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Sakarya University

Department of Mathematics
Sakarya, 54187

TURKEY
ayuce@sakarya.edu.tr
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1 Introduction
Let C be a nonempty subset of a real Hilbert space
X . Recall that a mapping T : C → C is said to be
k-strictly pseudo-contractive if there exists a constant
k ∈ [0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2+k ∥(I − T )x− (I − T )y∥2

for all x, y ∈ C.
A point x ∈ C is called a fixed point of T if

x = Tx. We will denote the set of fixed points of
T by F (T ). Note that the class of k-strictly pseudo-
contractions includes the class of nonexpansive map-
pings which are mappings T on C such that

∥Tx− Ty∥ ≤ ∥x− y∥ , ∀x, y ∈ C.

That is, T is nonexpansive if and only if T is 0-strictly
pseudo-contractive. The mapping T is also said to
be pseudo-contractive if k = 1 and T is said to be
strongly pseudo-contractive if there exists a constant
λ ∈ (0, 1) such that T − λI is pseudo-contractive.
Clearly, the class of k-strictly pseudo-contractive
mappings is the one between classes of nonexpansive
mappings and pseudo-contractive mappings. Also we
remark that the class of strongly pseudo-contractive
mappings is independent from the class of k-strictly
pseudo-contractive mappings (see, e.g., [1]-[3]). Re-
cently, many authors have been devoted the studies
on the problems of finding fixed points for k-strictly
pseudo-contractive mappings (see, e.g., [4]-[10]).

We define the concept of k-strictly pseudo-
contractive mapping in a CAT (0) space as follows.

Let C be a nonempty subset of a CAT (0) space
X . A mapping T : C → C is said to be k-strictly
pseudo-contractive if there exists a constant k ∈ [0, 1)
such that

d(Tx, Ty)2 ≤ d(x, y)2 + k (d (x, Tx) + d(y, Ty))2

(1)
for all x, y ∈ C.

Gürsoy, Karakaya and Rhoades [11] introduced
a new multi-step iteration in a Banach space. Re-
cently, Başarır and Şahin [12] modified this iteration
in a CAT (0) space as follows.

For an arbitrary fixed order k ≥ 2,

x0 ∈ C,
xn+1 = (1− αn)y1n ⊕ αnTy1n,
y1n = (1− β1n)y2n ⊕ β1nTy2n,
y2n = (1− β2n)y3n ⊕ β2nTy3n,
...
yk−2
n = (1− βk−2

n )yk−1
n ⊕ βk−2

n Tyk−1
n ,

yk−1
n = (1− βk−1

n )xn ⊕ βk−1
n Txn, ∀n ≥ 0,

or, in short,
x0 ∈ C
xn+1 = (1− αn)y1n ⊕ αnTy1n,
yin = (1− βin)yi+1

n ⊕ βinTyi+1
n , i = 1, 2, ..., k − 2,

yk−1
n = (1− βk−1

n )xn ⊕ βk−1
n Txn, ∀n ≥ 0.

(2)
By taking k = 3 and k = 2 in (2), we obtain the

SP-iteration of Phuengrattana and Suantai [13] and the
two-step iteration of Thianwan [14], respectively.
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Acedo and Xu [15] introduced a cyclic algorithm
in a Hilbert space. We modify this algorithm in a
CAT (0) space.

Let x0 ∈ C and {αn} be a sequence in [a, b] for
some a, b ∈ (0, 1). The cyclic algorithm generates a
sequence {xn} in the following way:

x1 = α0x0 ⊕ (1− α0)T0x0,
x2 = α1x1 ⊕ (1− α1)T1x1,
...
xN = αN−1xN−1 ⊕ (1− αN−1)TN−1xN−1,
xN+1 = αNxN ⊕ (1− αN )T0xN ,
...

or, shortly,

xn+1 = αnxn ⊕ (1− αn)T[n]xn, ∀n ≥ 0, (3)

where T[n] = Ti, with i = n(modN), 0 ≤ i ≤ N−1.
By taking T[n] = T for all n in (3), we obtain the
Mann iteration in [16].

In this paper, motivated by the above results,
we prove the demiclosedness principle for k-strictly
pseudo-contractive mappings in a CAT (0) space.
Also we present the ∆-convergence theorems of the
cyclic algorithm and the new multi-step iteration
and the strong convergence theorem of the modified
Halpern’s iteration which is introduced for Hilbert
space by Hu [17] for these mappings in a CAT (0)
space.

2 Preliminaries on CAT (0) space
A metric space X is a CAT (0) space if it is

geodesically connected and if every geodesic triangle
in X is at least as ‘thin’ as its comparison triangle in
the Euclidean plane. It is well known that any com-
plete, simply connected Riemannian manifold having
non-positive sectional curvature is a CAT (0) space.
Other examples include Pre-Hilbert spaces (see [18]),
Euclidean buildings (see [19]), R-trees (see [20]), the
complex Hilbert ball with a hyperbolic metric (see
[21]) and many others. For a thorough discussion of
these spaces and of the fundamental role they play in
geometry, we refer the reader to Bridson and Haefliger
[18].

Fixed point theory in a CAT (0) space has been
first studied by Kirk (see [22], [23]). He showed that
every nonexpansive mapping defined on a bounded
closed convex subset of a complete CAT (0) space
always has a fixed point. Since then the fixed point
theory in a CAT (0) space has been rapidly developed
and many papers have appeared (see, e.g., [24]-[32]).
It is worth mentioning that fixed point theorems in a

CAT (0) space (specially in R-trees) can be applied to
graph theory, biology and computer science (see, e.g.,
[20], [33]-[36]).

Let (X, d) be a metric space. A geodesic path
joining x ∈ X to y ∈ X (or more briefly, a
geodesic from x to y) is a map c from a closed in-
terval [0, l] ⊂ R to X such that c(0) = x, c(l) = y

and d(c(t), c(t
′
)) = |t− t′ | for all t, t

′ ∈ [0, l]. In par-
ticular, c is an isometry and d(x, y) = l. The image
of c is called a geodesic (or metric) segment joining x
and y. When it is unique, this geodesic is denoted by
[x, y]. The space (X, d) is said to be a geodesic space
if every two points of X are joined by a geodesic and
X is said to be a uniquely geodesic if there is exactly
one geodesic joining x to y for each x, y ∈ X .

A geodesic triangle ∆(x1, x2, x3) in a geodesic
metric space (X, d) consist of three points in X (the
vertices of ∆) and a geodesic segment between each
pair of vertices (the edges of ∆). A comparison tri-
angle for geodesic triangle ∆(x1, x2, x3) in (X, d) is
a triangle ∆(x1, x2, x3) = ∆(x1, x2, x3) in the Eu-
clidean plane R2 such that

dR2(xi, xj) = d(xi, xj)

for i, j ∈ {1, 2, 3}. Such a triangle always exists (see
[18]).

A geodesic metric space is said to be a CAT (0)
space [18] if all geodesic triangles of appropriate size
satisfy the following comparison axiom:

Let ∆ be a geodesic triangle in X and ∆ be a
comparison triangle for ∆. Then, ∆ is said to satisfy
the CAT (0) inequality if for all x, y ∈ ∆ and all
comparison points x, y ∈ ∆,

d(x, y) ≤ dR2(x, y).

If x, y1, y2 are points in a CAT (0) space and if
y0 is the midpoint of the segment [y1, y2], then the
CAT (0) inequality implies that

d (x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2.

This is the (CN) inequality of Bruhat and Tits [37].
In fact (see [18, p.163]), a geodesic metric space is
a CAT (0) space if and only if it satisfies the (CN)
inequality. It is worth mentioning that the results in a
CAT (0) space can be applied to any CAT (k) space
with k ≤ 0 since any CAT (k) space is a CAT (k

′
)

space for every k
′
≥ k (see [18, p.165]).

Let x, y ∈ X and by Lemma 2.1(iv) of [27] for
each t ∈ [0, 1], there exists a unique point z ∈ [x, y]
such that

d(x, z) = td(x, y), d(y, z) = (1− t)d(x, y). (4)
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From now on, we will use the notation (1− t)x⊕
ty for the unique point z satisfying (4). We now
collect some elementary facts about CAT (0) spaces
which will be used in sequel the proofs of our main
results.

Lemma 1 Let X be a CAT (0) space. Then
(i) (see [27, Lemma 2.4]) for each x, y, z ∈ X

and t ∈ [0, 1], one has

d ((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z),

(ii) (see [27, Lemma 2.5]) for each x, y, z ∈ X
and t ∈ [0, 1], one has

d ((1− t)x⊕ ty, z)2

≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2.

3 Demiclosedness principle for k-
strictly pseudo-contractive map-
pings

In 1976 Lim [38] introduced a concept of convergence
in a general metric space setting which is called ∆-
convergence. Later, Kirk and Panyanak [39] used the
concept of ∆-convergence introduced by Lim [38]
to prove on the CAT (0) space analogs of some Ba-
nach space results which involve weak convergence.
Also, Dhompongsa and Panyanak [27] obtained the
∆-convergence theorems for the Picard, Mann and
Ishikawa iterations in a CAT (0) space for nonexpan-
sive mappings under some appropriate conditions.

We now give the definition and collect some basic
properties of the ∆-convergence.

LetX be aCAT (0) space and {xn} be a bounded
sequence in X . For x ∈ X , we set

r (x, {xn}) = lim supn→∞ d(x, xn).

The asymptotic radius r ({xn}) of {xn} is given by

r ({xn}) = inf {r (x, {xn}) : x ∈ X} .

The asymptotic center A ({xn}) of {xn} is the set

A ({xn}) = {x ∈ X : r (x, {xn}) = r ({xn})} .

It is known that in a complete CAT (0) space,
A ({xn}) consists of exactly one point (see [40,
Proposition 7]).

Definition 2 ([38], [39]) A sequence {xn} in a
CAT (0) space X is said to be ∆-convergent to x ∈
X if x is the unique asymptotic center of {un} for
every subsequence {un} of {xn}. In this case, we
write ∆-limn→∞ xn = x and x is called the ∆-limit
of {xn} .

Lemma 3 (i) Every bounded sequence in a complete
CAT (0) space always has a ∆-convergent subse-
quence. (see [39, p.3690])

(ii) Let C be a nonempty closed convex subset of
a complete CAT (0) space and let {xn} be a bounded
sequence in C. Then the asymptotic center of {xn} is
in C. (see [41, Proposition 2.1])

Lemma 4 ([27, Lemma 2.8]) If {xn} is a bounded se-
quence in a complete CAT (0) space withA({xn}) =
{x}, {un} is a subsequence of {xn} with A({un}) =
{u} and the sequence {d(xn, u)} is convergent then
x = u.

Let C be a closed convex subset of a CAT (0)
space X and {xn} be a bounded sequence in C. We
denote the notation

{xn}⇀ w ⇔ Φ(w) = inf
x∈C

Φ(x) (5)

where Φ(x) = lim supn→∞ d(xn, x).
Nanjaras and Panyanak [42] gave a connection

between the ”⇀” convergence and ∆-convergence.

Proposition 5 ([42, Proposition 3.12]) Let C be a
closed convex subset of a CAT (0) space X and {xn}
be a bounded sequence in C. Then ∆-limn→∞ xn =
p implies that {xn}⇀ p.

The purpose of this section is to prove demi-
closedness principle for k -strictly pseudo-contractive
mappings in a CAT (0) space by using the conver-
gence defined in (5).

Theorem 6 Let C be a nonempty closed convex sub-
set of a complete CAT (0) space X and T : C → C
be a k-strictly pseudo-contractive mapping such that
k ∈

[
0, 12

)
and F (T ) ̸= ∅. Let {xn} be a bounded

sequence in C such that ∆-limn→∞ xn = w and
limn→∞ d(xn, Txn) = 0. Then Tw = w.

Proof: By the hypothesis, ∆-limn→∞ xn = w. From
Proposition 5, we get {xn} ⇀ w. Then we obtain
A({xn}) = {w} by Lemma 3 (ii) (see [42]). Since
limn→∞ d(xn, Txn) = 0, then we get

Φ(x) = lim sup
n→∞

d(xn, x) = lim sup
n→∞

d(Txn, x) (6)

for all x ∈ C. In (6) by taking x = Tw, we have

Φ(Tw)2 = lim sup
n→∞

d(Txn, Tw)
2

≤ lim sup
n→∞

{d(xn, w)2

+k(d(xn, Txn) + d(w, Tw))2}
≤ lim sup

n→∞
d(xn, w)

2

+k lim sup
n→∞

(d(xn, Txn) + d(w, Tw))2

= Φ(w)2 + kd(w, Tw)2 (7)

WSEAS TRANSACTIONS on MATHEMATICS Aynur Sahin, Metin Basarir

E-ISSN: 2224-2880 579 Volume 13, 2014



The (CN) inequality implies that

d

(
xn,

w ⊕ Tw
2

)2

≤ 1

2
d(xn, w)

2 +
1

2
d(xn, Tw)

2 − 1

4
d(w, Tw)2.

Letting n → ∞ and taking superior limit on the both
sides of the above inequality, we get

Φ

(
w ⊕ Tw

2

)2

≤ 1

2
Φ(w)2+

1

2
Φ(Tw)2−1

4
d(w, Tw)2.

Since A({xn}) = {w}, we have

Φ(w)2 ≤ Φ

(
w ⊕ Tw

2

)2

≤ 1

2
Φ(w)2 +

1

2
Φ(Tw)2 − 1

4
d(w, Tw)2.

which implies that

d(w, Tw)2 ≤ 2Φ(Tw)2 − 2Φ(w)2. (8)

By (7) and (8), we get (1− 2k)d(w, Tw)2 ≤ 0. Since
k ∈

[
0, 12

)
, then we have Tw = w as desired. ⊓⊔

Now, we prove the ∆-convergence of the new
multi-step iteration for k-strictly pseudo-contractive
mappings in a CAT (0) space.

Theorem 7 Let C be a nonempty closed convex sub-
set of a complete CAT (0) space X and T : C → C
be a k-strictly pseudo-contractive mapping such that
k ∈

[
0, 12

)
and F (T ) ̸= ∅. Let {αn} and

{
βin
}

,
i = 1, 2, ..., k − 2 be sequences in [a, b] for some
a, b ∈ (0, 1) and k < 1 − b. Let {xn} be a sequence
defined by (2). Then the sequence {xn} is ∆ conver-
gent to a fixed point of T .

Proof: Let p ∈ F (T ). From (1), (2) and Lemma 1,
we have

d(xn+1, p)
2 = d((1− αn)y1n ⊕ αnTy1n, p)2

≤ (1− αn)d(y1n, p)2 + αnd(Ty
1
n, p)

2

−αn(1− αn)d(y1n, T y1n)2

≤ (1− αn)d(y1n, p)2

+αn
{
d(y1n, p)

2 + kd(y1n, Ty
1
n)

2
}

−αn(1− αn)d(y1n, T y1n)2

= d(y1n, p)
2 − αn((1− αn)− k)d(y1n, T y1n)2

≤ d(y1n, p)
2.

Also, we obtain

d(y1n, p)
2 = d((1− β1n)y2n ⊕ β1nTy2n, p)2

≤ (1− β1n)d(y2n, p)2 + β1nd(Ty
2
n, p)

2

≤ (1− β1n)d(y2n, p)2

+β1n

{
d(y2n, p)

2 + kd(y2n, Ty
2
n)

2
}

−β1n(1− β1n)d(y2n, T y2n)2

= d(y2n, p)
2 − β1n((1− β1n)− k)d(y2n, T y2n)2

≤ d(y2n, p)
2.

Continuing the above process we have

d(xn+1, p) ≤ d(y2n, p) ≤ ... ≤ d(yk−1
n , p) ≤ d(xn, p).

(9)
This inequality guarantees that the sequence {xn}
is bounded and limn→∞ d(xn, p) exists for all p ∈
F (T ). Let limn→∞ d(xn, p) = r. By using (9), we
get

lim
n→∞

d(yk−1
n , p) = r.

By Lemma 1, we also have

d(yk−1
n , p)2 = d((1− βk−1

n )xn ⊕ βk−1
n Txn, p)

2

≤ (1− βk−1
n )d(xn, p)

2 + βk−1
n d(Txn, p)

2

−βk−1
n (1− βk−1

n )d(xn, Txn)
2

≤ (1− βk−1
n )d(xn, p)

2

+βk−1
n

{
d(xn, p)

2 + kd(xn, Txn)
2
}

−βk−1
n (1− βk−1

n )d(xn, Txn)
2

= d(xn, p)
2 − βk−1

n ((1− βk−1
n )− k)d(xn, Txn)2,

which implies that

d(xn, Txn)
2

≤ 1

a((1− b)− k)

[
d(xn, p)

2 − d(yk−1
n , p)2

]
.

Thus limn→∞ d(xn, Txn) = 0. To show that the se-
quence {xn} is ∆-convergent to a fixed point of T,we
prove that

W∆(xn) = ∪
{un}⊆{xn}

A ({un}) ⊆ F (T )

and W∆(xn) consists of exactly one point. Let u ∈
W∆(xn). Then, there exists a subsequence {un} of
{xn} such that A({un}) = {u}. By Lemma 3,
there exists a subsequence {vn} of {un} such that
∆-limn→∞ vn = v ∈ K. By Theorem 6, we have
v ∈ F (T ) and by Lemma 4, we have u = v ∈ F (T ).
This shows that W∆(xn) ⊆ F (T ). Now, we prove
that W∆(xn) consists of exactly one point. Let {un}
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be a subsequence of {xn} with A({un}) = {u} and
let A({xn}) = {x}. We have already seen that u = v
and v ∈ F (T ). Finally, since {d(xn, v)} is conver-
gent, we have x = v ∈ F (T ) by Lemma 4. This
shows W∆(xn) = {x}. This completes the proof. ⊓⊔

Also, we prove the ∆-convergence of the cyclic
algorithm for k-strictly pseudo-contractive mappings
in a CAT (0) space.

Theorem 8 Let C be a nonempty closed convex sub-
set of a complete CAT (0) space X and N ≥ 1 be an
integer. Let, for each 0 ≤ i ≤ N − 1, Ti : C → C
be ki-strictly pseudo-contractive mappings for some
0 ≤ ki <

1
2 . Let k = max {ki; 0 ≤ i ≤ N − 1},

{αn} be a sequence in [a, b] for some a, b ∈ (0, 1) and
k < a. Let F =

∩N−1
i=0 F (Ti) ̸= ∅. For x0 ∈ C, let

{xn} be a sequence defined by (3). Then the sequence
{xn} is ∆-convergent to a common fixed point of the
family {Ti}N−1

i=0 .

Proof: Let p ∈ F. Using (1), (3) and Lemma 1, we
have

d(xn+1, p)
2

= d(αnxn ⊕ (1− αn)T[n]xn, p)2

≤ αnd(xn, p)
2 + (1− αn)d(T[n]xn, p)2

−αn(1− αn)d(xn, T[n]xn)2

≤ αnd(xn, p)
2

+(1− αn)
{
d(xn, p)

2 + kd(xn, T[n]xn)
2
}

−αn(1− αn)d(xn, T[n]xn)2

= d(xn, p)
2

−(1− αn)(αn − k)d(xn, T[n]xn)2 (10)

≤ d(xn, p)
2.

This inequality guarantees that the sequence {xn} is
bounded and limn→∞ d(xn, p) exists for all p ∈ F.
By (10), we also have

d(xn, T[n]xn)
2

≤ 1

(1− αn)(αn − k)

[
d(xn, p)

2 − d(xn+1, p)
2
]

≤ 1

(1− b)(a− k)

[
d(xn, p)

2 − d(xn+1, p)
2
]
.

Since limn→∞ d(xn, p) exists, we obtain
limn→∞ d(xn, T[n]xn) = 0. The rest of the
proof closely follows the proof of Theorem 7 and is
therefore omitted. ⊓⊔

4 The strong convergence theorem
for the modified Halpern’s itera-
tion

In [17], Hu introduced a modified Halpern’s iteration.
We modify this iteration in a CAT (0) space as fol-
lows.

For an arbitrary initial value x0 ∈ C and a fixed
anchor u ∈ C, the sequence {xn} is defined by{

xn+1 = αnu⊕ (1− αn)yn,
yn = βn

1−αn
xn ⊕ γn

1−αn
Txn, ∀n ≥ 0,

(11)

where {αn} , {βn} , {γn} are three real sequences in
(0, 1) satisfying αn + βn + γn = 1.

Clearly, the iterative sequence (11) is a natural
generalization of the well known iterations.

(i) If we take βn = 0 for all n in (11), then the se-
quence (11) reduces to the Halpern’s iteration in [43].

(ii) If we take αn = 0 for all n in (11), then the
sequence (11) reduces to the Mann iteration in [16].

In this section, we prove the strong convergence
of the modified Halpern’s iteration in a CAT (0)
space.

Recall that a continuous linear functional µ on
ℓ∞, the Banach space of bounded real sequences, is
called a Banach limit if ∥µ∥ = µ(1, 1, ...) = 1 and
µ(an) = µ(an+1) for all {an}∞n=1 ⊂ ℓ∞.

Lemma 9 (see [44, Proposition 2]) Let {an} ∈
ℓ∞ be such that µ(an) ≤ 0 for all Banach lim-
its µ and lim supn→∞(an+1 − an) ≤ 0. Then,
lim supn→∞ an ≤ 0.

Lemma 10 Let C be a nonempty closed convex sub-
set of a complete CAT (0) space X , T : C → C be a
k-strictly pseudo-contractive mapping with k ∈ [0, 1)
and S : C → C be a mapping defined by Sz =
kz ⊕ (1− k)Tz, for z ∈ C. Let u ∈ C be fixed.
For each t ∈ [0, 1], the mapping St : C → C defined
by

Stz = tu⊕(1− t)Sz = tu⊕(1− t) (kz ⊕ (1− k)Tz)

for z ∈ C, has a unique fixed point zt ∈ C, that is,

zt = St(zt) = tu⊕ (1− t)S(zt). (12)

Proof: As it has been proven in [45], if T is a k-
strictly pseudo-contractive mapping with k ∈ [0, 1), S
is a nonexpansive mapping such that F (S) = F (T ).
Then, from Lemma 2.1 in [29], the mapping St has a
unique fixed point zt ∈ C. ⊓⊔
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Lemma 11 Let X,C, T and S be as in Lemma 10.
Then, F (T ) ̸= ∅ if and only if {zt} given by (12)
remains bounded as t→ 0. In this case, the following
statements hold:

(1) {zt} converges to the unique fixed point z of
T which is nearest to u;

(2) d(u, z)2 ≤ µd(u, xn)
2 for all Banach

limits µ and all bounded sequences {xn} with
limn→∞ d(xn, Txn) = 0.

Proof: If F (T ) ̸= ∅, then we have F (S) = F (T ) ̸=
∅. Also, if limn→∞ d(xn, Txn) = 0, we obtain that

d(xn, Sxn) = d(xn, kxn ⊕ (1− k)Txn)
≤ (1− k)d(xn, Txn)→ 0 as n→∞.

Thus, from Lemma 2.2 in [29], the rest of the proof of
this lemma can be seen. ⊓⊔

The following lemma can be found in [46].

Lemma 12 (see [46, Lemma 2.1]) Let {an} be a se-
quence of non-negative real numbers satisfying the
condition

an+1 ≤ (1− γn)an + γnσn, ∀n ≥ 0,

where {γn} and {σn} are sequences of real numbers
such that

(1) {γn} ⊂ [0, 1] and
∑∞
n=1 γn =∞,

(2) either lim supn→∞ σn ≤ 0 or∑∞
n=1 |γnσn| <∞.

Then, limn→∞ an = 0.

We are now ready to prove our main result.

Theorem 13 LetC be a nonempty closed convex sub-
set of a complete CAT (0) space X and T : C → C
be a k-strictly pseudo-contractive mapping such that
0 ≤ k < βn

1−αn
< 1 and F (T ) ̸= ∅. Let {xn} be a

sequence defined by (11). Suppose that {αn} , {βn}
and {γn} satisfy the following conditions:

(C1) limn→∞ αn = 0,
(C2)

∑∞
n=1 αn =∞,

(C3) limn→∞ βn ̸= k and limn→∞ γn ̸= 0.
Then the sequence {xn} converges strongly to a

fixed point of T .

Proof: We divide the proof into three steps. In the
first step we show that {xn} , {yn} and {Txn} are
bounded sequences. In the second step we show that
limn→∞ d(xn, Txn) = 0. Finally, we show that {xn}
converges to a fixed point z ∈ F (T ) which is nearest
to u.

First step: Take any p ∈ F (T ), then, from Lemma 1
and (11), we have

d(yn, p)
2

≤ βn
1− αn

d(xn, p)
2 +

γn
1− αn

d(Txn, p)
2

− βnγn

(1− αn)2
d(xn, Txn)

2

≤ βn
1− αn

d(xn, p)
2

+
γn

1− αn

(
d(xn, p)

2 + kd(xn, Txn)
2
)

− βnγn

(1− αn)2
d(xn, Txn)

2

= d(xn, p)
2 − γn

1− αn

(
βn

1− αn
− k

)
d(xn, Txn)

2

≤ d(xn, p)
2.

Also, we obtain

d(xn+1, p)
2

≤ αnd(u, p)
2 + (1− αn) d(yn, p)2

−αn (1− αn) d(u, yn)2

≤ αnd(u, p)
2 + (1− αn)

{
d(xn, p)

2

− γn
1− αn

(
βn

1− αn
− k

)
d(xn, Txn)

2
}

−αn (1− αn) d(u, yn)2

= αnd(u, p)
2 + (1− αn) d(xn, p)2

−γn
(

βn
1− αn

− k
)
d(xn, Txn)

2

−αn (1− αn) d(u, yn)2 (13)
≤ αnd(u, p)

2 + (1− αn) d(xn, p)2

≤ max
{
d(u, p)2, d(xn, p)

2
}
.

By induction,

d(xn+1, p)
2 ≤ max

{
d(u, p)2, d(x0, p)

2
}
.

This proves the boundedness of the sequence {xn},
which leads to the boundedness of {Txn} and {yn} .
Second step: In fact, we have from (13) (for some
appropriate constant M > 0) that

d(xn+1, p)
2

≤ αnd(u, p)
2 + (1− αn) d(xn, p)2

−γn
(

βn
1− αn

− k
)
d(xn, Txn)

2

= αn(d(u, p)
2 − d(xn, p)2) + d(xn, p)

2

−γn
(

βn
1− αn

− k
)
d(xn, Txn)

2
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≤ αnM + d(xn, p)
2

−γn
(

βn
1− αn

− k
)
d(xn, Txn)

2,

which implies that

γn

(
βn

1− αn
− k

)
d(xn, Txn)

2 − αnM

≤ d(xn, p)
2 − d(xn+1, p)

2. (14)

If γn
(

βn
1−αn

− k
)
d(xn, Txn)

2 − αnM ≤ 0, then

d(xn, Txn)
2 ≤ αn

γn
(

βn
1−αn

− k
)M,

and hence the desired result is obtained by the condi-
tions (C1) and (C3).

If γn
(

βn
1−αn

− k
)
d(xn, Txn)

2−αnM > 0, then
following (14), we have

m∑
n=0

[
γn

(
βn

1− αn
− k

)
d(xn, Txn)

2 − αnM
]

≤ d(x0, p)
2 − d(xm+1, p)

2

≤ d(x0, p)
2.

That is

∞∑
n=0

[
γn

(
βn

1− αn
− k

)
d(xn, Txn)

2 − αnM
]
<∞.

Thus

lim
n→∞

[
γn

(
βn

1− αn
− k

)
d(xn, Txn)

2 − αnM
]
= 0.

Then we get

lim
n→∞

d(xn, Txn) = 0. (15)

Third step: Using the condition (C1) and (15), we
obtain

d(xn+1, xn)

≤ d(xn+1, Txn) + d(Txn, xn)

≤ αnd(u, Txn) + (1− αn)d(yn, Txn)
+d(Txn, xn)

≤ αnd(u, Txn) + (1− αn)
(

βn
1− αn

d(xn, Txn)

)
+d(Txn, xn)

= αnd(u, Txn) + (βn + 1) d(xn, Txn)

→ 0, as n→∞.

Also, from (15), we have

d(xn, yn) ≤ γn
1− αn

d(xn, Txn)

→ 0, as n→∞. (16)

Let z = limt→0 zt, where zt is given by (12)
in Lemma 10. Then, z is the point of F (T )
which is nearest to u. By Lemma 11 (2), we have
µ
(
d(u, z)2 − d(u, xn)2

)
≤ 0 for all Banach limits

µ. Let an = d(u, z)2 − d(u, xn)2. Moreover, since
limn→∞ d(xn+1, xn) = 0, we get

lim sup
n→∞

(an+1 − an) = 0.

By Lemma 9, we obtain

lim sup
n→∞

(
d(u, z)2 − d(u, xn)2

)
≤ 0. (17)

It follows from the condition (C1) and (16) that

lim sup
n→∞

(
d(u, z)2 − (1− αn) d(u, yn)2

)
= lim sup

n→∞

(
d(u, z)2 − d(u, xn)2

)
. (18)

By (17) and (18), we have

lim sup
n→∞

(
d(u, z)2 − (1− αn) d(u, yn)2

)
≤ 0. (19)

We observe that

d(xn+1, z)
2

≤ αnd(u, z)
2 + (1− αn) d(yn, z)2

−αn (1− αn) d(u, yn)2

≤ αnd(u, z)
2 + (1− αn) d(xn, z)2

−αn (1− αn) d(u, yn)2

= (1− αn) d(xn, z)2

+αn
[
d(u, z)2 − (1− αn) d(u, yn)2

]
.

It follows from the condition (C2) and (19), using
Lemma 12, that limn→∞ d(xn, z) = 0. This com-
pletes the proof of Theorem 13. ⊓⊔

We obtain the following corollary as a direct con-
sequence of Theorem 13.

Corollary 14 Let X,C and T be as Theorem 13. Let
{αn} be a real sequence in (0, 1) satisfying the condi-
tions (C1) and (C2). For a constant δ ∈ (k, 1), an ar-
bitrary initial value x0 ∈ C and a fixed anchor u ∈ C,
let the sequence {xn} be defined by

xn+1 = αnu⊕ (1−αn) (δxn ⊕ (1− δ)Txn) , (20)

for all n ≥ 0. Then the sequence {xn} is strongly
convergent to a fixed point of T
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Proof: If, in the proof of Theorem 13, we take βn =
(1− αn)δ and γn = (1− αn)(1− δ), then we get the
desired conclusion. ⊓⊔

Remark 15 The results in this section contain the
strong convergence theorems of the iterative se-
quences (11) and (20) for nonexpansive mappings
in a CAT (0) space. Also, our results contain the
corresponding theorems proved for these iterative se-
quences in a Hilbert space.
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