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1 Introduction

Equations play an important role in practical applica-

tion, and many actual problems can be converted into

equation boundary value problems to solve. Recently,

the study of positive solutions for equation (or system)

boundary value problems has been widely concerned,

see references [1-5]. However, due to boundary value

problems of three-order differential equations pro-

duced in applied mathematics, applied physics, eco-

nomics, and many other fields, though the develop-

ment of boundary value problems of third-order dif-

ferential equations is relatively slow, especially, when

nonlinear term contains derivative or discontinuous

and singular at any point. But third-order boundary

value problems of singular differential equations have

extensive application in applied mathematics and ap-

plied physics, for example, they have a wide range of

backgrounds in the air convection, celestial evolution

and fluid mechanics, etc. In recent years, these prob-

lems have arose the attention of experts and scholars

in this field, people also made a lot of research work,

for instance, the related theory results in documents

[6-13], Yao [14] and Jiang [15].

For example, references [16-20] discussed a few

third-order two-point boundary value problems, lit-

erature [21] studied third-order two-point boundary

value problem as follows:

u′′′(t) + λh(t)f(t, u(t)) = 0, t ∈ (a, b), (1)

u(a) = u′′(a) = u′(b) = 0, (2)

where λ > 0 is a parameter, h ∈ C((a, b), R+), h(t)
may be singular at t = a, b, and f ∈ C([a, b] ×
(0,+∞), R+) is a continuous function, f(t, s) may

be singular at s = 0.

In 2005, Sun [10] established the following third-

order boundary value problem, and then, he got the

existence of one and multiple positive solutions:

u′′′(t)− λh(t)f(t, u(t)) = 0, 0 < t < 1, (3)

u(0) = u′(η) = u′′(1) = 0, (4)

where λ is a positive parameter and η ∈ [
1

2
, 1) is a

constant, h(t) is a nonnegative continuous function

defined on (0, 1) and f : [0, 1] × [0,∞) → [0,∞)
is continuous.

In 2008, Guo, Sun and Zhao [22] studied the

third-order three-point boundary value problem for

the following:

u′′′(t) + h(t)f(u(t)) = 0, t ∈ (0, 1), (5)

u′(1) = αu′(η), u(0) = u′(0) = 0, (6)

where η ∈ (0, 1), α ∈ (1,
1

η
) are constants, h ∈

C((a, b), R+) is not zero in [
η

α
, η], also is a contin-

uous function.

In 2009, Sun [23] discussed the following three-

point nonhomogeneous boundary value problem of

three-order differential equation:

u′′′(t) + h(t)f(u(t)) = 0, t ∈ (0, 1), (7)
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u(0) = u′(0) = 0, u′(1)− αu′(η) = λ, (8)

where η ∈ (0, 1), α ∈ [0,
1

η
) are constants and λ ∈

(0,+∞) is a parameter, the nonlinear term is super-

linear or sublinear.

Inspired by the above work, in this paper, we will

study the existence, the nonexistence and the multi-

plicity of positive solutions for the following question:

u′′′(t) = h(t)f(t, u(t)), t ∈ (0, 1), (9)

u(0) = σu(η), u′(η) = 0, u′′(1) = 0, (10)

where σ ∈ (0, 1), η ∈ [
1

2
, 1) are constants, we allow

nonlinear term h(t)f(t, u(t)) is singular at u = 0, t =
0, t = 1. Here, by a positive solution u∗ of boundary

value problem (9) and (10) which satisfies u∗ > 0, t ∈
(0, 1).

This paper is organized as follows. In section

2, we first present relevant definitions, theorems and

lemmas that will be used to prove our main results;

then construct a suitable cone and transform the prob-

lem (9) and (10) into an integral equation, and we

prove that the related integral operator is local com-

pletely continuous. In section 3, we establish the local

existence of positive solutions by applying the Guo-

Krasnosel’skii fixed point theorem of cone expansion-

compression type. In section 4, we give an example to

demonstrate the results which are obtained in section

3. Finally, section 5 concludes this paper.

2 Preliminary knowledge

Throughout this paper, we assume that

(H1) h : (0, 1)→ [0,+∞) is continuous, and

0 <

∫ 1

0
g(s)h(s)ds < +∞, (11)

where g(s) =
1

2(1− σ)min{s2, η2}.
(H2) f : (0, 1) × (0,+∞) → [0,+∞) is contin-

uous.

(H3) There exist continuous functions k : [0, 1]×
(0,+∞) → [0,+∞) and p : (0, 1) × (0,+∞) →
[0,+∞) such that

0 6 f(t, u)− k(t, u) 6 p(t, u),
(t, u) ∈ (0, 1)× (0,+∞).

(12)

(H4) p : (0, 1)× (0,+∞)→ [0,+∞) is a nonin-

creasing function about u for any 0 < t < 1.

(H5) For any ν > 0, we have

∫ 1

0
g(s)h(s)p(s, τν(s))ds < +∞. (13)

We allow that the nonlinear term h(t)f(t, u) is singu-

lar at t = 0, t = 1 and u = 0.

This paper will establish some general criteria for

the existence of single and multiple positive solutions

of the problem (9) and (10) under the assumptions

(H1)-(H5).

Then we set up a few relevant definitions, theo-

rems and lemmas that can be used in some main re-

sults’ proof.

Definition 1 Assume D and E are Banach spaces,

the operator T : D → E. If T put any bounded set

S onto the compact set (or the relatively compact set)

of the Banach space E in the Banach space D, then

T : D → E is called a compact operator.

Definition 2 Assume D and E are Banach spaces, if

the operator T : D → E is continuous and compact,

then the operator T that hit D into E is completely

continuous.

Definition 3 Assume E is a real Banach space, P is

a nonempty closed set, if it satisfies the following two

conditions:

(i) if x ∈ P and λ > 0, then λx ∈ P ;

(ii) if x ∈ P and −x ∈ P , then x = 0.

Then P is called a cone in E.

Definition 4 Assume S is Banach space, Tn : S →
S(n = 1, 2, 3, · · · ) is a completely continuous opera-

tor, T : S → S, if

lim
n→∞

max
||u||<r

||Tnu− Tu|| = 0, r > 0

then T is a completely continuous operator.

Theorem 5 The Arzela-Ascoli Theorem Assume X
is a compact metric space, C(X) is a Banach space,

if Φ ∈ C(X) is bounded and equicontinuous, i.e.:

(i) ”Φ ∈ C(X) is bounded” means that there ex-

ists a positive constantM <∞ such that |f(x)| 6M
for each x ∈ X and each f ∈ Φ.

(ii) ”Φ ∈ C(X) is equicontinuous” means that:

for every ǫ > 0 there exists δ > 0 (which depends only

on ǫ ) such that for x, y ∈ X:

d(x, y) < δ ⇒ |f(x)− f(y)| < ǫ, ∀f ∈ Φ,

where d is the metric onX . Then Φ is totally bounded

in C(X).
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Proof: In this proof’s processing, we consider that

the proof is divided into three steps:

Step 1. We show that the compact metric spaceX
is separable, i.e., has a countable dense subset S.

Given a positive integer n and a point x ∈ X , let

B(x,
1

n
) = {y ∈ X : d(x, y) <

1

n
},

the open ball of radius 1
n

, centered at x. For a given

n, the collection of all these balls as x runs through

X is an open cover of x, so (because X is compact)

there is a finite subcollection that also covers X . Let

Sn denote the collection of centers of the balls in this

finite subcollection. Thus Sn is a finite subset of X
that is ” 1

n
-dense” in the sense that every point of X

lies within 1
n

of a point Sn. Clearly the union S of all

the sets Sn is countable, and dense in X .

Step 2. We find a subsequence of {fn} that con-

verges point wise on S.

This is a standard diagonal argument. Let’s list

the (countably many) elements of S as {x1, x2, · · · }.
Then the numerical sequence {f1,n(x1)}∞n=1 is

bounded, so by Bolzano-Weierstrass, it has a con-

vergent subsequence, which we’ll write using double

subscripts: {f1,n(x1)}∞n=1. Now the numerical se-

quence {f1,n(x2)}∞n=1 is bounded, so it has a conver-

gent subsequence {f2,n(x2)}∞n=1. Note that the se-

quence of functions {f2,n}∞n=1, since it is a subse-

quence of {f1,n}∞n=1, converges at both x1 and x2.

Proceeding in this fashion, we obtain a countable col-

lection of subsequence of our original sequence:

f11 f12 f13 · · ·
f21 f22 f23 · · ·
f31 f32 f33 · · ·
· · · · · ·
· · · · · ·

where the sequence in the n-th row converges at the

points x1, · · · , xn, and each row is a subsequence of

the one above it.

Thus the diagonal sequence {fn,n} is a subse-

quence of the original sequence {fn} that converges

at each point of S.

Step3. Completion of the proof.

Let gn be the diagonal subsequence produced in

the previous step, convergent at each point of the

dense set S. Let ǫ > 0 be given, and choose δ > 0
by equicontinuity of the original sequence, so that

d(x, y) < δ implies

|gn(x)− gn(y)| <
ǫ

3

for each x, y ∈ X and each positive integer n. Fix

M > 1
δ

so that the finite subset SM ⊂ S that we

produced in Step 1 is δ-dense in X . Since {gn} con-

verges at each point of SM , there exists N > 0 such

that n,m > N ,

|Gn(s)− gm(s)| < ǫ

3
, ∀s ∈ SM (14)

Fix x ∈ X . Then x lies within δ of some s ∈ SM , so

if n,m > M :

|gn(x)− gm(x)| ≤ |gn(x)− gn(s)|
+|gn(s)− gm(s)|+ |gm(s)− gn(x)|

The first and last terms on the right are < ǫ
3 by

our choices of δ (which was possible because of the

equicontinuity of the original sequence), and the same

estimate holds for the middle term by our choice of N
in (2.4). In summary: given ǫ > 0 we have produced

N so that for each x ∈ X , as m,n > N ,

|gn(x)− gm(x)| < ǫ

3
+
ǫ

3
+
ǫ

3
= ǫ.

Thus onX the subsequence {gn} of {fn} is uniformly

Cauchy, and therefore uniformly convergent. This

complete the proof of the Arzela-Ascoli Theorem.

Lemma 6 Let u ∈ C[0,1]+ = {u ∈ C[0, 1], u(t) >

σ, t ∈ [0, 1]}, then the boundary value problem (9)

and (10) has only the solution:

u(t) =

∫ 1

0
G(t, s)h(s)f(s, u(s))ds, (15)

where

G(t, s) =





s2

2(1− σ) , 0 6 s 6 min{t, η}

−1

2
t2 + ts+

σs2

2(1− σ) ,

(0 6 t 6 s 6 η < 1)

1

2
s2 − ts+ ηt+

ση2

2(1− σ) ,

(12 6 η 6 s 6 t 6 1)

−1

2
t2 + ηt+

ση2

2(1− σ) ,

(s > max{t, η})

(16)

Proof: By assuming (H1), (H2), (H3), we know that

there is integral u(t) =
∫ 1
0 G(t, s)h(s)f(s, u(s))ds,

in fact, if u(t) is the solution of the boundary value

problem (9) and (10), then let

u(t) =
1

2

∫ 1

0
(t− s)2h(s)f(s, u(s))ds

+mt2 + nt+ q,
(17)
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Through the boundary value conditions (10), we can

get:

m = −1

2

∫ 1

0
h(s)f(s, u(s))ds, (18)

n = η

∫ 1

0
h(s)f(s, u(s))ds

−
∫ η

0
(η − s)h(s)f(s, u(s))ds, (19)

q =
ση2

2(1− σ)

∫ 1

0
h(s)f(s, u(s))ds− σ

2(1−σ)×∫ η

0
(η2 − s2)h(s)f(s, u(s))ds. (20)

So the boundary value problem (9) and (10) has a

unique solution:

u(t) =
1

2

∫ 1

0
(t− s)2h(s)f(s, u(s))ds

−1

2
t2
∫ 1

0
h(s)f(s, u(s))ds

+tη

∫ 1

0
h(s)f(s, u(s))ds

−t
∫ η

0
(η − s)h(s)f(s, u(s))ds

+
ση2

2(1− σ)

∫ 1

0
h(s)f(s, u(s))ds

− σ

2(1− σ)

∫ η

0
(η2 − s2)h(s)f(s, u(s))ds

=
1

2

∫ t

0
(t− s)2h(s)f(s, u(s))ds−

∫ η

0
(
σ(η2 − s2)
2(1− σ) + t(η − s))h(s)f(s, u(s))ds

−
∫ 1

0
(
t2

2
− ηt− ση2

2(1− σ))h(s)f(s, u(s))ds

=





∫ t

0

s2

2(1− σ)h(s)f(s, u(s))ds+∫ η

t

(−1

2
t2 + ts+

σs2

2(1− σ))h(s)f(s, u(s))ds+∫ 1

η

(−1

2
t2 + ηt+

ση2

2(1− σ))h(s)f(s, u(s))ds

(t 6 η)∫ η

0

s2

2(1− σ)h(s)f(s, u(s))ds+∫ t

η

(−1

2
s2 − ts+ ηt+

ση2

2(1− σ))h(s)f(s, u(s))ds

+

∫ 1

t

(−1

2
t2 + ηt+

ση2

2(1− σ))h(s)f(s, u(s))ds

(t > η)

=

∫ 1

0
G(t, s)h(s)f(s, t(s))ds.

Lemma 6 is proved. ⊓⊔

Lemma 7 For all the (t, s) ∈ [0, 1] × [0, 1], when

0 < σ < 1, 1
2 6 η < 1, we have

0 6 G(t, s) 6 g(s)

and

G(t, s) > σg(s),

where g(s) = 1
2(1−σ)min{s2, η2}.

Proof: Clearly G(t, s) > 0, and when s 6

min{t, η}, the conclusion is established.

When t 6 s 6 η, then

G(t, s) = −1

2
t2 + ts+

σs2

2(1− σ)
6

1

2
s2 +

σs2

2(1− σ)
=

s2

2(1− σ) ,

(21)

G(t, s) = −1

2
t2 + ts+

σs2

2(1− σ)
>

σs2

2(1− σ) .
(22)

When η 6 s 6 t, we have

G(t, s) =
1

2
s2 − ts+ tη +

ση2

2(1− σ)
=

1

2
s2 − 1

2
η2 − ts+ tη +

1

2
η2 +

ση2

2(1− σ)
=

1

2
(s− η)(s+ η)− t(s− η) + η2

2(1− σ)
= (s− η)(1

2
s+

1

2
η − t) + η2

2(1− σ)
6 (s− η)(1

2
t+

1

2
t− t) + η2

2(1− σ)
=

η2

2(1− σ) ,
(23)
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G(t, s) =
1

2
s2 − ts+ tη +

ση2

2(1− σ)
=

1

2
s2 − t(s− η) + ση2

2(1− σ)
>

1

2
s2 − (s− η) + ση2

2(1− σ)
=

1

2
s2 − s+ η +

ση2

2(1− σ)
>

1

2
s2 − s+ 1

2
+

ση2

2(1− σ)
=

1

2
(s− 1)2 +

ση2

2(1− σ)
>

ση2

2(1− σ) .

(24)

When maxt{η, t} 6 s, then

G(t, s) = −1

2
t2 + ηt+

ση2

2(1− σ)
6

η2

2(1− σ) ,
(25)

G(t, s) = −1

2
t2 + ηt+

ση2

2(1− σ)
>

1

2
t2 +

t

2
+

ση2

2(1− σ)
>

ση2

2(1− σ) .

(26)

Lemma 7 is proved. ⊓⊔
By Lemma 7, We can see that u(t) is the solution

of the boundary value problem (1.9) and (1.10) if and

only if u(t) =

∫ 1

0
G(t, s)h(s)f(s, u(s))ds, 0 6 t 6

1.

In the following paper, we will consider the prob-

lem (9) and (10) in Banach space. We denote Ba-

nach space E = C[0, 1], define the standard norm

||u|| = max
06t61

|u|, u ∈ E, cone

P = {u ∈ E/u(t) > 0, u(t) > σ||u||, t ∈ [0, 1]}
then P is a cone of nonnegative functions in C[0, 1].

Define the integral operator T : P → E as fol-

lows

(Tu)(t) =

∫ 1

0
G(t, s)h(s)f(s, u(s))ds

0 6 t 6 1, u ∈ P.
(27)

By the Lemma 7, we know (Tu)(t) > 0, u ∈ P, 0 6

t 6 1, and

(Tu)(t) =

∫ 1

0
G(t, s)h(s)f(s, u(s))ds

> σ

∫ 1

0
g(s)h(s)f(s, u(s))ds

> σ||Tu||

(28)

Therefore, T (P ) ⊂ P .

We also define Ω = {u ∈ P/||u|| < r}, ∂Ω =
{u ∈ P/||u|| = r}, and let

A =

[∫ 1

0
g(s)h(s)ds

]−1
,

B =

[∫ β

α

g(s)h(s)ds

]−1
,

0 < α < β < 1.

(29)

Lemma 8 Let 0 < a < b. Then T : (Ω(b)\Ω(a)) →
P is completely continuous.

Proof: By direct calculation, we know T (P ) ⊂ P .

Let u ∈ (Ω(b)\Ω(a)), then

aσ 6 ||u||σ 6 u(t) 6 ||u|| 6 b, 0 6 t 6 1, (30)

By the assumption (H4),

p(t, u(t)) 6 p(t, aσ), 0 < t < 1, (31)

By (H5),

∫ 1

0
g(s)h(s)p(s, aσ)ds < +∞, (32)

Let

pn(t, aσ) =





0, 0 6 t <
1

2n
,

(2nt− 1)p(t, aσ),
1

2n
6 t <

1

n

p(t, aσ),
1

n
6 t 6 1− 1

n

[2n(1− t)− 1]p(t, aσ),

1− 1

n
< t 6 1− 1

2n

0, 1− 1

2n
< t 6 1,

(33)

Then

∫ 1

0
g(s)h(s)[p(s, aσ)− pn(s, aσ)]ds

6

∫ 1

n

0
g(s)h(s)p(s, aσ)ds

+

∫ 1

1− 1

n

g(s)h(s)p(s, aσ)ds

→ 0, (n→ +∞)

(34)
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Let fn(t, u) = max{f(t, u), k(t, u)+pn(t, aσ)},
then fn : [0, 1] × [0,+∞) → [0,+∞) is continuous.

Define the operator Tn as follows

(Tnu)(t) =

∫ 1

0
G(t, s)h(s)fn(s, u(s))ds,

0 6 t 6 1.
(35)

Modeling the proof of Theorem 2.3 in [5] we can

prove Tn : P → C[0, 1] is completely continuous

by the continuity of fn(t, u(t)) and the Theorem 5.

Direct computations give that

sup ||Tu− Tnu||

= sup
u∈Ω(b)\Ω(a)

max
06t61

∫ 1

0
G(t, s)h(s)f(s, u(s))ds−

sup
u∈Ω(b)\Ω(a)

max
06t61

∫ 1

0
G(t, s)h(s)fn(s, u(s))ds

6 sup
u∈Ω(b)\Ω(a)

∫ 1

0
g(s)h(s)p(s, aσ)ds−

sup
u∈Ω(b)\Ω(a)

∫ 1

0
g(s)h(s)pn(s, aσ)ds

=

∫ 1

0
g(s)h(s)[p(s, aσ)− pn(s, aσ)]ds

→ 0, (n→ +∞)
(36)

It shows that the completely continuous operator

Tn converges to the operator T uniformly on the set

Ω(b)\Ω(a). Hence, T : (Ω(b)\Ω(a)) → P is a com-

pletely continuous operator.

Our approach is based on the following Guo-

Krasnosel’skii fixed point theorem of cone expansion-

compression type.

Theorem 9 Let E be a Banach space, and P ⊂ E be

a cone in E. Assume Ω1,Ω2 are bounded open subset

of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let T : P ∩
(Ω2\Ω1) → P be a completely continuous operator

such that, either

(A): ||Tu|| 6 ||u||, ∀u ∈ P ∩ ∂Ω1, and ||Tu|| >
||u||, ∀u ∈ P ∩ ∂Ω2,

or

(B): ||Tu|| > ||u||, ∀u ∈ P ∩ ∂Ω1, and ||Tu|| 6
||u||, ∀u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2\Ω1).

3 Main results and proof

We introduce the following height functions:

ϕ(r) = max{k(t, u) : 0 6 t 6 1, rσ 6 u 6 r},
ψ(r) = min{f(t, u) : α 6 t 6 β, rσ 6 u 6 r}.

(37)

In addition, we denote

w(r) =

∫ 1

0
g(s)h(s)p(s, rσ)ds.

Theorem 10 is an existence criterion for a posi-

tive solution of the singular problem (1.9) and (1.10).

The theorem shows that the existence of a positive so-

lution depends only on the properties of the nonlinear

term f(t, u(t)) on the bounded set {(t, u) : 0 < t <
1, aσ 6 u 6 b} and is independent of the states of

f(t, u(t)) outside the set.

Theorem 10 Assume that there exist two positive

numbers a < b such that one of the following con-

ditions is satisfied:

(a) ϕ(a) 6 (a− w(a))A,ψ(b) > bB.

(b) ϕ(b) 6 (b− w(b))A,ψ(a) > aB.

Then the problem (9) and (10) has at least one positive

solution u∗ ∈ P such that

a 6 ||u∗|| 6 b.

Proof: Without loss of generality, we prove only the

case (a).

If u ∈ ∂Ω(a), then ||u|| = a, and aσ 6 u(t) 6

a, 0 6 t 6 1. From this, k(t, u(t)) 6 ϕ(a) 6 (a −
w(a))A, p(t, u(t)) 6 p(t, bσ), 0 6 t 6 1. It follows

||Tu|| = max
06t61

∫ 1

0
G(t, s)h(s)f(s, u(s))ds

6

∫ 1

0
g(s)h(s)f(s, u(s))ds

6

∫ 1

0
g(s)h(s)[k(s, u(s)) + p(s, u(s))]ds

6

∫ 1

0
g(s)h(s)k(s, u(s))ds

+

∫ 1

0
g(s)h(s)p(s, aσ)ds

6 (a− w(a))A
∫ 1

0
g(s)h(s)ds+ w(a)

= (a− w(a))AA−1 + w(a)
= a = ||u||.

(38)

If u ∈ ∂Ω(b), then ||u|| = b, and bσ 6 u(t) 6

b, 0 6 t 6 1. Thus f(t, u(t)) > ψ(b) > bB, α 6 t 6
β. It follows

||Tu|| = max
α6t6β

∫ β

α

G(t, s)h(s)f(s, u(s))ds

>

∫ β

α

σg(s)h(s)f(s, u(s))ds

> bB

∫ β

α

g(s)h(s)ds

> bBB−1 = b = ||u||.
(39)
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So, by Theorem 9 and Lemma 8, the operator T has

one fixed point u∗ ∈ P ∩ (Ω(b)\Ω(a)). Thus (9) and

(10) has at least one positive solution. ⊓⊔
Theorem 11 Assume that there exist three positive

numbers a < b < c such that one of the following

conditions is satisfied:

(c) ψ(a) > aB,ϕ(b) < (b−w(b))A,ψ(c) > cB.

(d) ϕ(a) 6 (a − w(a))A,ψ(b) > bB, ϕ(c) 6

(c− w(c))A.

Then the boundary value problem (9) and (10) has at

least two different positive solutions u∗1, u
∗
2 ∈ P such

that

a 6 ||u∗1|| < b < ||u∗2|| 6 c.

Proof: Without loss of generality, we prove only the

case (d).

Applying the assumptions ϕ(a) 6 (a −
w(a))A,ψ(b) > bB and copying the proof of Theo-

rem 10, we see that the boundary value problem (1.9)

and (1.10) has at least one positive solution u∗1 ∈ P
such that a 6 ||u∗1|| < b. Similarly, the prob-

lem (9) and (10) has at least one positive solution

u∗2 ∈ P such that b < ||u∗2|| 6 c by the assumption

ψ(b) > bB,ϕ(c) 6 (c − w(c))A. Thus, the conclu-

sion is established. ⊓⊔
Theorem 12 Assume that there exist four positive

numbers a < b < c < d such that one of the following

conditions is satisfied:

(e) ψ(a) > aB, ϕ(b) < (b − w(b))A, ψ(c) >
cB,ϕ(d) 6 (d− w(d))A.

(f) ϕ(a) 6 (a − w(a))A,ψ(b) > bB, ϕ(c) <
(c− w(c))A,ψ(d) > dB.

Then the boundary value problem (9) and (10) has at

least three different positive solutions u∗1, u
∗
2, u

∗
3 ∈ P

such that

a 6 ||u∗1|| < b < ||u∗2|| < c < ||u∗3|| 6 d.

Theorem 13 Assume that there exist n + 1 positive

numbers a1 < a2 < · · · < an+1 such that one of the

following conditions is satisfied:

(g) ψ(a2k) > a2kB, k = 1, 2, · · · , [n+1
2 ],

ϕ(a2k−1) < (a2k−1 − w(a2k−1))A, k =
1, 2, · · · , [n+2

2 ].

(h) ψ(a2k−1) > a2k−1B, k = 1, 2, · · · , [n+2
2 ],

ϕ(a2k) < (a2k − w(a2k))A, k = 1, 2, · · · , [n+1
2 ].

Then the boundary value problem (9) and (10) has at

least n positive solutions u∗k ∈ P, k = 1, 2, · · · , n
such that

ak < ||u∗k|| < ak+1.

If lim
u→0+

inf min
α6t6β

f(t, u) > 0 (particulary,

lim
u→0+

inf min
α6t6β

f(t, u) = +∞), we have the follow-

ing existence theorems.

Corollary 14 Assume lim
u→0+

inf min
α6t6β

f(t, u) > 0

and there exists a positive number b > 0 such that

ϕ(b) 6 (b− w(b))A.

Then the boundary value problem (1.9) and (1.10) has

at least one positive solution u∗ ∈ P such that

0 < ||u∗|| 6 b.

Proof: Since lim
u→0+

inf min
α6t6β

f(t, u) > 0, then there

exists a > 0 such that 0 < a < b, and f(t, u) >

aB, (t, u) ∈ [α, β]× [0, a]. It follows ψ(a) > aB.

Thus the boundary value problem (9) and ((10)

has at least one positive solution u∗ ∈ P such that

0 < a 6 ||u∗|| 6 b by Theorem 10. ⊓⊔

Corollary 15 Assume lim
u→0+

inf min
α6t6β

f(t, u) > 0

and there exist two positive numbers 0 < a < b such

that

ϕ(a) 6 (a− w(a))A,ψ(b) > bB.

Then the boundary value problem (1.9) and (1.10) has

at least two positive solutions u∗1, u
∗
2 ∈ P such that

0 < ||u∗|| 6 a 6 ||u∗2|| 6 b.

Proof: The proof is completed by Theorem 10 and

Corollary 14.

Corollary 16 Assume lim
u→0+

inf min
α6t6β

f(t, u) > 0

and there exist n positive numbers a1 < a2 < · · · <
an such that

ϕ(a2k−1) < (a2k−1 − w(a2k−1))A,
k = 1, 2, · · · , n+ 1

2
,

ψ(a2k) > a2kB, k = 1, 2, · · · , n
2
.

Then the boundary value problem (9) and (10) has at

least n positive solutions u∗k ∈ P, k = 1, 2, · · · , n
such that

0 < ||u∗1|| < a1 < ||u∗2|| < a2 < · · · < ||u∗n|| < an.

The following corollary is convenient for the ex-

istence of a single positive solution.

Corollary 17 Assume ψ(a) > aB, and lim
r→+∞

ϕ(r)−
(r − w(r))A 6 0, a ∈ (0,+∞). Then the boundary

value problem (9) and (10) has at least one positive

solution u∗ ∈ P .
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Proof: If u ∈ ∂Ω(a), then ||u|| = a and aσ 6 u 6 a,

it follows

f(t, u) > ψ(a) > aB, α 6 t 6 β.

Thus we have

||Tu|| >

∫ β

α

σg(s)h(s)f(s, u(s))ds

> aB

∫ β

α

σg(s)h(s)ds

= aBB−1 = a = ||u||,
∀u ∈ P ∩ ∂Ω(a).

(40)

There exists R > 0 such that ϕ(r) 6 (r −
w(r))A, and ||u|| = R for any u ∈ P by

lim
r→+∞

ϕ(r) − (r − w(r))A 6 0. Therefore, we can

get

||Tu|| 6

∫ 1

0
g(s)h(s)f(s, u(s))ds

6

∫ 1

0
g(s)h(s)[k(s, u(s)) + p(s, u(s))]ds

6

∫ 1

0
g(s)h(s)k(s, u(s))ds

+

∫ 1

0
g(s)h(s)p(s,Rσ)ds

6 (R− w(R))A
∫ 1

0
g(s)h(s)ds+ w(R)

= R = ||u||.
(41)

Therefore the operator T has at least one fixed point

u∗ ∈ P ∩ (Ω(R)\Ω(a)) such that ||Tu∗|| = ||u∗||,
that is to say u∗ is a positive solution of the boundary

value problem (9) and (10). ⊓⊔

Corollary 18 Assume for any r ∈ (0,+∞), we have

ψ(r) − rB

σ2
> 0. Then the boundary value problem

(9) and (10) has no positive solution.

Proof: Here we apply reduction to absurdity. Assume

the boundary value problem (9) and (10) has at least

one positive solution ũ(t), clearly, ũ(t) ∈ P .

Due to ψ(r) − rB

σ2
> 0, then there exists a con-

stant r ∈ [0,+∞) such that

f(t, r) >
rB

σ2
, t ∈ (α, β).

Thus

||ũ(t)|| =

∫ 1

0
G(t, s)h(s)f(s, ũ(s))ds

>

∫ 1

0
σg(s)h(s)f(s, ũ(s))ds

>

∫ β

α

σg(s)h(s)f(s, ũ(s))ds

>
B

σ2

∫ β

α

σg(s)h(s)ũ(s)ds

>
B

σ

∫ β

α

g(s)h(s)ds · σ||ũ||
= BB−1||ũ|| = ||ũ||.

(42)

That is a contradiction. Therefore the boundary value

problem (9) and (10) has no positive solution. ⊓⊔

4 Example

We consider the boundary value problem as follows

u′′′(t) =
1

t(1− t) 1

4

· [ ut
100

+
eu

u
1

8 t
1

4 (1− t) 1

4

],

0 < t < 1,
(43)

u(0) =
1

4
u(

3

4
), u′(

3

4
) = 0, u′′(1) = 0. (44)

where

σ = 1
4 , η = 3

4 , a(t) = 1

t(1−t)
1
4

,

f(t, u) = ut
100 + eu

u
1
8 t

1
4 (1−t)

1
4

, ϕ(r) = r
100 ,

w(r) =
∫ 1
0 g(s)a(s)p(s, rσ)ds.

When s <
3

4
, then

g(s) =
s

2(1− σ) =
2s

3
,

A = [

∫ 1

0
g(s)a(s)ds]−1

= [

∫ 1

0

1

s(1− s) 1

4

· 2s
3
ds]−1

= 1.875,

B = [

∫ β

α

g(s)a(s)ds]−1

= [

∫ 3

4

1

4

1

s(1− s) 1

4

· 2s
3
ds]−1

= 0.7538,

k(t, u) =
ut

100

p(t, u) =
1

u
1

8 t
1

4 (1− t) 1

4

ϕ(r) =
r

100

ψ(r) >

√
2

r
1

8

.
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Let a = 0.2, b = 4, then

ϕ(b) 6 (b− w(b))A,ψ(a) > aB.

Therefore, the boundary value problem (43)-(44) has

at least one positive solution by Theorem 10.

5 Conclusion

In this paper we considered the existence and mul-

tiplicity of positive solutions for a class of singular

third-order three-point boundary problem (9) and (10)

by using Guo-Krasnosel’skii fixed point theorem of

cone expansion-compression type, we got the condi-

tions that the boundary value problem (9) and (10)

had one, two, · · · , n positive solutions, meanwhile,

we gave the conditions that the problem (9) and (10)

had no positive solution. Finally, we validated the re-

sults that we have obtained by an example.
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