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Abstract: This paper considers a Lotka-Volterra model with time delays and delay dependent parameters. The
linear stability conditions are obtained with characteristic root method. The Hopf bifurcation is demonstrated.
Using normal form theory and center manifold theory, Some explicit formulae for determining the stability and the
direction of the Hopf bifurcation periodic solutions are derived. Finally, numerical simulations are carried out to
support the theoretical predictions.
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1 Introduction

The past decades have witnessed an enormous inter-
est in predator-prey models with stage structures. The
dynamical phenomena of predator-prey models with
stage structures have been extensively investigated be-
cause of the wide application in the field of biomath-
ematics. For example, Ma et al. [1] investigated the
permanence of a stage-structured predator-prey sys-
tem with a class of functional responses. Xu et al. [2]
considered the permanence and periodicity of a de-
layed ratio-dependent predator-prey model with stage
structure. Bairagi and Jana [3] focused on the os-
cillations and control of an age-structured predator-
prey model with habit complexity. Chakraborty et al.
[3] analyzed the local stability, global stability and
Hopf bifurcation of a stage structured prey-predator
model incorporating cannibalism in competitive en-
vironment. For more research on the predator-prey
models with stage structures, one can see [4-14]. In
particular, the appearance of a cycle bifurcating from
the equilibrium of an ordinary or a delayed predator-
prey model with a single parameter, which is known
as a Hopf bifurcation, has attracted much attention
due to its theoretical and practical significance [15-
19]. Here we shall point out that most of the research
literatures on these models are only connected with
parameters which are independent of time delay, thus
the corresponding characteristic equations are easy to
deal with. While in most applications of delay dif-
ferential equations in population dynamics, the need
of incorporation of a time delay is often the result of
existence of some stage structure [20-25]. In fact, ev-
ery population goes through some distinct life stages

[26-28]. Since the through-stage survival rate is of-
ten a function of time delay, it is easy to conceive that
these models will inevitably involve some delays de-
pendent parameters. Thus the corresponding charac-
teristic equations dependent on the delay τ become
more complicated. It is often difficult to analytically
study models with delay dependent parameters even if
only a single discrete delay is present, we are resort to
the help of computer programs.

In 2010, Xiang [29] focused on the following im-
pulsive delay differential equation

dx(t)
dt = rx(t)

(
1− x(t)

k

)
− βx(t)y2(t)

1+αx(t) ,

dy1(t)
dt = kβx(t)y2(t)

1+αx(t)

− e−ω̃τ kβx(t−τ)y2(t−τ)1+αx(t−τ) − ω̃y1(t),
dy2(t)
dt = e−ω̃τ λ̃kβx(t−τ)y2(t−τ)1+αx(t−τ)

− ω̃y2(t)− µy22(t),


t ̸= nT,

△x(t) = −px(t),

△y1(t) = 0,

△y2(t) = 0,

 t = nT, n = 1, 2 · ··,

(φ1(s), φ2(s), φ3(s)) ∈ C+ = C+([−τ, 0], R3
+),

φi(0) > 0, i = 1, 2, 3.

(1)
where x(t), y1(t), y2(t) denote densities of the prey,
the immature and mature predator, respectively. β is
the predation rate of predator, ω̃ is the death rate of
the predator, λ̃ represents the conversion rate at which
ingested prey in excess of what is needed for mainte-
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nance is translated into predator population increase.
p(0 ≤ p < 1) represents partial impulsive harvest to
preys by catching or pesticides, τ is the mean length
of the juvenile period, the capacity rate k is concerned
with the resources which maintain the evolution of the
population, T is the period of the impulsive of the
prey. Considering that the first and third equations of
(1) do not contain y1(t), Xiang [29] simplified model
(1) and only restricted their attention to the following
model:

dx(t)
dt = rx(t)

(
1− x(t)

k

)
− βx(t)y2(t)

1+αx(t) ,

dy2(t)
dt = e−ω̃τ λ̃kβx(t−τ)y2(t−τ)1+αx(t−τ)

−ω̃y2(t)− µy22(t),

 t ̸= nT,

△x(t) = −px(t),

△y2(t) = 0,

 t = nT, n = 1, 2 · ··,

(φ1(s), φ3(s)) ∈ C+ = C+([−τ, 0], R2
+),

φi(0) > 0, i = 1, 2.

(2)
If there is no impulsive effects on the prey, then sys-
tem (2) takes the form

dx(t)
dt = rx(t)

(
1− x(t)

k

)
− βx(t)y2(t)

1+αx(t) ,

dy2(t)
dt = e−ω̃τ λ̃kβx(t−τ)y2(t−τ)1+αx(t−τ)

− ω̃y2(t)− µy22(t).

(3)

It is well known that time delays which occur in the in-
teraction between predator-prey will affect the stabil-
ity of a model by creating instability, oscillation and
chaos phenomena. The main purpose of this paper is
to investigate the stability and the properties of Hopf
bifurcation of the model (3) which involves some de-
lays dependent parameters. Recently, there are few
papers on the topic that involves some delays depen-
dent parameters, for example, Liu and Zhang [30] in-
vestigated the stability and Hopf bifurcation of the fol-
lowing SIS model with nonlinear birth rate: İ(t) = β(N(t)− I(t)) I(t)N(t) − (d+ ε+ γ)I(t),

Ṅ(t) = PN(t−τ)
1+qN3(t−τ)e

−d1τ − dN(t)− εI(t).
(4)

Jiang and Wei [31] studied the stability and Hopf bi-
furcation of the following SIR model:

Ṡ(t) = µ− µS(t)− ϕI(t)S(t)
1+I(t)

+ γI(t− τ)e−µτ ,
İ(t) = ϕI(t)S(t)

1+I(t) − (µ+ γ)I(t).

(5)

Wang et al. [32] introduced and investigated the fol-
lowing predator-prey interaction model with time de-

lay and delay dependent parameters:

ẋ1(t) = a1(t)x2(t)− r1(t)x1(t)

− a1(t− τ1)e
∫ t

t−τ1
−r1(s)−k1(s)y2(s)ds

×x2(t− τ1)− k1(t)x1(t)y2(t),

ẋ2(t) = a1(t− τ1)e
∫ t

t−τ1
−r1(s)−k1(s)y2(s)ds

×x2(t− τ1)− β1(t)x22(t),
ẏ1(t) = a2(t)x1(t)y2(t)− r2(t)y1(t)

− a2(t− τ2)e
∫ t

t−τ2
−r2(s)ds

×x1(t− τ2)y2(t− τ2),

ẏ2(t) = a2(t− τ2)e
∫ t

t−τ2
−r2(s)ds

×x1(t− τ2)y2(t− τ2)− β2(t)y22(t).
(6)

The meaning of all the parameters in system (4), (5)
and (6), one can see [30], [31] and [32], respectively.
For more work on models with delay dependent pa-
rameters, on can see [33-43].

This paper is organized as follows. In Section 2,
the stability of the equilibrium and the existence of
Hopf bifurcation at the equilibrium are analyzed. In
Section 3, the direction of Hopf bifurcation and the
stability and periodic of bifurcating periodic solutions
on the center manifold are determined. In Section 4,
computer simulations are carried out to illustrate the
validity of the main results. Some main conclusions
are drawn in Section 5.

2 Stability of the equilibrium and lo-
cal Hopf bifurcations

Throughout this paper, we assume that the following
condition holds:

(H1): x∗ < k,
where x∗ is the positive root of the following equation

ρ3x
3 + ρ2x

2 + ρ1x1 + ρ0 = 0, (7)

where ρ0 = −(kω̃β + krµ), ρ1 = ke−ω̃τ λ̃β2 −
kω̃αβ+rµ−2αkrµ, ρ2 = (2α−kα2)rµ, ρ3 = α2rµ.

The hypothesis (H1) implies that system (3) has a
unique positive equilibrium E(x∗, y∗2), where

y∗2 =
r
(
1− x∗

k

)
(1 + αx∗)

β
.

The linearized system of (3) aroundE(x∗, y∗2) is given
by 

dx(t)
dt = a1x(t) + a2y2(t),

dy2(t)
dt = b1y2(t) + b2x(t− τ)

+ b3y2(t− τ),
(8)
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where

a1 = r − 2rx∗

k
− αβx∗y∗2

(1 + αx∗)2
− βy∗2

1 + αx∗
,

a2 = − βx∗

1 + αx∗
, b1 = −(ω̃ + 2y∗µ),

b2 =
e−ω̃τ λ̃βy∗2
1 + αx∗

− e−ω̃τ λ̃βy∗2α

(1 + αx∗)2
,

b3 = −e
−ω̃τ λ̃βx∗

1 + αx∗
.

The associated characteristic equation of (8) reads as

P (λ, τ) +Q(λ, τ)e−λτ = 0, (9)

where
P (λ, τ) = λ2 + c1λ+ c0,
Q(λ, τ) = d1λ+ d0,

(10)

where c0 = a1b1,c1 = −(a1+ b1), d0 = a1b3− a2b2,
d1 = −b3.

When τ = 0, then Eq.(9) becomes

λ2 + (c1 + d1)λ+ c0 + d0 = 0, (11)

Then we have the following result:

Lemma 1 If the condition
(H2): c1 + d1 > 0, c0 + d0 > 0

holds, then the positive equilibrium E(x∗, y∗2) of sys-
tem (3) is asymptotically stable.

In the sequel, we discuss the existence of purely
imaginary roots λ = iω(ω > 0) of Eq.(9). Eq.(9)
takes the form of a second-degree exponential polyno-
mial in λ, which some of the coefficients of P and Q
depend on τ . Beretta and Kuang [44] established a ge-
ometrical criterion which gives the existence of purely
imaginary roots of a characteristic equation with delay
dependent coefficients. In order to apply the criterion
due to Beretta and Kuang [44], we need to verify the
following properties for all τ ∈ [0, τmax), where τmax

is the maximum value which E(x∗, y∗2) exists.

(a) P (0, τ) +Q(0, τ) ̸= 0;

(b) P (iω, τ) +Q(iω, τ) ̸= 0;

(c) lim sup{|Q(λ,τ)
P (λ,τ) | : |λ| → ∞,Reλ ≥ 0} < 1;

(d) F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2 has a
finite number of zeros;

(e) Each positive root ω(τ) of F (ω, τ) = 0 is
continuous and differentiable in τ whenever it exists.

Here, P (λ, τ) and Q(λ, τ) are defined as in (10).
Let τ ∈ [0, τmax). It is easy to see that

P (0, τ) +Q(0, τ) = c0 + d0 ̸= 0,

which implies that (a) is satisfied, and (b)

P (iω, τ) +Q(iω, τ)

= −ω2 + c0 + d0 + iω(c1 + d1) ̸= 0. (12)

From (2.3), we have

lim
|λ|→+∞

∣∣∣Q(λ, τ)

P (λ, τ)

∣∣∣ = lim
|λ|→+∞

∣∣∣ d1λ+ d0
λ2 + c1λ+ c0

∣∣∣ = 0.

Therefore (c) follows. Let F be defined as in (d).
From

|P (iω, τ)|2 = ω4 + (c21 − 2c0)ω
2 + c20

and
|Q(iω, τ)|2 = d21ω

2 + d20,

we obtain

F (ω, τ) = ω4 + (c21 − 2c0 − d21)ω2 + c20 − d20.

Obviously, property (d) is satisfied, and by implicit
function theorem, (e) is fulfilled.

Let λ = iω(ω > 0) be a root of Eq.(9) and substi-
tuting it into Eq.(9) and separating the real and imag-
inary parts yields{

d0 cosωτ + d1ω sinωτ = ω2 − c0,
d1ω cosωτ − d0 sinωτ = −c1ω.

(13)

It follows from (13) that

sinωτ =
(ω2 − c0)d1ω + c1d1ω

2

d21ω
2 + d20

, (14)

cosωτ =
(ω2 − c0)d0 − c1d1ω2

dd21ω
2 + d20

. (15)

By the definitions of P and Q as in (10), respectively,
and applying the property (a), then (14) and (15) can
be written as

sinωτ = Im
[
P (iω, τ)

Q(iω, τ)

]
,

cosωτ = −Re
[
P (iω, τ)

Q(iω, τ)

]
,

which leads to |P (iω, τ)|2 = |Q(iω, τ)|2. Assume
that I ∈ R+0 is the set where ω(τ) is a positive root
of

F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2

and for τ ∈̄I, ω(τ) is not definite. Then for all τ in
I, ω(τ) satisfied F (ω, τ) = 0. The polynomial func-
tion F can be written as

F (ω, τ) = h(ω2, τ), (16)
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where h is a second degree polynomial, defined by

h(z, τ) = z2 + (c21 − 2c0 − d21)z + c20 − d20. (17)

It is easy to see that

h(z, τ) = z2+(c21−2c0−d21)z+ c20−d20 = 0. (18)

has only one positive real root if the following condi-
tion (H3) holds.

(H3): c20 < d20.
We denote this positive real root by z+. Hence,

Eq.(16) has only one positive real root ω =
√
z+.

Since the critical value of τ and ω(τ) are impossible
to solve explicitly, so we shall use the procedure de-
scribed in Beretta and Kuang [44]. According to this
procedure, we define θ(τ) ∈ [0, 2π) such that sin θ(τ)
and cos θ(τ) are given by the right hand sides of (14)
and (15), respectively, with θ(τ) given by (18). This
define θ(τ) in a form suitable for numerical evaluation
using standard software. And the relation between
the argument θ and ωτ in (17) for τ > 0 must be
ωτ = θ + 2nπ, n = 1, 2, · · ·

Hence we can define the maps: τn : I → R+0

given by

τn(τ) :=
θ(τ) + 2nπ

ω(τ)
, τn > 0, n = 0, 1, 2, · · · ,

(19)
where a positive root ω(τ) of (F (ω, τ) = 0. exists in
I. Let us introduce the functions Sn(τ) : I → R,

Sn(τ) = τ − θ(τ) + 2nπ

ω(τ)
, n = 0, 1, 2, · · · , (20)

which are continuous and differentiable in τ . Thus we
give the following theorem which is borrowed from
Beretta and Kuang [39].

Theorem 2 Assume that ω(τ) is a positive root of
(9) defined for τ ∈ I, I ⊆ R+0, and at some τ0 ∈
I, Sn(τ0) = 0 for some n ∈ N0. Then a pair of
simple conjugate pure imaginary roots λ = ±iω ex-
ists at τ = τ0 which crosses the imaginary axis from
left to right if δ(τ0) > 0 and crosses the imaginary
axis from right to left if δ(τ0) < 0, where δ(τ0) =

sign
[
F

′
ω(ωτ0, τ0)

]
sign

[
dSn(τ)
dτ

∣∣∣
τ=τ0

]
.

Applying Lemma 1 and the Hopf bifurcation the-
orem for functional differential equation [45], we can
conclude the existence of a Hopf bifurcation as stated
in the following theorem.

Theorem 3 For system (3), if (H1)-(H3) hold, then
there exists s τ0 ∈ I such that the equilibrium
E(x∗, y∗2) is asymptotically stable for 0 ≤ τ < τ0,
and becomes unstable for τ staying in some right
neighborhood of τ0, with a Hopf bifurcation occur-
ring when τ = τ0.

3 Direction and stability of the Hopf
bifurcation

In section 2, we have already derived some conditions
which ensure that the Lotka-Volterra model with time
delays and delay dependent parameters undergoes the
Hopf bifurcation at some values of τ = τ0. In this sec-
tion, we shall obtain the explicit formulae for deter-
mining the direction, stability, and period of these pe-
riodic solutions bifurcating from the positive equilib-
riumE(x∗, y∗2) at these critical value of τ , by applying
techniques from normal form and center manifold the-
ory [45], Throughout this section, we always assume
that system (3) undergoes Hopf bifurcation at the pos-
itive equilibriumE(x∗, y∗2) for τ = τ0, and then±iω0

is corresponding purely imaginary roots of the char-
acteristic equation at the equilibrium E(x∗, y∗2).

For convenience, let τ = τ0 + ν, ν ∈ R. Then
ν = 0 is the Hopf bifurcation value of (3). Thus,
we shall study Hopf bifurcation of small amplitude
periodic solutions of (3) from the positive equilibrium
point E∗(x

∗, y∗2) for ν close to 0.
Let u1(t) = x(t)−x∗, u2(t) = y2(t)−y∗2, x(t) =

u1(τt), y2(t) = u2(τt), τ = τ0 + ν,then system (3)
is transform into an functional differential equation
(FDE) in (C = C(−1, 0], R2) as

du

dt
= Lν(ut) + f(ν, ut), (21)

where u(t) = (x(t), y2(t))
T ∈ R2 and Lν : C → R,

f : R× C → R are given respectively by

Lνϕ = (τ0 + ν)Bϕ(0) + (τ0 + ν)Gϕ(−1), (22)

where

B =

(
a1 a2
0 b1

)
, G =

(
0 0
b2 b3

)

and

f(ν, ϕ) =

(
f1(ν, ϕ)
f2(ν, ϕ)

)
, (23)

where

f1(ν, ϕ) = (τ0 + ν)[a3ϕ
2
1(0) + a4ϕ1(0)ϕ2(0)

+ a5ϕ
3
1(0) + a6ϕ

2
1(0)ϕ2(0) + h.o.t.],

f2(ν, ϕ) = (τ0 + ν)[b4ϕ
2
2(0) + b5ϕ1(−1)ϕ2(−1)

+ b6ϕ
3
1(−1) + b7ϕ

2
1(−1)ϕ2(−1) + h.o.t.],

where

a3 =
αβy∗2

(1 + αx∗)2
− α2βx∗y∗2

(1 + αx∗)3
− r

k
,

a4 =
αβx∗

(1 + αx∗)2
− β

1 + αx∗
,

WSEAS TRANSACTIONS on MATHEMATICS Changjin Xu, Qiming Zhang

E-ISSN: 2224-2880 606 Volume 13, 2014



a5 =
α2βx∗y∗2
(1 + αx∗)4

− α2βy∗2
(1 + αx∗)3

,

a6 =
αβ

(1 + αx∗)2
− α2βx∗

(1 + αx∗)3
,

b4 =
e−ω̃ταβλy∗2
(1 + αx∗)2

− e−ω̃τα2βλ̃x∗y∗2
(1 + αx∗)3

,

b5 =
e−ω̃ταβλ̃x∗

(1 + αx∗)2
− e−ω̃τβλ̃

1 + αx∗
,

b6 =
e−ω̃τα2βλ̃x∗y∗2
(1 + αx∗)4

− e−ω̃τα2βλ̃y∗2
(1 + αx∗)3

,

b7 =
e−ω̃ταβλ̃

(1 + αx∗)2
− e−ω̃τα2βλ̃x∗

(1 + αx∗)3
.

Clearly, Lν is a linear continuous operator from C to
R2. By the Riesz representation theorem, there exists
a matrix function with bounded variation components
η(θ, ν), θ ∈ [−1, 0] such that

Lνϕ =

∫ 0

−1
dη(θ, ν)ϕ(θ), for ϕ ∈ C. (24)

In fact, we can choose

η(θ, ν) = (τ0 + ν)

(
a1 a2
0 b1

)
δ(θ)

−(τ0 + ν)

(
0 0
b2 b3

)
δ(θ + 1), (25)

where δ is the Dirac delta function.
For ϕ ∈ C([−1, 0], R2), define

A(ν)ϕ =


dϕ(θ)
dθ , −1 ≤ θ < 0,∫ 0

−1 dη(s, ν)ϕ(s), θ = 0
(26)

and

R(ν)ϕ =

{
0, −1 ≤ θ < 0,
f(ν, ϕ), θ = 0.

(27)

Then (3) is equivalent to the abstract differential equa-
tion

u̇t = A(ν)ut +R(ν)ut, (28)

where u = (x, y2)
T , ut(θ) = u(t+ θ), θ ∈ [−1, 0].

For ψ ∈ C([0, 1], (R2)∗), define

A∗ψ(s) =

 −
dψ(s)
ds , s ∈ (0, 1],∫ 0

−1 dη
T (t, 0)ψ(−t), s = 0.

(29)

For ϕ ∈ C([−1, 0], R2) and ψ ∈
C([0, 1], (R2)∗), define the bilinear form

< ψ, ϕ >= ψ(0)ϕ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ−θ)dη(θ)ϕ(ξ)dξ,

(30)
where η(θ) = η(θ, 0). We have the following result
on the relation between the operators A = A(0) and
A∗.

Lemma 4 A = A(0) and A∗ are adjoint operators.

The proof is easy from (30), so we omit it.
By the discussion in Section 2, we know that

±iω0τ0 are eigenvalues of A(0), and they are
also eigenvalues of A∗ corresponding to iω0τ0 and
−iω0τ0, respectively. We have the following result.

Lemma 5 The vector

q(θ) = (1, γ)T eiω0τ0θ, θ ∈ [−1, 0],

where
γ =

iω0 − a1
a2

is the eigenvector of A(0) corresponding to the eigen-
value iω0τ0, and

q∗(s) = D(1, γ∗)eiω0τ0s, s ∈ [0, 1],

where
γ∗ = − iω0 + a1

b2e−iωτ0

is the eigenvector of A∗ corresponding to the eigen-
value −iω0τ0, moreover, < q∗(s), q(θ) >= 1, where

D = 1 + γ̄γ̄∗ + b2γ
∗eiω0τ0 + b3γ̄γ

∗eiω0τ0 .

Proof. Let q(θ) be the eigenvector of A(0) cor-
responding to the eigenvalue iω0τ0 and q∗(s) be
the eigenvector of A∗ corresponding to the eigen-
value −iω0τ0, namely, A(0)q(θ) = iω0τ0q(θ) and
A∗q∗T (s) = −iω0τ0q

∗T (s). From the definitions of
A(0) and A∗, we have A(0)q(θ) = dq(θ)/dθ and
A∗q∗T (s) = −dq∗T (s)/ds. Thus, q(θ) = q(0)eiω0τ0θ

and q∗(s) = q∗(0)eiω0τ0s. In addition,∫ 0

−1
dη(θ)q(θ) = τ0Bq(0) + τ0Gq(−1)

= τ0A(0)q(0) = iω0τ0q(0).

Namely(
iω0 − a1 −a2
−b2e−iω0τ0 iω0 − b1 − b3e−iω0τ0

)
q(0)

=

(
0
0

)
. (31)
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Therefore we can easily obtain

γ =
iω0 − a1

a2
.

So

q(0) =

(
1,
iω0 − a1

a2

)T
and hence

q(θ) =

(
1,
iω0 − a1

a2

)T
eiω0τ0θ.

On the other hand,∫ 0

−1
q∗(−t)dη(t) = τ0B

T q∗T (0) + τ0G
T q∗T (−1)

= τ0A
∗q∗T (0) = −iω0τ0q

∗T (0). (32)

Namely,(
−iω0 − a1 −b2e−iω0τ0

−a2 −iω0 − b1 − b3e−iω0τ0

)
q∗T (0)

=

(
0
0

)
. (33)

Therefore we can easily get

γ∗ = − iω0 + a1
b2e−iω0τ0

,

and so
q∗(0) =

(
1,− iω0 + a1

b2e−iω0τ0

)
and hence

q∗(s) =

(
1,− iω0 + a1

b2e−iω0τ0

)
eiω0τ0s.

In what follows, we shall verify that <
q∗(s), q(θ) >= 1. In fact, from (30), we have

< q∗(s), q(θ) >= D̄(1, γ̄∗)(1, γ)T

−
∫ 0

−1

∫ θ

ξ=0
D̄(1γ̄∗)e−iω0(ξ−θ)dη(θ)(1, γ)T eiω0ξdξ

= D̄

[
1 + γγ̄∗ −

∫ 0

−1
(1, γ̄∗)θeiω0θdη(θ)(1, γ)T

]
= D̄

{
1 + γγ̄∗ − (1, γ̄∗)

[
−τ0Ge−iω0τ0

]
(1, γ)T

}
= D̄

[
1 + γγ̄∗ + b2γ̄

∗e−iω0τ0 + b3γγ̄∗e
−iω0τ0

]
= 1.

Next, we use the same notations as those in Has-
sard, Kazarinoff and Wan [45], and we first compute

the coordinates to describe the center manifold C0 at
ν = 0. Let ut be the solution of Eq.(3) when ν = 0.

Define

z(t) =< q∗, ut >,

W (t, θ) = ut(θ)− 2Re{z(t)q(θ)}.
(34)

on the center manifold C0, and we have

W (t, θ) =W (z(t), z̄(t), θ), (35)

where

W (z(t), z̄(t), θ) =W (z, z̄) =W20
z2

2

+W11zz̄ +W02
z̄2

2
+ · · · (36)

and z and z̄ are local coordinates for center manifold
C0 in the direction of q∗ and q̄∗. Noting thatW is also
real if ut is real, we consider only real solutions. For
solutions ut ∈ C0 of (3),

ż(t) =< q∗(s), u̇t >

=< q∗(s), A(0)ut +R(0)ut >

=< q∗(s), A(0)ut > + < q∗(s), R(0)ut >

=< A∗q∗(s), ut > +q̄∗(0)R(0)ut

−
∫ 0

−1

∫ θ

ξ=0
q̄∗(ξ − θ)dη(θ)A(0)R(0)ut(ξ)dξ

=< iω0τ0q
∗(s), ut > +q̄∗(0)f(0, ut(θ)

def
= iω0τ0z(t) + q̄∗(0)f0(z(t), z̄(t)). (37)

That is
ż(t) = iω0z + g(z, z̄), (38)

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2

+g21
z2z̄

2
+ · · · . (39)

Hence, we have

g(z, z̄) = q̄∗(0)f0(z, z̄) = f(0, ut)

= D̄(1, γ∗)(f1(0, ut), f2(0, ut))
T ,(40)

where

f1(0, ut) = τ0[a3x
2
t (0) + a4xt(0)y2t(0)

+ a5x
3
t (0) + a6x

2
t (0)y2t(0) + h.o.t.],

f2(0, ut) = τ0[b4y
2
2t(0) + b5xt(−1)y2t(−1)

+ b6x
3
t (−1) + b7x

2
t (−1)y2t(−1) + h.o.t.],
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Noticing ut(θ) = (xt(θ), y2t(θ))
T = W (t, θ) +

zq(θ) + z̄ ¯q(θ) and q(θ) = (1, γ)T eiω0τ0θ, we have

xt(0) = z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄

+W
(1)
02 (0)

z̄2

2
+ · · · ,

yt(0) = γz + γ̄z̄ +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄

+W
(2)
02 (0)

z̄2

2
+ · · · ,

xt(−1) = e−iω0τ0z + eiω0τ0 z̄ +W
(1)
20 (−1)z

2

2

+W
(1)
11 (−1)zz̄ +W

(1)
02 (−1) z̄

2

2
+ · · · ,

y2t(−1) = γe−iω0τ0z + γ̄eiω0τ0 z̄ +W
(2)
20 (−1)z

2

2

+W
(2)
11 (−1)zz̄ +W

(2)
02 (−1) z̄

2

2
+ · · · .

From (39) and (40), we have

g(z, z̄) = q̄∗(0)f0(z, z̄)

= D̄ [f1(0, xt) + γ̄∗f2(0, xt)]

= D̄τ0
[
(a3 + a4γ) + γ̄∗(b4 + b5e

−2iω0τ0)γ
]
z2

+D̄τ0
[
2a3 + 2a4Re{γ}+ γ̄∗(2b4|γ|2

+2b5Re{γ})
]
zz̄ + D̄τ0

[
a3 + a4γ̄

2

+γ̄∗(b4γ̄2 + b5γ̄e
2iω0τ0)

]
z̄2

+D̄τ0
{
a3
(
2W

(1)
11 (0) +W

(1)
20 (0)

)
+a4

(
2W

(2)
11 (0) + 2γW

(1)
11 (0)

)
+3a5 + a6(2γ̄ + γ)

+γ̄∗
[
b4
(
2γW

(2)
11 (0) +W

(2)
20 (0)

)
+b5

(
γe−iω0τ0W

(1)
11 (−1) + e−iω0τ0W

(2)
11 (−1)

+ γ̄1e
iω0τ0W

(1)
11 (−1) + eiω0τ0W

(2)
11 (−1)

)
+3b6e

−iω0τ0 + b7
(
2γ + γ̄e−iω0τ0

)] }
z2z̄

+h.o.t..

Then

g20 = 2D̄τ0
[
(a3 + a4γ) + γ̄∗(b4 + b5e

−2iω0τ0)γ
]
,

g11 = D̄τ0
[
2a3 + 2a4Re{γ}+ γ̄∗(2b4|γ|2

+ 2b5Re{γ})
]
,

g02 = 2D̄τ0
[
a3 + a4γ̄

2 + γ̄∗(b4γ̄2 + b5γ̄e
2iω0τ0)

]
,

g21 = 2D̄τ0
{
a3
(
2W

(1)
11 (0) +W

(1)
20 (0)

)
+ a4

(
2W

(2)
11 (0) + 2γW

(1)
11 (0)

)
+ 3a5 + a6(2γ̄ + γ)

+ γ̄∗
[
b4
(
2γW

(2)
11 (0) +W

(2)
20 (0)

)
+ b5

(
γe−iω0τ0W

(1)
11 (−1) + e−iω0τ0W

(2)
11 (−1)

+ γ̄1e
iω0τ0W

(1)
11 (−1) + eiω0τ0W

(2)
11 (−1)

)
+3b6e

−iω0τ0 + b7
(
2γ + γ̄e−iω0τ0

)] }
.

In the sequel, we will compute the following value:
W

(1)
20 (0),W

(1)
20 (−1),W (1)

11 (0),W
(2)
11 (−1),W (2)

11 (0),

W
(2)
11 (−1). It follows from (28) and (34) that

W
′
=

{
AW − 2Re{q̄∗(0)f0q(θ)},−1 ≤ θ < 0,
AW − 2Re{q̄∗(0)f0q(θ)}+ f0, θ = 0.

def
= AW+H(z, z̄, θ), (41)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄+H02(θ)

z̄2

2
+· · · .

(42)
Comparing the coefficients, we obtain

(A− 2iω0τ0)W20 = −H20(θ) (43)

AW11(θ) = −H11(θ), (44)

and we know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ)
= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ). (45)

Comparing the coefficients of (42) with (45) gives that

H20(θ) = −g20q(θ)− ḡ02q̄(θ), (46)

H11(θ) = −g11q(θ)− ḡ11q̄(θ). (47)

From (43),(46) and the definition of A , we get

Ẇ20(θ) = 2iω0τ0W20(θ)+ g20q(θ)+ ḡ02q̄(θ). (48)

Considering that q(θ) = q(0)eiω0τ0θ, we have

W20(θ) =
ig20
ω0τ0

q(0)eiω0τ0θ +
iḡ02
3ω0τ0

q̄(0)e−iω0τ0θ

+E1e
2iω0τ0θ, (49)

where E1 = (E
(1)
1 , E

(2)
1 )T is a constant vector.

Similarly, from (44), (47) and the definition of A,
we have

Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ), (50)

WSEAS TRANSACTIONS on MATHEMATICS Changjin Xu, Qiming Zhang

E-ISSN: 2224-2880 609 Volume 13, 2014



W11(θ) = −
ig11
ω0τ0

q(0)eiω0τ0θ+
iḡ11
ω0τ0

q̄(0)e−iω0θ+E2.

(51)
where E2 = (E

(1)
2 , E

(2)
2 )T is a constant vector.

In what follows, we shall seek appropriate E1,E2

in (49), (51), respectively. It follows from the defini-
tion of A, (46) and (47) that∫ 0

−1
dη(θ)W20(θ) = 2iω0τ0W20(0)−H20(0) (52)

and ∫ 0

−1
dη(θ)W11(θ) = −H11(0), (53)

where η(θ) = η(0, θ).
From (43), we have

H20(0) = −g20q(0)−ḡ02q̄(0)+τ0(M1,M2)
T , (54)

where

M1 = a3 + a4γ,M2 = (b4 + b5e
−2iω0τ0)γ.

In view of (44), we have

H11(0) = −g11q(0)− ḡ11(0)q̄(0) + τ0(N1, N2)
T ,
(55)

where

N1 = 2a3 + 2a4Re{γ}, N2 = 2b4|γ|2 + 2b5Re{γ}.

Noting that(
iω0τ0I −

∫ 0

−1
eiω0τ0θdη(θ)

)
q(0) = 0, (56)

(
−iω0τ0I −

∫ 0

−1
e−iω0τ0θdη(θ)

)
q̄(0) = 0 (57)

and substituting (49) and (54) into (52), we have(
2iω0τ0I −

∫ 0

−1
e2iω0τ0θdη(θ)

)
E1 = τ0(M1,M2)

T .

(58)
That is

(2iω0τ0I − τ0B − τ0Ge−2iω0τ0)E1 = τ0(M1,M2)
T ,

(59)
then (

2iω0 − a1 −a2
−b2e−2iω0τ0 2iω0 − b1 − b3e−2iω0τ0

)

×
(
E

(1)
1

E
(2)
1

)
=

(
a3 + a4γ

(b4 + b5e
−2iω0τ0)γ

)
. (60)

Hence E(1)
1 = e1

χ , E
(2)
1 = e2

χ , where

e1 = (a3 + a4γ)(2iω0 − b1 − b3e−2iω0τ0)

+a2[b4 + b5e
−2iω0τ0)γ]

e2 = (2iω0 − a1)[b4 + b5e
−2iω0τ0)γ]

+(a3 + a4γ)b2e
−2iω0τ0

χ = (2iω0 − a1)(2iω0 − b1 − b3e−2iω0τ0)

−a2b2e−2iω0τ0 .

Similarly, substituting (51) and (55) into (53), we have(∫ 0

−1
dη(θ)

)
E2 = τ0(N1, N2)

T . (61)

Then
(B +G)E2 = (−N1,−N2)

T . (62)

That is (
a1 a2
b2 b1 + b3

)(
E

(1)
2

E
(2)
2

)

=

(
−(2a3 + 2a4Re{γ})
−(2b4|γ|2 + 2b5Re{γ})

)
. (63)

Hence

E
(1)
2 =

a2((2b4|γ|2 + 2b5Re{γ})
a1(b1 + b3)− a2b2

,

E
(2)
2 =

σ

a1(b1 + b3)− a2b2
,

where σ = b2(2a3 + 2a4Re{γ}) − a1(2b4|γ|2 +
2b5Re{γ}). From (49),(51), we can calculate g21 and
derive the following values:

c1(0) = i
2ω0τ0

(
g20g11 − 2|g11|2 − |g02|2

3

)
+ g21

2 ,

µ2 = − Re{c1(0)}
Re{λ′ (τ0)} ,

β2 = 2Re(c1(0)),

T2 = − Im{c1(0)}+µ2Im{λ′ (τ0)}
ω0τ0

.

These formulaes give a description of the Hopf bifur-
cation periodic solutions of (3) at τ = τ0 on the center
manifold. From the discussion above, we have the fol-
lowing result.

Theorem 6 The periodic solution is supercritical
(subcritical) if µ2 > 0 (µ2 < 0); The bifurcating peri-
odic solutions are orbitally asymptotically stable with
asymptotical phase (unstable) if β2 < 0 (β2 > 0);
The periods of the bifurcating periodic solutions in-
crease (decrease) if T2 > 0 (T2 < 0).
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4 Numerical Examples

In this section, we carry out some numerical simula-
tions to verify the analytical predictions derived in the
previous section. Let r = 1, k = 2, α = 3, β =
2, ω̃ = 0.2, µ = 0.2, λ̃ = 0.5. Then system (3) be-
comes


dx(t)
dt = x(t)

(
1− x(t)

2

)
− 2x(t)y2(t)

1+3x(t) ,

dy2(t)
dt = e−0.2τ 2x(t−τ)y2(t−τ)

1+3x(t−τ)

− 0.2y2(t)− 0.2y22(t).

(64)

Obviously, system (64) has a positive equilibrium
E(x∗, y∗2).

By Matlab 7.0, we get only one critical value
of the delay τ0 ≈ 0.9201, ω0 ≈ 1.7135, λ

′
(τ0) ≈

0.4053−0.5172i. Thus we derive c1(0) ≈ −2.4451−
4.0566i, µ2 ≈ 6.0328, β2 ≈ −4.8902, T2 ≈ 4.5526.
The conditions in Theorem 3 hold true. It follows
that µ2 > 0 and β2 < 0 that the positive equilibrium
E(x∗, y∗) is stable when τ < τ0 which is illustrated
by the computer simulations (see Figs.1-4).
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When τ passes through the critical value τ0, the
positive equilibrium E(x∗, y∗2) loses its stability and
a Hopf bifurcation occurs, i.e., a family of peri-
odic solutions bifurcate from the positive equilibrium
E∗(x

∗, y∗). Due to µ2 > 0 and β2 < 0, the direction
of the Hopf bifurcation is τ > τ0 and these bifurcat-
ing periodic solutions from E(x∗, y∗2) at τ0 are stable,
which are shown in Figs.5-8.

Figs.1-4. The time histories and phase portrait
of system (64) with τ = 0.8 < τ0 ≈ 0.9201 and
the initial value is (0.8,0.8). The positive equilibrium
E(x∗, y∗2) is asymptotically stable.
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Figs.5-8. The time histories and phase portrait of
system (64) with τ = 1 > τ0 ≈ 0.9201 and the initial
value is (0.8,0.8). Hopf bifurcation occurs from the
positive equilibrium E(x∗, y∗2).

5 Conclusions
In the present paper, we obtain the conditions to en-
sure that the positive equilibrium of a Lotka-Volterra

model with time delays and delay dependent parame-
ters is asymptotically stable by employing the method
due to Beretta and Kuang [41] and analyzing the dis-
tributed of the eigenvalues. By regarding the time
delay as bifurcation parameter, we find that Hopf bi-
furcation occurs when the delay passes through some
critical values. Some formulae for determining the
stability and the direction of Hopf bifurcation for a
Lotka-Volterra model with time delays and delay de-
pendent parameters are given by using the normal
form theory and the center manifold theorem. Finally,
numerical simulations are carried out to validate the
theoretical findings.
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