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Abstract: In this paper, we develop a theory of the Fourier integral transforms with piecewise-homogeneous
trigonometric kernels. Formulas for Integral transforms are obtained in a Hermite-type orthogonal polynomials
series form. The resulting formulas are new for both the classical and piecewise- homogeneous cases. In the sec-
ond part of the article method of Hermite-type orthogonal polynomials series expansion is used to solve the direct
and inverse Cauchy problems for the heat equation in a piecewise- homogeneous medium. The inverse Cauchy
problem is ill-posed and requires regularization. Formulas for solving direct and inverse Cauchy problems are
obtained by the developed method and have advantages: first, they do not contain derivatives, can serve as a basis
for regularizing algorithms , and secondly, these formulas are mutually symmetrical.
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1 Introduction

In the first part of the article we prove a new formu-
las for the direct and inverse Fourier integral trans-
forms on the real axis with n contact points. The proof
is based on the theory of orthogonal Hermite poly-
nomials series. In the proof the generating function
for the Hermite polynomials playes the key role. Ini-
tially, authors deduce a new formulas for the Fourier
transforms on the bases of the Hermite-type polyno-
mials series theory. Direct and inverse Fourier inte-
gral transforms are obtained as a series of biorthog-
onal system of Hermite-type polynomials and have a
symmetry. Piecewise-homogeneous analogues of the
Hermite polynomials played a key role in this con-
struction.Then, new formulas for the direct and in-
verse Fourier integral transforms on the real axis with
n contact points are constructed upon the Sturm - Li-
ouville problem with piecewise-constant coefficients.
Hermite- type polynomial is replaced the power func-
tion on its piecewise-homogeneous analog. We prove
the Hermite-type polynomials and Hermite-type func-
tions form a biorthogonal system.

New methods for direct and inverse Fourier in-
tegral transform for piecewise-homogeneous axis are
developed in this article. Solutions of the problems
are obtained in the form of Hermite- type polyno-
mial series. A well-known classical Fourier integral
transform in homogeneous axis are represented in the
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form of Dirichlet integral. In this case Dirichlet for-
mula is proved on the basis of classical Fourier inte-
gral trasform method [14]-[16]. For our main results,
we need to develop a Fourier integral trasforms with
discontinuous coefficients and based on them to prove
the expansion theorems in piecewise-homogeneous
axis. Integral transforms with discontinuous coeffi-
cients are appeared in the mathematical literature in
the 70th of the last century in the works of Uflyand
Y.S. [1], Lenuk M.P. [2]; Nayda L.S. [3] , Protsenko
V.S. [4], [7].

Direct and adjoint Sturm-Liouville problems with
inner contact conditions are considered, their solu-
tions serve as a kernels of direct and inverse Fourier
integral transforms with discontinuous coefficients.
Expansion theorems are formulated.

We will use required information from the au-
thor’s work [7]. First note that the structure of in-
tegral transforms with the relevant variables are de-
termined by the type of differential equation and the
kind of environment where the problem is consid-
ered. Therefore decision of integral transforms with
discontinuous coefficients are the problem for math-
ematic modeling in piece-wise homogeneous axis. It
is clear this method is an effective for obtaining the
exact solution of boundary-value problems for piece-
wise homogeneous structures mathematical physics.
In second part of the article the orthogonal Hermite-
type polynomials series are used to solve the direct
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and inverse Cauchy problem for the heat equation in a
piecewise-homogeneous medium. Formulas obtained
by authors for inverse Cauchy problems solving in a
piecewise homogeneous medium have symmetry with
respect to the formulas for the corresponding direct
Cauchy problems. In contrast to the classical formu-
las for the solution of the inverse Cauchy problem, the
derivatives are not involved into new formulas. Thus,
the new formulas for the inverse problems solving can
serve as a basis for regularizing computational algo-
rithms.

2 Integral Fourier transforms at the
real axis

In order to prove the new formulas of direct and in-
verse Fourier transforms, we use well-known theorem
[6] on the decomposition of functions into a Hermite
polynomials series.

Theorem 1 If f (z) € Lo (—00,00), then then for
each a > 0 this function can be expanded into Her-
mite polynomials series

(£

1 (572)

with coefficients:

fi= /O:O exp <_§i> H; <2\§/&) f(&)dE.

Now we can prove a new formula for the Fourier
transform.

Theorem 2 Let f (x) € Ly (—00, 00)
FO)= [ e (@)da (1)
integral Fourier transform for f (x), then

F(A ):4\/ﬁexp (—4)\2 )
Z f” (2va)’ H; (2Va)), ()

7=0
where
cm
fi= > LU0
0<2m<j (16a)™™
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Proof. Let function

et f (2)

can be expanded into Taylor series for z € (—o0, 00)
i f (2) = 3 11,
J]:

and

- ¥

0<2k<;j

j 2p)! ~
(3 ) s o)

then a—any positive. Substitute last formula in (1):

F()\):/ e 16ae “\xzf]:vjd:c

—0 ]0

Using the known formula of [6]
00 22 ) )
/ e 16a e Myl dr = 4y/Taexp (—4)\2(1) :
—00
¢'57 (2v/a)! H; (2v/a))

as a result we obtain a new formula for the Fourier
image

F(\) = 4ymaexp (—4>\2 )
> ]ff (2/a)’ H, (2/a) . 3)
Jj=0 )
where

2 (4)
f=(efor@) .
Thus, formula (2) gives the Fourier transform in Her-
mite functions series form. Coefficients in (2) contain
derivatives of the original at the point z = 0.

Based on Theorem 1, we prove another formula
for the direct Fourier transform. The formula we ob-
tain in Theorem 3, in contrast to (2) does not contain
derivatives.

Theorem 3 Let f (z) € Lo (—00,00)
F(\) = / T e f(z)dx 4)

integral Fourier transform for f (x), then

F(}\ —2)\204 Z 2] ' 2\/>)\) f],

where

ﬁz[im{}i)ﬂ(sgwﬁwa
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Proof. From Theorem 2

oo .
F(\) = / e~ f (1) dur
—00
_z?
_ /oo e—i)\xeXp< 80‘) .
oo 2\/To
=1 x
= 25! 2y/a
where
| = ex
fi= [ e (57) £ e
12
Hermite functions e~ 2 H;(z),j = 0,1,... are
Fourier eigenfunctions with eigenvalues
cj=V2mid, j=0,1,..,
so finally we have
—2)\2a
F(\) = Z %H (2Val) f;
This is desired. O

Next, in Theorem 4 we shall prove a new formula
for the inverse Fourier transform. Note that the well-
known formula for the inverse Fourier transform (1)
has the form:

1

o) = o

/ EATF (M) dA.

Reasoning as in the proof of Theorems 2 and 3 lead to
a new inverse Fourier formula.

Theorem 4 Let f () € Lo (—00,00) and F (N) its
integral Fourier transform. Then the inverse formula

€xp (_%) X Rl z
S @)= 2\/£ ;) (2\/5)J'j!Hj (2\/a> &

holds true, where

] 5
Py (5)
2, (4)
Fy= (X F ()7 (0) =
= > CPFa*FUT2)(0).
0<2s<j
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Corollary 5 If
mj = / 2 f (z) dx (6)

j— moment of function f (x), then the solution of the
moment problem has the form

f(gc) _ exp(*%) § (,1)j. H.

C O Wma S (2va))! J(ﬁ)
Z (_1)80]250[28,”125_]..
0<2s<j

Example 1. If

F\) =e M\ m=0,1,..,

then due to (13), we obtain the value of the original

exp (~5) igm

v e (avs)

In conclusion of this section we give next new formula
for the Fourier inversion.

fla) =

Theorem 6 Let f (x) € Lo (—00,00) and F (\) its
integral Fourier transform then the Fourier inversion
formula

1 «

2 X o—igm T
e sa E — H( )F
w2 = Y5t T\ 2V

holds true, where

fz) =

Fj = /_Oo exp (—2X%a) Hj (2v/a)) F (1) dA

3  Fourier integral transforms with
non- separated variables. New ex-
pansion theorems

The author’s has proposed integral transforms with

non-separated variables for solving multidimensional
problems [7]. Let V from R"*! be the half-space

V= {(ylv"'vynvx) S Rn+1 P> 0}’

then solution of the Dirichlet’s problem for the half-
space is expressed by Poisson formula: [17]

1 n
N e Ean
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X

2
v [(y—n)*+2?|
Obviously Poisson’s kernel has the form of integral
Laplace transform:

<n+1> _ntl T
T 5 T2 T =
2+ -n] 7

1\3 [ . Jn1 (My —nl)
- ()2/ Ne T T T T
2 0 N

ly =l
here J,, is Bessel’s function of order v [18]. Repro-
duce property of the Poisson kernel is obtained from
the expansion of the function f(y) by the Laplace op-
erator A eigenfunctions:

b% Jnz (M|y —nl)
fly) = " E —— £ (n) dnd.
v o/(m) o ly—nl T e -

On the basis of this expansion we may conclude that
integral transforms with non- separated variables are
defined as follows [19]:

Direct integral Fourier transform has the form

FIf)(y.0) = f(y,)) =
1 Ju_z (Aly —nl)
= D : =S (m)dn, (®)
(Vﬁjfw ly —nl
inverse Fourier integral transform has the form
P = [NfmNdD = f@). ©
0

Now we get new formula. To do this, formula (7)
can be written in the form

fly) = \/z(\/;?)n /Ooo e NP1

/ &
where 8 > 0, jo(2) = \/g‘k’z‘—((f)

Use a Taylor series expansion with respect to A

a(A\2) :i HS (J}) (10)

Jj=0

23 .
Zinzz (Aly = nl) f () dnd,

J /\2J

where

J (—1)77P(2j)!
1 . .
=02° 2 (j —p)0(2j + a+ 3)

Hyj(x) = (22).
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In view of (10) we get

fly)= \/z(\/;?)n /Ooo e NP1

ok e (5

To s1mp11fy last formula, we change the order of
integration and compute the inner integral with re-
spect to A\. Then we get new analytical representation

for f(x)

)£ ()

Z—)f%, (11)
7=0
where
f2j_ (\/%)HJAB% /I;HH%( 2\/[3 )f(ﬁ)dm

I'-gamma function [20].

4 Vector Fourier transform with dis-
continuous coefficients

Let’s develop the method of vector Fourier transform
for the solution this problem. Let’s consider Sturm—
Liouville vector theory [7] about a design bounded on
the set of nontrivial solution of separate simultaneous
ordinary differential equations with constant matrix
coefficients
d? -
(A%dfr)? > Ym =0,m=1,n+1,
where E-unit matrix size 7 X r. On the boundary con-
ditions

Hy1|| |x:—oo < 09, ||yn+1|| |x:oo < 0 (13)

and conditions of the contact in the points of conjuga-
tion of intervals

((ag?l + A25§1) dd + ( A%ﬂ)) U =

= ((04?2 + )\25;?2) %“‘ ( i+ )\2%]?2)) Yk+15

(14)
r=l, k=1,n, 7=1,2.,
where
Yim (.f,)\)
Ym (xv)‘) = )
Yrm (7, \)
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ymll = /Y3 + - + Y2

For some ), the boundary problem under considera-
tion has a nontrivial solution

m=1n+1.

n+1

A= 0(x—l)
k=1

The number ) is called an Eigenvalue in this case, and
the corresponding decision y (x, \) is called vector-
valued Eigenfunction.

0 (lk — ) yr (7, ).

O{H, 611’7117 5117 jZ’ 532’7325 Ji A

are matrices of the size » x r. We shall require invert-
ibility
det M #0, A€ (—00,0) (15)
for matrixes
M= [ Bl F A Al + N2OF,
B + X5, A, + X205, )

m=1,2;

Matrices A2, m =
[21]. We denote

k=1n.

1,n 4+ 1, are positive-defined

(I)n+1 (CC) = 6‘1n+1ri; \Ijn+1 (x) — e—qn+1zi )

Define the induction relations the others n-pairs a
matrix-importance functions (&, V), k=1,n:

[@ﬁ+ﬂ&ﬁ£§+(ﬁ

d
(o +2288) -+ (9 + 0%9) | (@rsn, )
(16)

-%AQY%)}(ék,Wk):

k=Tn, j=1,2

Let us introduce the following notation

P
-3 ol )
A 4
Theorem 7 The spectrum of the problem (12), (13),
(14) is a continuous and fills all axis (—oo,00).
Sturm—Liouville theory r time is degenerate. To each
Eigenvalue \ corresponds to exactly r linearly inde-

pendent vector-valued functions. As the last it is pos-
sible to take r columns matrix-importance functions.

1=1,n+1.

n+1

A) = 0(x— 1)
k=1

0l —x) v (x,N),
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vj (x,\) = ¥; (x,N). (17)
That is
V1, (2, A)
" A) =
Upm (2, \)

Dual Sturm-Liouville theory consists in a finding
of the non-trivial solution of separate simultaneous or-
dinary differential equations with constant matrix co-
efficients.

<A2(i+A2

m s >y:n:0, ,m=1n+1 (18)

on the boundary conditions

[l < oo, 19)

and conditions of the contact in the points of conjuga-
tion of intervals
) -1

d 511 +)\2711 0411 + N7
d yk7yk

lyill < oo,

BEL+ A28 ob) + A28,

d
= (_dxyltJrlay;:Jrl) )

/312 + A2 712 a12 + A26%, (20)

By + A2k, oby + )‘2522 ’
k=1,n
The solution of the boundary value problem we write
in the form of

n+1

=0
U €N = (U1 (€2 i (6N )

Iyl = @i)® + o+ ) m = TR ¥ 1.

Theorem 8 The spectrum of the problem (18), (19),
(20) is a continuous and fills axis (—o0, 00). Sturm—
Liouville theory r time is degenerate. To each Eigen-
value \ corresponds to exactly r linearly independent
vector-valued functions. As the last it is possible to
take r rows matrix-importance functions.

x:lkv

0k —&) yp (& A),

—lp—1)

n+1

=Y 0z —l1) 0k — ) vf (2,)),
k=1
v (2.5) = (E.0) O <xm<%>Aﬂ»
That is

7 (&N = (vn (6N G=Tr

2D

vi (60))
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The existence of spectral functions u (x, \) and
the conjugate spectral function u* (z,\) allows to
write the a vector decomposition theorem on the set
of It

Theorem 9 Let the vector-valued function f(x) be
defined on I, continuous, absolutely integrated and
have the bounded total variation. Then for any x € I,
the following formula decomposition is true:

oo

@)= [o@n( [ v e ©dr
+Zn: E,0) Q.1 (I, \) Mt (\) -(Ny — Np))AdA,
k=1

Ni — < 7{;—&-1'1 6]£+i1 ) ( fk‘-i—i—l (lk) ) . (22)

Y1442 51+i2 fl::-}-i—l (Ik)

The decomposition theorem allows to enter the di-
rect and inverse matrix integral Fourier transform on
the real axis with conjugation points:

o0

BN =F0 = [0 @7 ©ds+

—0o0

Yl A) Mt (V) (N2 — Np) (23)

k;:l
and
FA) @) == [ 2@ Foydn @
7'(—1700

when

n+1
f@) =Y 0k—=)0(x—1k1) fr(z).

k=1

Let’s result the basic identity of integral transform
of the differential operator

n d2
_ ) ) 2
B_]ZlO(a:—l]_l) 0(lj =) Aj—— -

Theorem 10 [f vector-valued function

n+1

=> " 0(x—le1) 0k — ) fr (2),
k=1

is three times continuously differentiable on the set,
and the limit values together with its derivatives up

E-ISSN: 2224-2880
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to the third order inclusive satisfies to the boundary
condition on infinity

lim <u* (x,\) %f () — iu* (x,\) f (a:)) =0

T—00

and homogeneous conditions of conjugation (14), that
basic identity of integral transform of the differential
operator B hold

Fu[B(f)] () = =Nf. (25)

The proofs of Theorems 7-10 are spent by a
method of the method of contour integration. Simi-
larly presented to work of the author [7].

5 Piece-wise homogeneous analogues
of Hermite polynomials and Her-
mite functions

Definition 11 Right and left analogs of power func-
tion are defined by formulas

& =i*DYv" (€,0) a3, = (=)* Dyv (,0).
respectively.
The function e**Pv* (€,)) is a generating func-

tion for Hermite polynomials [6] with piece-wise con-
stants coefficients, this means that

o0

)\,8*5)\:

,B). (26)

Definition 12 The Hermite piece-wise polynomials
are called the the sequence of functions H, (z,)
from (26).

In the homogeneous case

v* (Ev A) = e_i)\ga

6.8 = 54, (5.

where H;(z) is classical Hermite polynomial [6].
Expansion of piece-wise homogeneous analogues of
Hermite polynomials on the right piece-wise ana-
logues of the power function is followed from Defi-
nitions 11 and 12.

Theorem 13 If
J
B) = hi;&"
k=0
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is an expansion of Hermite polynomial with respect to
& then for their piece-wise analogues H; (€, B), the
representation

Z hk»] n

is true.

Definition 14 For each fixed 7 = 0,1,2,..., we
define a piece-wise analogue of Hermite function
Hjn(xz,p),7=0,1,2,... as follows:

L[ ;
il / (—iNe P
21 J oo

In the homogeneous case, we have

v(x,\) = e,

_a?
e 4B) 1

x
2vmB (2VB)y 7 \2/B
where H(z) is classical Hermite polynomial [6]. Ex-
pansion of piece-wise analogues of Hermite polyno-

mials on the left piece-wise analogues of the power
function is followed From Definitions 11 and 12.

v(z,\)d\ = Hj, (z,0).
(27)

Hjo (z,B) =

Theorem 15 If

B) = hy "
k=0

is the expansion of the Hermite function into Taylor
series with respect to x , then for its piece-wise ana-
logue H; ,,(x, 3), the representation

Hj,(z,p) = Z hk]x .
holds true.
Theorem 16 System of functions Hj,(x,[),
H,zn(a:, B) is biorthogonal, i.e.,
o0
| Hinla B)H; o, ) =
—00

Proof. Consider the integral

| Hintwp)e 0 €.5) do

0o 1 0 )
:/ 7/ (—i)\)]e_)‘25
00 2T J o

v(z,A) dres Py* (z,s) dx.
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Changing the order of integration and applying the de-
composition theorem, we obtain the equality

/ Hijn( (—is)’.
To complete the proof we use equation (27) and the

uniqueness of Taylor’s expansion. The theorem is
proved. O

e Pu* (€, 5) do =

6 New expansion theorems

We use the well-known expansion theorem for func-
tion f () in Fourier integral form [7]:

f@)= o [ v
([ renrode)a. e
Write the last equality in the form
o) = ;W/O; e By (2, \)
([ e en rea) o @)

where 3 > 0.
In accordance with (26), formula (29) takes the

form 1 oo
f(z)= o /_Oo e By (z, ) -
S S T €0 £ 9 dean
j=0 JT Jmee

Then we use definition 12 and finally get new analyt-
ical representation at the point x

= Hy (@) fj (30)
7=0
where .
fi= | LB F©de

We get a new expansion theorem. Classical expansion
theorem takes the form

f(x)= 2177/_0:0 Ny (x,\) -

' (/_O:o V(&) u(T€) df) X

If 5 > 0, then the last formula takes the form

1 o0
— / e N BBy, (z, ) -
—0oQ

fla) = o
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(r:

Because of formula (26) we get

1 oo
—/ e NPy (x,\) -

V(€0 u (7€) dg) dx

@)=

o~ (—iX)!
'Z(j!)

i=0

/O:O H;,, (& 6) f (&) dedA.

We shall change the order of integration and cal-
culate the inner integral with respect to A. On the basis
of (27) we can write

1o ;
il / (—iNe AP
21 J oo

Finally, second new expansion theorem takes the

form
o
B i
- Z Hj,n (x7 5) K
i=0 J:

[

Now we get third new formula. To do this, formula
(28) can be written in the form

1 00
= — / eszﬁ'
21 J_ oo

' (/ "M )0t (€ ) £ (©) dg) X

—00

v(z,\)d\=Hj, (z,0).

(32)

where

f(&)dg.

f(x)

where 5 > 0.
Use a Taylor series expansion with respect to A

[e.9]

NP v(x,\)v

]n (L‘ 5 B)
(33)

=
In the homogeneous case we have

(@, A)o* () = e NE),
Hin(w6.0) = 941, (55

where H(z) is the classical Hermite polynomial.
Let

|
305 335 Zhlw Z _1)6(02%6)'5%5&

a+pB=k

be Hermite polynomial expansion on powers &,z
Then for their piece-wise homogeneous analogues
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H; (&, x, ), so called Hermite-type polynomials, we
have the representation
(a+pB)! .
]n 57 thg Z _1)BTI3!£na g

a+pB=k

In view of (10) we get
1 / o2
2w

- [ O:o Hjp (2, B) £ (€) déd.

f(x) =

7=0

To simplify last formula, we change the order of
integration and compute the inner integral with re-
spect to A, substitute z = 0 in (33). Then

1 o0 . 2 1
— —iNe M Pd\= ————H, (0). (34
s (Ve a0 Y
Taking into account the known formula from [6]
—1)" (2n)!
Hj; (0) = (2)%5,)’ Hjjy1(0)=0.  (35)

we get finally new analytical representation for f(z)

3 (=1 fo
- Z (2/B)2+1 2751 =3

Jj=0

(36)

where

f2j = /O:O Hajn (x,€,8) f(§)dE.

7 Cauchy problem for the heat equa-
tion.

For solution u (7, x) of Cauchy problem [7],[8],[10]
with the initial thermal field f (z) for an piece-wise
homogeneous infinite bar, we shall get as Hermite-
type polynomial series. In order to get this result,
we use the well-known analytic solution u (7, ) in
Fourier integral form [7]:

1 o0
— / e N7y
27 J oo

o (€N) £ (€) df) dx

u(r,z) =

oo

(/-

where f (z) is the initial thermal field, u (7, ) is ther-
mal field at time 7 and in the point z.

(x’)‘) ’

(37)
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Write the last equality in the form

1 / e~ N Ty, (z,A)-

ulra) = o

([ en s©dg)an 68

where 3 > 0.
In accordance with (26), formula (38) takes the

form
1 o0
u(r,z) = —/ e

N —/\2(T+5)v (x,\) -

> (=i
'Z( .)

= I

/_O:O H, (€, 8) f(§)dEd.

Then we use definition 12 and finally get new analyt-
ical representation for the thermal field in time 7 and
at the point x

Now we get the second new formula. To do this,
formula (38) can be written in the form

1 o0
|

' </ " )0t (6 ) £ (©) dg) A

u(r,x) = N (rHB).

—00
where 3 > 0.
Use a Taylor series expansion with respect to A
A28 « o (—iA)!
vz, vt (6A) =) Hjn (2,8, 8).
§=0

(40)
In the homogeneous case, we have

v(x, \)v*

Hjn(x,€,6) = B2 H, <€2\/f)

where H;(z) is the classical Hermite polynomial.
Let

(€N = 6*0\(5*@")7

(a+ B)!

a,.B
NI

th] Z —1)6

k=0 a+pB=k

]05 $ﬁ

be Hermite polynomial expansion on powers &,z
Then for their piece-wise homogeneous analogues
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H; (&, x, ), so called Hermite-type polynomials, we
have the representation
(a+p)! .,
jn 57 th,j Z _1)67571@ g

al B!

a+pB=k

In view of (10) we get

w(r,z) = % / X (+B).
S EW ™ b 68) £ (6 dein
j:O ]' — 0o

To simplify last formula, we change the order of inte-
gration and compute the inner integral with respect to
A, substitute z = 0. Then

1 o

o (—iXY e TN =
T

1
a0
(41)

Taking into account the well-known formula from [6]

(=" (2n)!

Hy; (0) = onpl 7

Hyj11(0) =0, (42)
we get new analytical representation for thermal field

in piecewise-homogeneous bar

i (—1) fo;
2\/TT2J+1 24! 7

J=0

(43)

where

f2j = /O:O Hajn (2,€,8) f(§)dE.

8 Inverse Cauchy problem for the
heat equation

The inverse problem [10]-[13] for the heat equa-
tion of an infinite bar is to find the unknown initial
distribution f (x) of thermal field by the known ther-
mal field u (7, ). This problem leads to the solving
of first type Fredholm integral equation [23]:

00 r— 2
/m 2\/% xp <(47£)> fOdé=u(rx).

(44)
The left side of equation (44) is the Poisson integral,
[23]. As it is shown in [23] the solution of equation
(44) is:

) . @s)
.
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where H (z) is the Hermite polynomials [22].

Formula (45) contains a derivatives of an arbitrar-
ily high order so formula (45) can’t serve as a basis
for the regularizing computational algorithm. Con-
sequently it is actual to find new formulas without
derivatives for solution of equation (44).

We obtain two new formulas. We get a solution
of equation (44) by Fourier integral transform method,

see [6]-[7],
1 [e'e]
= /_ -

' (/O:o vt (& A) u (7€) dé) d.

Ny (x,\) -

[ (x)

If 8 > 0, then the last formula takes the form

@) =5 [ NI,
T J—00

' (/_O:o v (& A) u(T,€) dé) A\ (46)

Because of formula (26) we get

f(z)= 2177/_0:0 e By (x, ) -

Y

Jj=0

—G\)J oo
EO [ i er+ ) u (ng dear

We shall change the order of integration and cal-
culate the inner integral with respect to A. We can
write

1 [ .
on | (Ve @ N dA = H (@),

Finally, first new formula for the initial thermal field
takes the form

F@) = Hin(2.8) ", @7)
§=0 J:
wi= [ 6+ B)uln€) de

Finally, we shall prove the second new formula
for solution of inverse Cauchy problem.
We use (45) which can be written as

1 oo
.

(2. N) 0" (€,2) u (7,€) dé) dx,

e~ N BN (THB),

f ()
(o
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where 3 > 0.
Thank to (26), we get

1 oo
[ / @7)‘25.
21 J_ oo

> (_;A)] /oo Hjpn (2,67 + B)u(r, &) dédA.
g=0 T 0T

f (x)

If we use formula (34), then the initial distribution of
thermal field takes the form

_ 1 (=1) uy
f(@) —;0 e/ a0 @
where
wi= [ Hyn (@674 8)u(r.€) de.
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