞
e−iλxf (x) dx (1)

integral Fourier transform for f (x), then

F (λ) = 4
√
πα exp

(
−4λ2α

)
·

·
∞∑
j=0

ei
π
2
jfj
j!

(
2
√
α
)j
Hj
(
2
√
αλ
)
, (2)

where

fj =
∑

0≤2m≤j

C2m
j

(16α)2m
f (j−2m) (0).

Proof. Let function

e
x2

16α f (x)

can be expanded into Taylor series for x ∈ (−∞,∞)

e
x2

16α f (x) =
∞∑
j=0

fj
j!
xj ,

and

fj =

(
e

x2

16α f (x)

)(j)

(0)

=
∑

0≤2k≤j

(
j
2p

)
(2p)!

(16α)2p
f (j−2p)(0),

then α−any positive. Substitute last formula in (1):

F (λ) =

∫ ∞

−∞
e−

x2

16α e−iλx
∞∑
j=0

fj
j!
xjdx

Using the known formula of [6]∫ ∞

−∞
e−

x2

16α e−iλxxjdx = 4
√
πα exp

(
−4λ2α

)
·

·ei
π
2
j (2√α)j Hj

(
2
√
αλ
)

as a result we obtain a new formula for the Fourier
image

F (λ) = 4
√
πα exp

(
−4λ2α

)
·

·
∞∑
j=0

ei
π
2
jfj
j!

(
2
√
α
)j
Hj
(
2
√
αλ
)
, (3)

where

fj =

(
e

x2

16α f (x)

)(j)

(0) .

Thus, formula (2) gives the Fourier transform in Her-
mite functions series form. Coefficients in (2) contain
derivatives of the original at the point x = 0.

Based on Theorem 1, we prove another formula
for the direct Fourier transform. The formula we ob-
tain in Theorem 3, in contrast to (2) does not contain
derivatives.

Theorem 3 Let f (x) ∈ L2 (−∞,∞)

F (λ) =

∫ ∞

−∞
e−iλxf (x) dx (4)

integral Fourier transform for f (x), then

F (λ) =
√
2e−2λ2α

∞∑
j=0

ij

2jj!
Hj
(
2
√
αλ
)
fj ,

where

fj =

∫ ∞

−∞
exp

(
− ξ

2

8α

)
Hj

(
ξ

2
√
α

)
f (ξ) dξ.
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Proof. From Theorem 2

F (λ) =

∫ ∞

−∞
e−iλxf (x) dx

=

∫ ∞

−∞
e−iλx

exp
(
− x2

8α

)
2
√
πα

·

·
∞∑
j=0

1

2jj!
Hj

(
x

2
√
α

)
fjdx,

where

fj =

∫ ∞

−∞
exp

(
− ξ

2

8α

)
Hj

(
ξ

2
√
α

)
f (ξ) dξ.

Hermite functions e−
x2

2 Hj (x) , j = 0, 1, ... are
Fourier eigenfunctions with eigenvalues

cj =
√
2πij , j = 0, 1, ...,

so finally we have

F (λ) =
√
2e−2λ2α

∞∑
j=0

ij

2jj!
Hj
(
2
√
αλ
)
fj .

This is desired. ⊓⊔
Next, in Theorem 4 we shall prove a new formula

for the inverse Fourier transform. Note that the well-
known formula for the inverse Fourier transform (1)
has the form:

f (x) =
1

2π

∫ ∞

−∞
eiλxF (λ) dλ.

Reasoning as in the proof of Theorems 2 and 3 lead to
a new inverse Fourier formula.

Theorem 4 Let f (x) ∈ L2 (−∞,∞) and F (λ) its
integral Fourier transform. Then the inverse formula

f (x) =
exp

(
− x2

4α

)
2
√
πα

∞∑
j=0

ei
π
2
j

(2
√
α)

j
j!
Hj

(
x

2
√
α

)
Fj

holds true, where

eλ
2αF (λ) =

∞∑
j=0

Fj

j! λ
j , (5)

Fj =
(
eλ

2αF (λ)
)(j)

(0) =

=
∑

0≤2s≤j
C2s
j α

2sF (j−2s) (0) .

Corollary 5 If

mj =

∫ ∞

−∞
xjf (x) dx (6)

j− moment of function f (x), then the solution of the
moment problem has the form

f (x) =
exp

(
− x2

4α

)
2
√
πα

∞∑
j=0

(−1)j

(2
√
α)

j
j!
Hj

(
x

2
√
α

)
·

·
∑

0≤2s≤j
(−1)sC2s

j α
2sm2s−j .

Example 1. If

F (λ) = e−λ
2αλm,m = 0, 1, ...,

then due to (13), we obtain the value of the original

f (x) =
exp

(
− x2

4α

)
2
√
πα

ei
π
2
m

(2
√
α)

mHm

(
x

2
√
α

)
.

In conclusion of this section we give next new formula
for the Fourier inversion.

Theorem 6 Let f (x) ∈ L2 (−∞,∞) and F (λ) its
integral Fourier transform then the Fourier inversion
formula

f(x) =
1

π
√
2
e−

x2

8α

∞∑
j=0

e−i
π
2
m

2jj!
Hj

(
x

2
√
α

)
Fj ,

holds true, where

Fj =

∫ ∞

−∞
exp

(
−2λ2α

)
Hj
(
2
√
αλ
)
F (λ) dλ.

3 Fourier integral transforms with
non- separated variables. New ex-
pansion theorems

The author’s has proposed integral transforms with
non-separated variables for solving multidimensional
problems [7]. Let V from Rn+1 be the half-space

V =
{
(y1, ..., yn, x) ∈ Rn+1 : x > 0

}
,

then solution of the Dirichlet’s problem for the half-
space is expressed by Poisson formula: [17]

u(x, y) = Γ

(
n+ 1

2

)
π−

n+1
2 ·
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·
∫
y=0

x[
(y − η)2 + x2

]n+1
2

f(η)dη.

Obviously Poisson’s kernel has the form of integral
Laplace transform:

Γ

(
n+ 1

2

)
π−

n+1
2

x[
x2 + (y − η)2

]n+1
2

=

=

(
1

2π

)n
2
∫ ∞

0
λ

n
2 e−λx

Jn−1
2

(λ |y − η|)

|y − η|
n−2
2

dλ,

here Jν is Bessel’s function of order ν [18]. Repro-
duce property of the Poisson kernel is obtained from
the expansion of the function f(y) by the Laplace op-
erator ∆ eigenfunctions:

f(y) =

∞∫
0

λ
n
2(√
2π
)n ∫

Rn

Jn−2
2

(λ |y − η|)

|y − η|
n−2
2

f (η) dηdλ.

(7)
On the basis of this expansion we may conclude that
integral transforms with non- separated variables are
defined as follows [19]:

Direct integral Fourier transform has the form

F [f ] (y, λ) ≡ f̂ (y, λ) =

=
1(√
2π
)n ∫

Rn

Jn−2
2

(λ |y − η|)

|y − η|
n−2
2

f (η) dη, (8)

inverse Fourier integral transform has the form

F−1[f̂ ](y) =

∞∫
0

λ
n
2 f̂(y;λ)dλ ≡ f(y). (9)

Now we get new formula. To do this, formula (7)
can be written in the form

f (y) =

√
2

π

1

(
√
2π)n

∫ ∞

0
e−λ

2βλn−1·

·
∫
Rn
eλ

2βjn−2
2
(λ|y − η|)f (η) dηdλ,

where β > 0, jα(z) =
√

2
π
Jα(z)
zα .

Use a Taylor series expansion with respect to λ

eλ
2βjα(λx) =

∞∑
j=0

(−1)jλ2j

(2j)!
βjHα

2j

(
x

2
√
β

)
. (10)

where

Hα
2j(x) =

j∑
p=0

(−1)j−p(2j)!
2α+

1
2 (j − p)!Γ(2j + α+ 3

2)
(2x)2j .

In view of (10) we get

f (y) =

√
2

π

1

(
√
2π)n

∫ ∞

0
e−λ

2βλn−1·

·
∫
Rn

∞∑
j=0

(−1)jλ2j

(2j)!
βjHα

2j

( |y − η|
2
√
β

)
f (η) dηdλ,

To simplify last formula, we change the order of
integration and compute the inner integral with re-
spect to λ. Then we get new analytical representation
for f(x)

f(y) =
∞∑
j=0

(−1)j Γ(n2 + j)

(2j)!
f2j , (11)

where

f2j =
1

(
√
2π)n+1β

n
2

∫
Rn
Hα

2j

( |y − η|
2
√
β

)
f (η) dη,

Γ-gamma function [20].

4 Vector Fourier transform with dis-
continuous coefficients

Let’s develop the method of vector Fourier transform
for the solution this problem. Let’s consider Sturm–
Liouville vector theory [7] about a design bounded on
the set of nontrivial solution of separate simultaneous
ordinary differential equations with constant matrix
coefficients(

A2
m

d2

dx2
+ λ2E

)
ym = 0,m = 1, n+ 1, (12)

where E-unit matrix size r× r. On the boundary con-
ditions

∥y1∥ |x=−∞ < ∞, ∥yn+1∥ |x=∞ < ∞ (13)

and conditions of the contact in the points of conjuga-
tion of intervals((

αkj1 + λ2δkj1

) d

dx
+
(
βkj1 + λ2γkj1

))
yk =

=

((
αkj2 + λ2δkj2

) d

dx
+
(
βkj2 + λ2γkj2

))
yk+1,

(14)
x = lk, k = 1, n, j = 1, 2.,

where

ym (x, λ) =

 y1m (x, λ)
...
yrm (x, λ)

 ,
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∥ym∥ =
√
y21m + ...+ y2rm, m = 1, n+ 1.

For some λ, the boundary problem under considera-
tion has a nontrivial solution

y (x, λ) =
n+1∑
k=1

θ (x− lk−1) θ (lk − x) yk (x, λ) .

The number λ is called an Eigenvalue in this case, and
the corresponding decision y (x, λ) is called vector-
valued Eigenfunction.

α0
11, β

0
11, γ

0
11, δ

0
11, α

k
ji, β

k
ji, γ

k
ji, δ

k
ji, Aj−

are matrices of the size r× r. We shall require invert-
ibility

det Mmk ̸= 0, λ ∈ (−∞,∞) (15)

for matrixes

Mmk ≡
(
βk1m + λ2γk1m αk1m + λ2δk1m
βk2m + λ2γk2m αk2m + λ2δk2m

)
,

m = 1, 2; k = 1, n.

Matrices A2
m, m = 1, n+ 1, are positive-defined

[21]. We denote

Φn+1 (x) = eqn+1xi; Ψn+1 (x) = e−qn+1xi .

q2n+1 = λ2A−2
n+1.

Define the induction relations the others n-pairs a
matrix-importance functions (Φk,Ψk) , k = 1, n :[(

αkj1 + λ2δkj1

) d

dx
+
(
βkj1 + λ2γkj1

)]
(Φk,Ψk) =

[(
αkj2 + λ2δkj2

) d

dx
+
(
βkj2 + λ2γkj2

)]
(Φk+1,Ψk+1) ,

(16)
k = 1, n, j = 1, 2

Let us introduce the following notation

Ωk =

(
Φk Ψk

Φ
/
k Ψ

/
k

)
, i = 1, n+ 1.

Theorem 7 The spectrum of the problem (12), (13),
(14) is a continuous and fills all axis (−∞,∞).
Sturm–Liouville theory r time is degenerate. To each
Eigenvalue λ corresponds to exactly r linearly inde-
pendent vector-valued functions. As the last it is pos-
sible to take r columns matrix-importance functions.

v (x, λ) =
n+1∑
k=1

θ (x− lk−1) θ (lk − x) vk (x, λ) ,

vj (x, λ) = Ψj (x, λ) . (17)

That is

ym (x, λ) =

 v1m (x, λ)
...
vrm (x, λ)

 .
Dual Sturm–Liouville theory consists in a finding

of the non-trivial solution of separate simultaneous or-
dinary differential equations with constant matrix co-
efficients.(

A2
m

d2

dx2
+ λ2E

)
y∗m = 0, ,m = 1, n+ 1 (18)

on the boundary conditions

∥y∗1∥ < ∞,
∥∥y∗n+1

∥∥ < ∞, (19)

and conditions of the contact in the points of conjuga-
tion of intervals(
− d

dx
y∗k, y

∗
k

)(
βk11 + λ2γk11 αk11 + λ2δk11
βk21 + λ2γk21 αk21 + λ2δk21

)−1

=

(
− d

dx
y∗k+1, y

∗
k+1

)
·

·
(
βk12 + λ2γk12 αk12 + λ2δk12
βk22 + λ2γk22 αk22 + λ2δk22

)−1

, (20)

x = lk, k = 1, n

The solution of the boundary value problem we write
in the form of

y∗ (ξ, λ) =
n+1∑
k=1

θ (ξ − lk−1) θ (lk − ξ) y∗k (ξ, λ) ,

y∗m (ξ, λ) =
(
y∗m1 (ξ, λ) · · · y∗mr (ξ, λ)

)
,

∥y∗m∥ =
√
(y∗1m)

2 + ...+ (y∗rm)
2,m = 1, n+ 1.

Theorem 8 The spectrum of the problem (18), (19),
(20) is a continuous and fills axis (−∞,∞). Sturm–
Liouville theory r time is degenerate. To each Eigen-
value λ corresponds to exactly r linearly independent
vector-valued functions. As the last it is possible to
take r rows matrix-importance functions.

v∗ (x, λ) =
n+1∑
k=1

θ (x− lk−1) θ (lk − x) v∗k (x, λ) ,

v∗j (x, β) = (E, 0) Ω−1
j (x, β)

(
0
E

)
A−2
j ,

That is

y∗j (ξ, λ) =
(
v∗j1 (ξ, λ) · · · v∗jr (ξ, λ)

)
, j = 1, r.

(21)
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The existence of spectral functions u (x, λ) and
the conjugate spectral function u∗ (x, λ) allows to
write the a vector decomposition theorem on the set
of I+n .

Theorem 9 Let the vector-valued function f(x) be
defined on In continuous, absolutely integrated and
have the bounded total variation. Then for any x ∈ In
the following formula decomposition is true:

f (x) = − 1

πi

∞∫
−∞

v (x, λ) (

∞∫
−∞

v∗ (ξ, λ) f (ξ) dξ+

+
n∑
k=1

(E, 0) Ω−1
k (lk, λ) M

−1
k1 (λ) ·(N2 −N1))λdλ,

Ni =

(
γk1+i1 δk1+i1
γk1+i2 δk1+i2

) (
fk+i−1 (lk)
f ′k+i−1 (lk)

)
. (22)

The decomposition theorem allows to enter the di-
rect and inverse matrix integral Fourier transform on
the real axis with conjugation points:

Fn [f ] (λ) ≡ f̃ (λ) =
∞∫

−∞

v∗ (ξ, λ) f (ξ) dξ+

+
n∑
k=1

(E, 0) Ω−1
k (lk, λ) M

−1
k1 (λ) ·(N2 −N1) (23)

and

F−1
n

[
f̃
]
(x) = − 1

πi

∞∫
−∞

λv (x, λ) f̃ (λ) dλ, (24)

when

f (x) =
n+1∑
k=1

θ (lk − x) θ (x− lk−1) fk (x) .

Let’s result the basic identity of integral transform
of the differential operator

B =
n∑
j=1

θ (x− lj−1) θ (lj − x)A2
j

d2

dx2
.

Theorem 10 If vector-valued function

f (x) =
n+1∑
k=1

θ (x− lk−1) θ (lk − x) fk (x) ,

is three times continuously differentiable on the set,
and the limit values together with its derivatives up

to the third order inclusive satisfies to the boundary
condition on infinity

lim
x→∞

(
u∗ (x, λ)

d

dx
f (x)− d

dx
u∗ (x, λ) f (x)

)
= 0

and homogeneous conditions of conjugation (14), that
basic identity of integral transform of the differential
operator B hold

Fn [B (f)] (λ) = −λ2f̃ . (25)

The proofs of Theorems 7–10 are spent by a
method of the method of contour integration. Simi-
larly presented to work of the author [7].

5 Piece-wise homogeneous analogues
of Hermite polynomials and Her-
mite functions

Definition 11 Right and left analogs of power func-
tion are defined by formulas

ξ∗kn = ikDk
λv

∗ (ξ, 0) , xkn = (−i)kDk
λv (x, 0) .

respectively.

The function eλ
2βv∗ (ξ, λ) is a generating func-

tion for Hermite polynomials [6] with piece-wise con-
stants coefficients, this means that

eλ
2βv∗ (ξ, λ) =

∞∑
j=0

(−iλ)j

j!
H∗
j,n (ξ, β) . (26)

Definition 12 The Hermite piece-wise polynomials
are called the the sequence of functions H∗

j,n(z, β)
from (26).

In the homogeneous case

v∗ (ξ, λ) = e−iλξ,

H∗
j,0(ξ, β) = β

j
2Hj

(
ξ

2
√
β

)
,

where Hj(z) is classical Hermite polynomial [6].
Expansion of piece-wise homogeneous analogues of
Hermite polynomials on the right piece-wise ana-
logues of the power function is followed from Defi-
nitions 11 and 12.

Theorem 13 If

H∗
j,0(ξ, β) =

j∑
k=0

hk,jξ
k
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is an expansion of Hermite polynomial with respect to
ξ, then for their piece-wise analogues H∗

j,n(ξ, β), the
representation

H∗
j,n(ξ, β) =

j∑
k=0

hk,jξ
∗k
n

is true.

Definition 14 For each fixed j = 0, 1, 2, ..., we
define a piece-wise analogue of Hermite function
Hj,n (x, β) , j = 0, 1, 2, ... as follows:

1

2π

∫ ∞

−∞
(−iλ)je−λ2βv (x, λ) dλ = Hj,n (x, β) .

(27)

In the homogeneous case, we have

v (x, λ) = eiλx,

Hj,0 (x, β) =
e
− x2

4(β)

2
√
πβ

1

(2
√
β)j

Hj

(
x

2
√
β

)
,

where Hj(z) is classical Hermite polynomial [6]. Ex-
pansion of piece-wise analogues of Hermite polyno-
mials on the left piece-wise analogues of the power
function is followed From Definitions 11 and 12.

Theorem 15 If

Hj,0(x, β) =
∞∑
k=0

hk,jx
k

is the expansion of the Hermite function into Taylor
series with respect to x , then for its piece-wise ana-
logue Hj,n(x, β), the representation

Hj,n(x, β) =
∞∑
k=0

hk,jx
k
n.

holds true.

Theorem 16 System of functions Hj,n(x, β),
H∗
k,n(x, β) is biorthogonal, i.e.,∫ ∞

−∞
Hj,n(x, β)H

∗
k,n(x, β)dx = δj,k.

Proof. Consider the integral∫ ∞

−∞
Hj,n(x, β)e

s2βv∗ (ξ, s) dx

=

∫ ∞

−∞

1

2π

∫ ∞

−∞
(−iλ)je−λ2β ·

· v (x, λ) dλes2βv∗ (x, s) dx.

Changing the order of integration and applying the de-
composition theorem, we obtain the equality∫ ∞

−∞
Hj,n(x, β)e

s2βv∗ (ξ, s) dx = (−is)j .

To complete the proof we use equation (27) and the
uniqueness of Taylor’s expansion. The theorem is
proved. ⊓⊔

6 New expansion theorems

We use the well-known expansion theorem for func-
tion f (x) in Fourier integral form [7]:

f (x) =
1

2π

∫ ∞

−∞
v (x, λ) ·

·
(∫ ∞

−∞
v∗ (ξ, λ) f (ξ) dξ

)
dλ. (28)

Write the last equality in the form

f (x) =
1

2π

∫ ∞

−∞
e−λ

2βv (x, λ) ·

·
(∫ ∞

−∞
eλ

2βv∗ (ξ, λ) f(ξ)dξ

)
dλ, (29)

where β > 0.
In accordance with (26), formula (29) takes the

form
f (x) =

1

2π

∫ ∞

−∞
e−λ

2βv (x, λ) ·

·
∞∑
j=0

(−iλ)j

j!

∫ ∞

−∞
H∗
j,n (ξ, β) f (ξ) dξdλ.

Then we use definition 12 and finally get new analyt-
ical representation at the point x

f(x) =
∞∑
j=0

Hj,n (x, β)
fj
j!
, (30)

where
fj =

∫ ∞

−∞
H∗
j,n (ξ, β) f (ξ) dξ.

We get a new expansion theorem. Classical expansion
theorem takes the form

f (x) =
1

2π

∫ ∞

−∞
eλ

2τv (x, λ) ·

·
(∫ ∞

−∞
v∗ (ξ, λ) u (τ, ξ) dξ

)
dλ.

If β > 0, then the last formula takes the form

f (x) =
1

2π

∫ ∞

−∞
e−λ

2βeλ
2βv (x, λ) ·
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·
(∫ ∞

−∞
v∗ (ξ, λ) u (τ, ξ) dξ

)
dλ. (31)

Because of formula (26) we get

f (x) =
1

2π

∫ ∞

−∞
e−λ

2βv (x, λ) ·

·
∞∑
j=0

(−iλ)j

j!

∫ ∞

−∞
H∗
j,n (ξ, β) f (ξ) dξdλ.

We shall change the order of integration and cal-
culate the inner integral with respect to λ. On the basis
of (27) we can write

1

2π

∫ ∞

−∞
(−iλ)je−λ2βv (x, λ) dλ = Hj,n (x, β) .

Finally, second new expansion theorem takes the
form

f(x) =
∞∑
j=0

Hj,n (x, β)
fj
j!
, (32)

where
fj =

∫ ∞

−∞
H∗
j,n (ξ, β) f (ξ) dξ.

Now we get third new formula. To do this, formula
(28) can be written in the form

f (x) =
1

2π

∫ ∞

−∞
e−λ

2β·

·
(∫ ∞

−∞
eλ

2βv (x, λ) v∗ (ξ, λ) f (ξ) dξ

)
dλ,

where β > 0.
Use a Taylor series expansion with respect to λ

eλ
2βv (x, λ) v∗ (ξ, λ) =

∞∑
j=0

(−iλ)j

j!
Hj,n (x, ξ, β) .

(33)
In the homogeneous case we have

v(x, λ)v∗ (ξ, λ) = e−iλ(ξ−x),

Hj,n(x, ξ, β) = β
j
2Hj

(
ξ − x
2
√
β

)
,

where Hj(z) is the classical Hermite polynomial.
Let

Hj,0(ξ−x, β) =
j∑

k=0

hk,j
∑

α+β=k

(−1)β (α+ β)!

α!β!
ξαxβ

be Hermite polynomial expansion on powers ξ, x.
Then for their piece-wise homogeneous analogues

Hj,n(ξ, x, β), so called Hermite-type polynomials, we
have the representation

Hj,n(ξ, x, β) =
j∑

k=0

hk,j
∑

α+β=k

(−1)β (α+ β)!

α!β!
ξ∗αn xβn.

In view of (10) we get

f (x) =
1

2π

∫ ∞

−∞
e−λ

2β
∞∑
j=0

(−iλ)j

j!
·

·
∫ ∞

−∞
Hj,n (x, ξ, β) f (ξ) dξdλ.

To simplify last formula, we change the order of
integration and compute the inner integral with re-
spect to λ, substitute x = 0 in (33). Then

1

2π

∫ ∞

−∞
(−iλ)je−λ2βdλ =

1

(2
√
β)j+1

Hj (0) . (34)

Taking into account the known formula from [6]

H2j (0) =
(−1)n (2n)!

2nn!
,H2j+1 (0) = 0. (35)

we get finally new analytical representation for f(x)

f(x) =
∞∑
j=0

1

(2
√
β)2j+1

(−1)j f2j
2jj!

, (36)

where

f2j =

∫ ∞

−∞
H2j,n (x, ξ, β) f (ξ) dξ.

7 Cauchy problem for the heat equa-
tion.

For solution u (τ, x) of Cauchy problem [7],[8],[10]
with the initial thermal field f (x) for an piece-wise
homogeneous infinite bar, we shall get as Hermite-
type polynomial series. In order to get this result,
we use the well-known analytic solution u (τ, x) in
Fourier integral form [7]:

u (τ, x) =
1

2π

∫ ∞

−∞
e−λ

2τv (x, λ) ·

·
(∫ ∞

−∞
v∗ (ξ, λ) f (ξ) dξ

)
dλ, (37)

where f (x) is the initial thermal field, u (τ, x) is ther-
mal field at time τ and in the point x.
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Write the last equality in the form

u (τ, x) =
1

2π

∫ ∞

−∞
e−λ

2(τ+β)v (x, λ) ·

·
(∫ ∞

−∞
eλ

2βv∗ (ξ, λ) f(ξ)dξ

)
dλ, (38)

where β > 0.
In accordance with (26), formula (38) takes the

form

u (τ, x) =
1

2π

∫ ∞

−∞
e−λ

2(τ+β)v (x, λ) ·

·
∞∑
j=0

(−iλ)j

j!

∫ ∞

−∞
H∗
j,n (ξ, β) f (ξ) dξdλ.

Then we use definition 12 and finally get new analyt-
ical representation for the thermal field in time τ and
at the point x

u(τ, x) =
∞∑
j=0

Hj,n (x, τ + β)
fj
j!
, (39)

where
fj =

∫ ∞

−∞
H∗
j,n (ξ, β) f (ξ) dξ.

Now we get the second new formula. To do this,
formula (38) can be written in the form

u (τ, x) =
1

2π

∫ ∞

−∞
e−λ

2(τ+β)·

·
(∫ ∞

−∞
eλ

2βv (x, λ) v∗ (ξ, λ) f (ξ) dξ

)
dλ,

where β > 0.
Use a Taylor series expansion with respect to λ

eλ
2βv (x, λ) v∗ (ξ, λ) =

∞∑
j=0

(−iλ)j

j!
Hj,n (x, ξ, β) .

(40)
In the homogeneous case, we have

v(x, λ)v∗ (ξ, λ) = e−iλ(ξ−x),

Hj,n(x, ξ, β) = β
j
2Hj

(
ξ − x
2
√
β

)
,

where Hj(z) is the classical Hermite polynomial.
Let

Hj,0(ξ−x, β) =
j∑

k=0

hk,j
∑

α+β=k

(−1)β (α+ β)!

α!β!
ξαxβ

be Hermite polynomial expansion on powers ξ, x.
Then for their piece-wise homogeneous analogues

Hj,n(ξ, x, β), so called Hermite-type polynomials, we
have the representation

Hj,n(ξ, x, β) =
j∑

k=0

hk,j
∑

α+β=k

(−1)β (α+ β)!

α!β!
ξ∗αn xβn.

In view of (10) we get

u (τ, x) =
1

2π

∫ ∞

−∞
e−λ

2(τ+β)·

·
∞∑
j=0

(−iλ)j

j!

∫ ∞

−∞
Hj,n (x, ξ, β) f (ξ) dξdλ.

To simplify last formula, we change the order of inte-
gration and compute the inner integral with respect to
λ, substitute x = 0. Then

1

2π

∫ ∞

−∞
(−iλ)je−λ2(τ+β)dλ =

1

(2
√
τ + β)j+1

Hj (0) .

(41)
Taking into account the well-known formula from [6]

H2j (0) =
(−1)n (2n)!

2nn!
, H2j+1 (0) = 0, (42)

we get new analytical representation for thermal field
in piecewise-homogeneous bar

u(τ, x) =
∞∑
j=0

1

(2
√
τ + β)2j+1

(−1)j f2j
2jj!

, (43)

where

f2j =

∫ ∞

−∞
H2j,n (x, ξ, β) f (ξ) dξ.

8 Inverse Cauchy problem for the
heat equation

.
The inverse problem [10]-[13] for the heat equa-

tion of an infinite bar is to find the unknown initial
distribution f (x) of thermal field by the known ther-
mal field u (τ, x). This problem leads to the solving
of first type Fredholm integral equation [23]:∫ ∞

−∞

1

2
√
πτ

exp

(
−(x− ξ)2

4τ

)
f (ξ) dξ = u (τ, x) .

(44)
The left side of equation (44) is the Poisson integral,
[23]. As it is shown in [23] the solution of equation
(44) is:

f (x) =
1√
π

∞∑
j=0

u(j) (0)

(2
√
τ)
n+1

j!
Hj

(
x

2
√
τ

)
, (45)

WSEAS TRANSACTIONS on MATHEMATICS Oleg Yaremko, Vladimir Selutin, Natalia Yaremko

E-ISSN: 2224-2880 623 Volume 13, 2014



where Hj (z) is the Hermite polynomials [22].
Formula (45) contains a derivatives of an arbitrar-

ily high order so formula (45) can’t serve as a basis
for the regularizing computational algorithm. Con-
sequently it is actual to find new formulas without
derivatives for solution of equation (44).

We obtain two new formulas. We get a solution
of equation (44) by Fourier integral transform method,
see [6]-[7],

f (x) =
1

2π

∫ ∞

−∞
eλ

2τv (x, λ) ·

·
(∫ ∞

−∞
v∗ (ξ, λ) u (τ, ξ) dξ

)
dλ.

If β > 0, then the last formula takes the form

f (x) =
1

2π

∫ ∞

−∞
e−λ

2βeλ
2(τ+β)v (x, λ) ·

·
(∫ ∞

−∞
v∗ (ξ, λ) u (τ, ξ) dξ

)
dλ. (46)

Because of formula (26) we get

f (x) =
1

2π

∫ ∞

−∞
e−λ

2βv (x, λ) ·

·
∞∑
j=0

(−iλ)j

j!

∫ ∞

−∞
H∗
j,n (ξ, τ + β)u (τ, ξ) dξdλ.

We shall change the order of integration and cal-
culate the inner integral with respect to λ. We can
write

1

2π

∫ ∞

−∞
(−iλ)je−λ2βv (x, λ) dλ = Hj,n (x, β) .

Finally, first new formula for the initial thermal field
takes the form

f(x) =
∞∑
j=0

Hj,n (x, β)
uj
j!
, (47)

where

uj =

∫ ∞

−∞
H∗
j,n (ξ, τ + β)u (τ, ξ) dξ.

Finally, we shall prove the second new formula
for solution of inverse Cauchy problem.

We use (45) which can be written as

f (x) =
1

2π

∫ ∞

−∞
e−λ

2βeλ
2(τ+β)·

·
(∫ ∞

−∞
v (x, λ) v∗ (ξ, λ) u (τ, ξ) dξ

)
dλ,

where β > 0.
Thank to (26), we get

f (x) =
1

2π

∫ ∞

−∞
e−λ

2β·

·
∞∑
j=0

(−iλ)j

j!

∫ ∞

−∞
Hj,n (x, ξ, τ + β)u (τ, ξ) dξdλ.

If we use formula (34), then the initial distribution of
thermal field takes the form

f(x) =
∞∑
j=0

1

(2
√
β)2j+1

(−1)j u2j
2jj!

, (48)

where

uj =

∫ ∞

−∞
Hj,n (x, ξ, τ + β)u (τ, ξ) dξ.
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