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Abstract: Kalman filter is one of common ways of dealing with dynamic data under linear minimum variance
estimation. However, in practice, the observation matrix maybe has multicollinearity. Therefore, the impact of
multicollinearity on Kalman filter is studied in this paper. Firstly, by analyzing the normal equation of Kalman
filter, we proposed sufficient conditions about how the multicollinearity affects the estimator. Secondly, a ridge-
type Kalman filter algorithm is designed under the mean square error (MSE), and then the characters of the new
algorithm are analyzed. Thirdly, six specific methods for determining the ridge parameters of ridge-type Kalman
filter are proposed based on the canonical form of normal equation. Finally, examples illustrate the new algorithms
can overcome the influence of the ill-condition on Kalman filter effectively, which improves the accuracy of the
estimates of parameters.
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1 Introduction

Kalman filter soon became one of most common ways
of dealing with dynamic data since it was proposed in
1960[1]. The equations of Kalman filter are recursion
formula and the calculation of it is a continuous pro-
cess for predicting and revising. Kalman filter does
not need to store a mass of data when calculating. The
amount of calculation is greatly cut down, and it can
handle the estimation problem in real time[2]. There-
fore, Kalman filter has been widely used in engineer-
ing [3-7].

The discrete linear system of Kalman filter con-
sists of state equation and observation equation [4,5].
When we only use observation equation to obtain
the solutions under least square method(LS), the nor-

mal equation appears ill-conditioned if the observa-
tion matrix is multicollinearity. Then the estimators
of the state parameters will be influenced by the ill-
condition, leading to poor accuracy. However, the
state equation in the discrete linear system supplies
much more information for estimating parameters.
Thus, it remains to demonstrate whether the informa-
tion supplied by state equation can effectively control
the ill-condition of normal equation so as to improve
the estimating accuracy or not. Few approaches have
been proposed in the literature for analyzing this prob-
lem, not mention to give a nature scheme.

In this paper, Kalman filter and its algorithm are
introduced in Section 2. Section 3 analyzes the ill-
condition of normal equation of Kalman filter caused
by multicollinearity of observation matrix, and illus-
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trates the effect of state equation in controlling the ill-
condition. A new type of filterłridge-type Kalman fil-
ter is proposed by combining ridge regression estima-
tion with Kalman filter in the sense of the MSE in Sec-
tion 4. Besides, some characters of the new algorithm
are given in this section. Six methods to determine the
ridge parameter of ridge-type Kalman filter are given
in Section 5. In Section 6, the new algorithm is sim-
ulated and analyzed. Finally, some brief conclusions
are given in Section 7.

2 Kalman Filter and Its Algorithm

2.1 Discrete Linear System
It is assumed that state equation and observation equa-
tion are as follows:

Xk = Φk,k−1Xk−1 +Wk−1, (1)

Zk = HkXk + Vk, (2)

respectively, whereXk denotes a p×1 vector describ-
ing the state of the system at time tk and Zk is the
observation. The p×p matrix Φk,k−1 is the state tran-
sition matrix at time at time tk. The n× p matrix Hk

is the observation matrix. The vectors Wk−1 and Vk
is the system noise and the observation noise, respec-
tively.

It is assumed that
E(Wk) = 0, Cov(Wk,Wj) = Qkδk,j
E(Vk) = 0, Cov(Vk, Vj) = Rkδk,j
Cov(Wk, Vj) = 0

where the system noise covariance Qk is assumed to
be a non-negative definite matrix and the observation
noise covariance Rk is assumed to be a positive def-
inite matrix. δk,j is the function of the Kronecher -
δ.

2.2 Kalman Filter Algorithm
Kalman filter estimates a system by using a form of
feedback control: the filter estimates the state param-
eters at some time and then obtains feedback in the
form of (noisy) observations[1]. As such, the equa-
tions for Kalman filter fall into two groups: time up-
date equations and observation update equations.

The specific equations for the time and observa-
tion updates are presented below in Table 1 and Table
2 respectively, where X̂k,k−1 and Pk/k−1 are the pre-
diction state and the prediction covariance at time tk.
Kk is the filter gain and Pk is the error covariance ma-
trix of the estimator X̂k.

Table 1: The time update equations of Kalman filter
at time tk

X̂k/k−1 = Φk,k−1X̂k−1 (3)

Pk/k−1 = Φk,k−1Pk−1Φ
T
k,k−1 +Qk−1 (4)

Table 2: The observation update equations of Kalman
filter at time tk
Kk = Pk/k−1H

T
k (HkPk/k−1H

T
k +Rk)

−1 (5)

X̂k = X̂k/k−1 +Kk(Zk −HkX̂k/k−1) (6)

Pk = (I −KkHk)Pk/k−1(I −KkHk)
T

+KkRkK
T
k (7)

Equations (3)-(7) are the basic equations of
Kalman filter. Once the initial state value X̂0 and er-
ror covariance matrix P0 are given, the state estimator
X̂k (k = 1,2,· · · ) at time tk can be recursively obtained
based on the observation Zk.

3 Analysis of the Ill-condition
If the observation equation (2) is used only, the LSE
[6,7] of state parameters at time tk is

X̂k(LS) = (HT
k R

−1
k Hk)

−1HT
k R

−1
k Zk. (8)

Concluded from perturbation analysis theory, the
solution of the equation above will be greatly influ-
enced by the ill-condition when the observation ma-
trix Hk appears multicollinearity.

Equation (6) can be transformed as the following
form,

X̂k = (HT
k R

−1
k Hk + P−1

k/k−1)
−1(HT

k R
−1
k Zk

+P−1
k/k−1X̂k/k−1), (9)

where HT
k R

−1
k Hk + P−1

k/k−1 is called the normal ma-
trix. Equation (9) is the solution of the linear equation
(10),

(HT
k R

−1
k Hk + P−1

k/k−1)Xk = HT
k R

−1
k/k−1Zk

+P−1
k/k−1X̂k/k−1 (10)

which is the normal equation of Kalman filter.
The solution of Kalman filter is expected to be

better than LSE when the state equation supplies
more information. The format of Equation (9) looks
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much similar to that of the solution of Tikhonov reg-
ularization [8]. Tikhonov regularization is the most
commonly used method of regularization of ill-posed
problems. In statistics, the method is known as ridge
regression, and, with multiple independent discover-
ies, it is also variously known as the Tikhonov-Miller
method, the Phillips-Twomey method, the constrained
linear inversion method, and the method of linear reg-
ularization. Outwardly it seems that Equation (9) is
improved from Equation (8) with Tikhonov regular-
ization method, intending to improve the accuracy.
But as a matter of fact, P−1

k/k−1 may not improve

the extent of normal matrix HT
k R

−1
k Hk + P−1

k/k−1 to
be singular, because it is not a proper regularization
matrix that fits Tikhonov regularization method, but
one that has to be accepted in the solution process of
Kalman filter. However, the ill-condition of normal
equation is still influenced by P−1

k/k−1.
The condition number as follows is commonly

used to quantitatively describe the ill-condition of nor-
mal equation.

Cond(Nk) =
λ1k
λpk
,

where Nk denotes the normal matrix at time tk,
and its spectral decomposition is UT

k NkUk =
diag(λ1k, λ

2
k, · · · , λ

p
k) . λ1k ≥ λ2k ≥ · · · ≥ λpk are the

eigenvalues of Nk , and Uk = (U1
k , U

2
k , · · · , U

p
k ) is a

orthogonal matrix formed by the orthogonal eigenvec-
tors U1

k , U
2
k , · · · , U

p
k which are corresponding to their

eigenvalues. Obviously, the information supplied by
state equation in normal matrix mainly embody on
P−1
k/k−1.

It is assumed that the spectral decomposi-
tion of the normal matrix HT

k R
−1
k Hk + P−1

k/k−1 is

UT
k (H

T
k R

−1
k Hk+P

−1
k/k−1)Uk =diag(λ1k, λ

2
k, · · · , λ

p
k).

If HT
k R

−1
k Hk and P−1

k/k−1 can simultaneously be
diagonalized, that is

UT
k (H

T
k R

−1
k Hk)Uk = diag(λ11k , λ

12
k , · · · , λ

1p
k ),

UT
k (P

−1
k/k−1)Uk = diag(λ21k , λ

22
k , · · · , λ

2p
k ),

the relationship of their eigenvalues is λik = λ1ik +λ2ik .
When Cond(Nk) ≥ a , we identify that nor-

mal equation is ill-conditioned. Therefore, if Nk =

HT
k R

−1
k Hk is ill-conditioned, we can obtain λ11

k

λ1p
k

=

c ≥ a. After adding to the matrix P−1
k/k−1, it can be

concluded that:

(1)
λ1k
λpk

=
λ11 + λ21

λ1p + λ2p
> c, for

λ21k
λ2pk

> c

P−1
k/k−1 strengthens the ill-condition of normal equa-

tion in this case.

(2)
λ1k
λpk

=
λ11 + λ21

λ1p + λ2p
= c, for

λ21k
λ2pk

= c

P−1
k/k−1 gets no impact on the ill-condition of normal

equation in this case.

(3)
λ1k
λpk

=
λ11 + λ21

λ1p + λ2p
< c, for

λ21k
λ2pk

< c

P−1
k/k−1 weakens the ill-condition of normal equation

in this case.
From the basic equations of Kalman filter, it can

be concluded that P−1
k/k−1 = [E((Xk−X̂k/k−1)(Xk−

X̂k/k−1)
T )]−1 is unlikely to have stronger multi-

collinearity. So the matrix P−1
k/k−1 can weaken the ill-

condition of normal equation to some extent in most
cases. However, the state estimator is still greatly in-
fluenced by the ill-condition.

4 Ridge-Type Kalman Filter Algo-
rithm and Its Characters

4.1 Ridge-Type Kalman Filter and Its Algo-
rithm

To solve the problem that Kalman filter is easily in-
fluenced by the ill-condition, inspired by ridge re-
gression estimation [9], we replace (HT

k R
−1
k Hk +

P−1
k/k−1)

−1 in Equation (9) by the following formula
in the new algorithm,

(HT
k R

−1
k Hk + P−1

k/k−1 + λI)−1, (11)

where λ > 0 is the ridge parameter and I is a p × p
unit matrix.

The ridge-type Kalman filter algorithm is de-
signed as follows.

The specific equations for the time and observa-
tion updates of ridge-type Kalman filter are presented
below in table 3 and table 4, where the symbol RT
means ridge-type Kalman filter.

Table 3: The time update equations of Kalman filter
at time tk

X̂k/k−1 = Φk,k−1X̂k−1

Pk/k−1 = Φk,k−1Pk−1Φ
T
k,k−1 +Qk−1
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Table 4: The observation update equations of Kalman
filter at time tk
X̂k(RT ) = (HT

k R
−1
k Hk + P−1

k/k−1 + λI)−1

(HT
k R

−1
k Zk + P−1

k/k−1X̂k/k−1) (12)

Pk(RT ) = (HT
k R

−1
k Hk + P−1

k/k−1 + λI)−1

(HT
k R

−1
k Hk + P−1

k/k−1 + λ2XkX
T
k )

(HT
k R

−1
k Hk + P−1

k/k−1 + λI)−1

The matrix XkX
T
k is replaced by

X̂k(RT )X̂
T
k (RT ) if it is unknown.

The state estimator varies if we choose different
λ. Therefore, ridge-type Kalman filter is a class of
estimators.

Kalman filter is a periodic recursion process. The
state estimator and the error covariance matrix will be
used as updates for the next period. The state esti-
mator at time tk becomes more precise when it is im-
proved by the new algorithm. When working on state
estimator at time tk+1, it is necessary to replace the
original updates of Kalman filter with that of the new
algorithm. Then the state estimator at time tk+1 will
be better than that of Kalman filter estimate.

The algorithm of Kalman filter during a filter pe-
riod is a closed system under linear minimum vari-
ance. That is to say, unbiasedness of the state esti-
mator at time tk+1 will not be influenced by the state
estimator at time tk. Therefore, the specific equations
for the time and observation updates are presented be-
low in Table 5 and Table 6.

Table 5: The time update equations of ridge-type
Kalman filter at time tk+1

X̂k+1/k(RT ) = Φk+1,kX̂k(RT )

Pk+1/k = Φk+1,kPk(RT )Φ
T
k+1,k +Qk

Table 6: The observation update equations of ridge-
type Kalman filter at time tk+1

X̂k+1 = (HT
k+1R

−1
k+1Hk+1 + P−1

k+1/k)
−1

(HT
k+1R

−1
k+1Zk+1 + P−1

k+1/kX̂k+1/k)

Pk+1 = (HT
k+1R

−1
k+1/kHk+1 + P−1

k+1/k)

If the observation matrix at time still tk+1 has
stronger multicollinearity, it has to be improved again
with the new algorithm. The new algorithm sacrifices
the unbiasedness of the estimator to obtain a smaller

MSE. So if the observation matrix at time tk+1 has no
or less multicollinearity, the ill-condition of the nor-
mal equation has less influence on Kalman filter. Then
there is no need to sacrifice the unbiasedness of the es-
timator for minor MSE.

4.2 Characters of the New Algorithm
1) The estimator of ridge-type Kalman filter is the

linear transformation of that of Kalman filter.

Proof: From equation (9) and (12) it is readily estab-
lished that

X̂k(RT ) = BkX̂k, (13)

whereBk =(HT
k R

−1
k Hk+P

−1
k/k−1+λI)

−1(HT
k R

−1
k Hk+

P−1
k/k−1).

2) The estimator of ridge-type Kalman filter is a
biased estimator of the state parameter Xk.

Proof: Concluded from equation (13), the expecta-
tion of the state estimator X̂k(RT ) is

E(X̂k(RT )) = E(BkX̂k) = BkE(X̂k) = BkXk.

It is biased for λ > 0.

3) There always exists λ > 0 such that
MSE(X̂k(RT )) < MSE(X̂k). That is to say, there
always exists X̂k(RT ) that is more accurate than X̂k

in the sense of the MSE.

Proof: The canonical form of the linear equation (10)
is introduced in order to compute the MSE easier[10].

HT
k R

−1
k Zk + P−1

k/k−1X̂k/k−1 = Akαk,

where Ak = (HT
k R

−1
k Hk + P−1

k/k−1)Uk; αk =

(α1
k, α

2
k, · · · , α

p
k)

T = UT
k Xk is called the canoni-

cal parameter. Uk = (u1k, u
2
k, · · · , u

p
k)

T is a orthog-
onal matrix formed by the orthogonal eigenvectors
u1k, u

2
k, . . . , u

p
k which are corresponding to their eigen-

values. Therefore,

UT
k (H

T
k R

−1
k Hk + P−1

k/k−1)Uk = Λk,

where Λk = diag(λ1k, λ
2
k, · · · , λ

p
k) is a diagonal

matrix containing the eigenvalues of HT
k R

−1
k Hk +

P−1
k/k−1.

The LSE of the canonical parameter αk is

α̂k = (α̂1
k, α̂

2
k, · · · , α̂

p
k)

T

= Λ−1
k UT

k (H
T
k R

−1
k Zk + P−1

k/k−1X̂k/k−1).
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From the canonical form, it can be concluded
that X̂k = Ukα̂k, and MSE(X̂k) = MSE(α̂k),
and they are correct in the general situation. That is,
MSE(X̃k) = MSE(α̃k) for any estimator of αk.
The ridge-type Kalman filter estimator of the canon-
ical parameter αk is α̂k(RT ) = (Λk + λI)−1Λkα̂k.
Hence,

MSE(X̂k(RT )) =MSE(α̂k(RT ))

= trace(Cov(α̂k(RT )))+ || E(α̂k(RT ))− αk ||2

=

p∑
i=1

λik
(λik + λ)2

+ λ2
p∑

i=1

(αi
k)

2

(λik + λ)2

= g(λ)

The derivation of g(λ) is

g′(λ) = −2
p∑

i=1

λik
(λik + λ)3

+ 2λ

p∑
i=1

λik(α
i
k)

2

(λik + λ)3
.

Because g′(λ) is a continuous function of λ
when λ > 0, besides limλ→0 g

′(λ) exists and it
is negative, there always exists δ > 0 making
g′(λ) < 0 for 0 < λ < δ [11]. That is to say,
g(λ) = MSE(X̂k(RT )) is a decreasing function of
λ in the interval (0, δ). Therefore, there always exists
λ ∈ (0, δ) making g(λ) < limλ→0 g(λ) which means
MSE(X̂k(RT )) < MSE(X̂k).

4) The estimator X̂k(RT ) is the compression of
the estimator X̂k to the origin.

Proof: By calculating, it is clear that

|| X̂k(RT ) ||2 =|| (Λk + λI)−1ΛkU
T
k X̂k ||2

<|| UT
k X̂k ||2=|| X̂k ||2

5 Choosing the Ridge Parameter
It is important to choose an appropriate ridge param-
eter in practice. Six specific methods are proposed
based on the analysis of the MSE in Section 4.

It is clear that

g′(λ) < 0 , for 0 < λ <
1

(α̂i
k)

2
max

,

and
g′(λ) > 0 , for

1

(α̂i
k)

2
min

< λ ,

where (α̂i
k)

2
max is the maximum element of α̂2

k and
(α̂i

k)
2
min is the minimum element of α̂2

k.

Thus, there exists a unique minimum of MSE for
λ > 0, which lies in the interval

[
1

(α̂i
k)

2
max

,
1

(α̂i
k)

2
min

].

It is expected to get a ridge parameter making use
of the known data, which makes MSE(X̂k(RT )) <

MSE(X̂k). Therefore, six specific methods to obtain
the ridge parameter are proposed based on different
criteria.

Method(1):

λ =
1

(α̂i
k)

2
max

Method(2):

λ =
p

p∑
i=1

(α̂i
k)

2
=

p

α̂T
k α̂k

=
p

X̂T
k X̂k

Method(3)

λ =

p∑
i=1

(λikα̂
i
k)

2

[
p∑

i=1
λik(α̂

i
k)

2
]2

Method(4)

λ =
1

p

p∑
i=1

1

(α̂i
k)

2

Method(5)

λ =
1

[
∏p

i=1(α̂
i
k)

2]
1
p

Method(6)

λ =Median
1≤i≤p

| 1

(α̂i
k)

2
|

Compared with methods to obtain the ridge pa-
rameter in ridge regression estimate [9,12,13], the for-
mulas mentioned above do not need to compute the
residual sum of squares, so it is more convenient.

However, no one can be comprehensively better
than the others, even though there are many methods
to obtain the ridge parameter.
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6 Simulations and Analysis
Computer simulations are used to verify the validity of
the new algorithm described in the previous sections.
We consider a discrete linear system described by the
state equation (1) and observation equation (2), where
state Xk ∈ R4×1 is estimated. The state transition
matrix Φk,k−1, observation matrix Hk, system noise
covarianceQk−1 and observation noise covarianceRk

are set as follows:

Φk,k−1 = I4 ,

Hk =



1 −1 1 0

−2 4.2 0 1

3 −2 4 8

−1 2 0 0

0 1 1 2


,

Qk−1 = 0.12 × I4 ,

Rk = 0.52 × I5 ,

The initial value is X̂0 = X0+0.001×[1 1 1 1]T

where X0 = [2 4 6 8]T and the initial error covari-
ance matrix is P0 = I4.

The condition number of the normal matrix
HT

k R
−1
k Hk is 5.5 × 104, which means that normal

equation is ill-conditioned seriously. Choosing the
ridge parameter λ by means of methods (1-6) and
compared the new algorithm proposed in this paper
with Kalman filter, the results are described as Fig.1-
Fig.24.
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Fig. 1: Comparison of condition number between
Kalman filter and ridge-type Kalman filter when the
ridge parameter is determined by method(1)
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Fig. 2: Choosing the ridge parameter by means of
method(1)
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Fig. 3: Comparison of Euclidean distance between
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ridge parameter is determined by method(1)
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Fig. 4: Comparison of MSE between Kalman filter
and ridge-type Kalman filter when the ridge parameter
is determined by method(1)
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Fig. 5: Comparison of condition number between
Kalman filter and ridge-type Kalman filter when the
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Fig. 6: Choosing the ridge parameter by means of
method(2)
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Fig. 7: Comparison of Euclidean distance between
Kalman filter and ridge-type Kalman filter when the
ridge parameter is determined by method(2)
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Fig. 8: Comparison of MSE between Kalman filter
and ridge-type Kalman filter when the ridge parameter
is determined by method(2)
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Fig. 9: Comparison of condition number between
Kalman filter and ridge-type Kalman filter when the
ridge parameter is determined by method(3)
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Fig. 10: Choosing the ridge parameter by means of
method(3)
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Fig. 11: Comparison of Euclidean distance between
Kalman filter and ridge-type Kalman filter when the
ridge parameter is determined by method(3)
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Fig. 12: Comparison of MSE between Kalman filter
and ridge-type Kalman filter when the ridge parameter
is determined by method(3)
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Fig. 13: Comparison of condition number between
Kalman filter and ridge-type Kalman filter when the
ridge parameter is determined by method(4)
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Fig. 14: Choosing the ridge parameter by means of
method(4)
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Fig. 15: Comparison of Euclidean distance between
Kalman filter and ridge-type Kalman filter when the
ridge parameter is determined by method(4)
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Fig. 16: Comparison of MSE between Kalman filter
and ridge-type Kalman filter when the ridge parameter
is determined by method(4)
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Fig. 17: Comparison of condition number between
Kalman filter and ridge-type Kalman filter when the
ridge parameter is determined by method(5)
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Fig. 18: Choosing the ridge parameter by means of
method(5)

It can be concluded from Fig.1-Fig.24 that:
1) P−1

k/k−1 reduces the condition number of

HT
k R

−1
k Hk + P−1

k/k−1 to some extent, compared with

that of HT
k R

−1
k Hk. That is to say, information sup-

plied by state equation controls the ill-condition of
normal equation. However, normal equation still has
stronger ill-condition.

2) New algorithm weakens the ill-condition of
normal equation all the time, no matter which way is
chosen to obtain the ridge parameter. The new algo-
rithm works better than Kalman filter in the sense of
the MSE. The advantage becomes more evident when
time lapse.

3) The new algorithm has better controlled on
the ill-condition of normal equation and it decreases
the MSE well using Method(5) or Method(6) to de-
termine the ridge parameter, compared within Fig.1-
Fig.24. That is because ridge parameters determined
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Fig. 19: Comparison of Euclidean distance between
Kalman filter and ridge-type Kalman filter when the
ridge parameter is determined by method(5)
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Fig. 20: Comparison of MSE between Kalman filter
and ridge-type Kalman filter when the ridge parameter
is determined by method(5)

by these two methods is larger. At the same time,
larger ridge parameter enlarges the Euclidean distance
between the state estimator X̂k(RT ) and the truth-
value Xk. It is not appropriate to seek smaller MSE
which leads to the Euclidean distance between the
state estimator and the truth-value becoming too large.

7 Conclusion
It has been shown that when the observation matrix
Hk has severe multicollinearity, state equation sup-
plies much more information for the estimate of the
state parameter so that the ill-condition of normal
equation gets controlled. However, normal equation
still presents stronger ill-condition, leading to poor ac-
curacy. The role of P−1

k/k−1 played in controlling the
ill-condition of normal equation is also analyzed. We
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Fig. 21: Comparison of condition number between
Kalman filter and ridge-type Kalman filter when the
ridge parameter is determined by method(6)
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Fig. 22: Choosing the ridge parameter by means of
method (6)

proposed a ridge-type Kalman filter under the MSE by
analyzing normal equation. Furthermore, some char-
acters of the new algorithm are given. Six methods for
determining the ridge parameter of the new algorithm
are given which are more efficient than those of ridge
regression estimation for it is unnecessary to compute
the residual sum of squares.

At last, the new algorithm is proved to be effec-
tive to weaken the ill-condition of normal equation by
simulations. The new algorithm is superior to Kalman
filter in the sense of the MSE. Meanwhile, though
the new algorithm weakens the ill-condition of normal
equation effectively, it enlarges the Euclidean distance
between the state estimator and the truth-value when
the ridge parameter is too larger. It needs to be further
investigated that the ill-condition of normal equation
becomes much severer with time going that appears in
the simulations mentioned above.
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Fig. 23: Comparison of Euclidean distance between
Kalman filter and ridge-type Kalman filter when the
ridge parameter is determined by method(6)
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Fig. 24: Comparison of MSE between Kalman filter
and ridge-type Kalman filter when the ridge parameter
is determined by method(6)
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