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1 Introduction

Let C' be a nonempty subset of a real Hilbert space
X. Recall that a mapping 7" : C — C'is said to be
k-strictly pseudo-contractive if there exists a constant
k € [0, 1) such that

1Tz = Tyl* < llz = yl*+k (I = T)a — (I - Tyl

forall z,y € C.

A point x € (' is called a fixed point of 1" if
x = Tx. We will denote the set of fixed points of
T by F(T). Note that the class of k-strictly pseudo-
contractions includes the class of nonexpansive map-
pings which are mappings 7" on C such that

|2~ Ty| < lle — yll, Va,y € C.

That is, 7" is nonexpansive if and only if T is O-strictly
pseudo-contractive. The mapping 7' is also said to
be pseudo-contractive if k = 1 and 7 is said to be
strongly pseudo-contractive if there exists a constant
A € (0,1) such that 7" — AI is pseudo-contractive.
Clearly, the class of k-strictly pseudo-contractive
mappings is the one between classes of nonexpansive
mappings and pseudo-contractive mappings. Also we
remark that the class of strongly pseudo-contractive
mappings is independent from the class of k-strictly
pseudo-contractive mappings (see, e.g., [1]-[3]). Re-
cently, many authors have been devoted the studies
on the problems of finding fixed points for k-strictly
pseudo-contractive mappings (see, e.g., [4]-[10]).

We define the concept of k-strictly pseudo-
contractive mapping in a C AT'(0) space as follows.
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Let C be a nonempty subset of a C'AT(0) space
X. A mapping T : C — C is said to be k-strictly
pseudo-contractive if there exists a constant k£ € [0,1)
such that

d(Tx,Ty)* < d(z,y)* + k (d (z, Tz) + d(y, Ty))?
)

forall z,y € C.

Giirsoy, Karakaya and Rhoades [11] introduced
a new multi-step iteration in a Banach space. Re-
cently, Basarir and Sahin [12] modified this iteration
ina CAT(0) space as follows.

For an arbitrary fixed order & > 2,

o € C,

Tpy1 = (1 - O‘n)y}z @ O‘nTy}u
Yyp = (1= BY)yp @ By Ty,
yn = (1= B2y, @ BTy,

yp 2= (L= By ynt @ BTy,
W == e @ By Ty, Y >0,

or, in short,

xg € C
Tntl = (1 - an)yrlz D O{nTy}w
yp =1 =By @ BTyt i=1,2,...
k=1 — (1 - gFNa, @ gF1Tx,, Yn > 0.
2
By taking £ = 3 and £ = 2 in (2), we obtain the
SP-iteration of Phuengrattana and Suantai [13] and the
two-step iteration of Thianwan [14], respectively.
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Acedo and Xu [15] introduced a cyclic algorithm
in a Hilbert space. We modify this algorithm in a
CAT(0) space.

Let 79 € C and {«,} be a sequence in [a, b] for
some a,b € (0,1). The cyclic algorithm generates a
sequence {x, } in the following way:

x1 = apxo ® (1 — ap)Toxo,

xo =a1z1 @ (1 — 1)y,

zy =any-—12n-1 D (1 —ay—1)IN-1ZN-1,
rny1 =anzy ® (1 —an)Tozy,

or, shortly,

3)

where T}, = T;, with i = n(modN),0 <i < N-—1.
By taking T},,) = T for all n in (3), we obtain the
Mann iteration in [16].

In this paper, motivated by the above results,
we prove the demiclosedness principle for k-strictly
pseudo-contractive mappings in a CAT(0) space.
Also we present the A-convergence theorems of the
cyclic algorithm and the new multi-step iteration
and the strong convergence theorem of the modified
Halpern’s iteration which is introduced for Hilbert
space by Hu [17] for these mappings in a C AT'(0)
space.

Tny1 = anZp © (1 — o) T2, Yn >0,

2 Preliminaries on C AT'(0) space

A metric space X is a CAT(0) space if it is
geodesically connected and if every geodesic triangle
in X is at least as ‘thin’ as its comparison triangle in
the Euclidean plane. It is well known that any com-
plete, simply connected Riemannian manifold having
non-positive sectional curvature is a C AT'(0) space.
Other examples include Pre-Hilbert spaces (see [18]),
Euclidean buildings (see [19]), R-trees (see [20]), the
complex Hilbert ball with a hyperbolic metric (see
[21]) and many others. For a thorough discussion of
these spaces and of the fundamental role they play in
geometry, we refer the reader to Bridson and Haefliger
[18].

Fixed point theory in a C'AT'(0) space has been
first studied by Kirk (see [22], [23]). He showed that
every nonexpansive mapping defined on a bounded
closed convex subset of a complete CAT'(0) space
always has a fixed point. Since then the fixed point
theory in a C' AT'(0) space has been rapidly developed
and many papers have appeared (see, e.g., [24]-[32]).
It is worth mentioning that fixed point theorems in a
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C AT (0) space (specially in R-trees) can be applied to
graph theory, biology and computer science (see, e.g.,
(201, [33]-[36D).

Let (X, d) be a metric space. A geodesic path
joining x € X toy € X (or more briefly, a
geodesic from z to y) is a map ¢ from a closed in-
terval [0,!] C R to X such that ¢(0) = z, ¢(l) = y
and d(c(t), c(t')) = |t —t'| forall £, € [0,1]. In par-
ticular, ¢ is an isometry and d(x,y) = [. The image
of cis called a geodesic (or metric) segment joining x
and y. When it is unique, this geodesic is denoted by
[x,y]. The space (X, d) is said to be a geodesic space
if every two points of X are joined by a geodesic and
X is said to be a uniquely geodesic if there is exactly
one geodesic joining x to y for each z,y € X.

A geodesic triangle A(x1,z2,23) in a geodesic
metric space (X, d) consist of three points in X (the
vertices of A) and a geodesic segment between each
pair of vertices (the edges of A). A comparison tri-
angle for geodesic triangle A(z1, z2, z3) in (X, d) is
a triangle A(w1, 2, 23) = A(T1,T2,T3) in the Eu-
clidean plane R? such that

dr2(Ti, T;j) = d(w;, 5)

fori,j € {1,2,3}. Such a triangle always exists (see
[18]).

A geodesic metric space is said to be a CAT'(0)
space [18] if all geodesic triangles of appropriate size
satisfy the following comparison axiom:

Let A be a geodesic triangle in X and A be a
comparison triangle for A. Then, A is said to satisfy
the CAT(0) inequality if for all x,y € A and all
comparison points 7,7 € A,

d(.%', y) < dg2 (T7 y)

If x,y1,y2 are points in a CAT(0) space and if
yo is the midpoint of the segment [y, y2|, then the
C AT (0) inequality implies that

1 1
d(z,y0)® < ~d(z,y1)* + id($7y2)2 - Zd(y1,y2)2-

N

This is the (CN) inequality of Bruhat and Tits [37].
In fact (see [18, p.163]), a geodesic metric space is
a CAT(0) space if and only if it satisfies the (CN)
inequality. It is worth mentioning that the results in a
CAT(0) space can be applied to any C AT (k) space
with £ < 0 since any CAT'(k) space is a CAT (k)
space for every £ > k (see [18, p.165]).

Let x,y € X and by Lemma 2.1(iv) of [27] for
each t € [0, 1], there exists a unique point z € [z, y]
such that

d(z, z) = td(z,y), d(y,z) = (1 =t)d(z,y). (4)
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From now on, we will use the notation (1 — ¢) @
ty for the unique point z satisfying (4). We now
collect some elementary facts about C AT'(0) spaces
which will be used in sequel the proofs of our main
results.

Lemma 1 Let X be a CAT(0) space. Then
(i) (see [27, Lemma 2.4]) for each x,y,z € X
and t € [0, 1], one has

d((1=trdty,z) < (1 —t)d(z,2)+td(y, 2),

(ii) (see [27, Lemma 2.5]) for each x,y,z € X
and t € [0,1], one has

d((1—t)z@ty,2)°
< (1 —=t)d(z, 2)? +td(y, 2)? — t(1 — t)d(zx, y)>.

3 Demiclosedness principle for k-
strictly pseudo-contractive map-

pings

In 1976 Lim [38] introduced a concept of convergence
in a general metric space setting which is called A-
convergence. Later, Kirk and Panyanak [39] used the
concept of A-convergence introduced by Lim [38]
to prove on the C'AT'(0) space analogs of some Ba-
nach space results which involve weak convergence.
Also, Dhompongsa and Panyanak [27] obtained the
A-convergence theorems for the Picard, Mann and
Ishikawa iterations in a C'AT'(0) space for nonexpan-
sive mappings under some appropriate conditions.

We now give the definition and collect some basic
properties of the A-convergence.

Let X be a CAT'(0) space and {zy, } be a bounded
sequence in X. For z € X, we set

r(z,{x,}) = limsup,,_,. d(z,z,).
The asymptotic radius r ({x,,}) of {z,,} is given by
r({zn}) = inf {r (z,{z,}) 1z € X}.
The asymptotic center A ({xy}) of {x,} is the set

A({zn}) ={z e X r(z {za}) =r ({2 })}-

It is known that in a complete C'AT'(0) space,
A ({x,}) consists of exactly one point (see [40,
Proposition 7]).

Definition 2 (/38], [39]) A sequence {x,} in a
CAT(0) space X is said to be A-convergent to x €
X if x is the unique asymptotic center of {uy} for
every subsequence {u,} of {x,}. In this case, we
write A-lim,,_soo T, = x and x is called the A-limit

of {zn}.
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Lemma 3 (i) Every bounded sequence in a complete
CAT(0) space always has a A-convergent subse-
quence. (see [39, p.3690])

(ii) Let C' be a nonempty closed convex subset of
a complete C AT (0) space and let {x,,} be a bounded
sequence in C. Then the asymptotic center of {x,} is
in C. (see [41, Proposition 2.1])

Lemma 4 ([27, Lemma 2.8]) If {x,, } is a bounded se-
quence in a complete C AT (0) space with A({x,,}) =
{z}, {un} is a subsequence of {x,,} with A({u,}) =
{u} and the sequence {d(xzy,u)} is convergent then
T =u.

Let C be a closed convex subset of a CAT(0)
space X and {z,} be a bounded sequence in C. We
denote the notation

{zpn} = w e &(w) = inf &(x)

zeC

&)

where ®(z) = lim sup,,_, . d(zp, x).
Nanjaras and Panyanak [42] gave a connection
between the ”—” convergence and A-convergence.

Proposition 5 (/42, Proposition 3.12]) Let C be a
closed convex subset of a C AT (0) space X and {x}
be a bounded sequence in C. Then A-lim,_,oo T, =
p implies that {z,} — p.

The purpose of this section is to prove demi-
closedness principle for k -strictly pseudo-contractive
mappings in a CAT(0) space by using the conver-
gence defined in (5).

Theorem 6 Let C' be a nonempty closed convex sub-
set of a complete CAT(0) space X andT : C — C
be a k-strictly pseudo-contractive mapping such that

k € [0, %) and F(T) # 0. Let {x,} be a bounded

sequence in C' such that A-lim, , x, = w and
limy, o0 d(zp, Txy) = 0. Then Tw = w.

Proof: By the hypothesis, A-lim,, o £, = w. From
Proposition 5, we get {z,,} — w. Then we obtain
A({z,}) = {w} by Lemma 3 (ii) (see [42]). Since
lim,, o0 d(zy, Tx,) = 0, then we get

= limsupd(Tz,,z) (6)

n—o0

®(x) = limsup d(xy,, )
n—oo

for all z € C. In (6) by taking z = T'w, we have
®(Tw)* = limsupd(Tz,, Tw)?
n—oo
< limsup{d(z,,w)?
n—oo

+h(d(2n, Tan) + d(w, Tw))?}

lim sup d(z,, w)?
n—oo

IN

+klimsup (d(zy, Tay) + d(w, Tw))?

= O(w)? + kd(w, Tw)? (7)
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The (CN) inequality implies that
T 2
d (J;m 10@21”>

1 1 1
< id(azn, w)? + §d(mn,Tw)2 - Zd(w,Tw)2.

Letting n — oo and taking superior limit on the both
sides of the above inequality, we get

1
cb(w@zT“’> < SP(w)’+

Since A({z,}) = {w}, we have

T 2
q@([U)Q f; P (10 Q; U))
1 2 1 2 1 2

which implies that
d(w, Tw)? < 28(Tw)? — 2&(w)?. (8)

By (7) and (8), we get (1 — 2k)d(w, Tw)? < 0. Since
ke [0, ;)

Now, we prove the A-convergence of the new
multi-step iteration for k-strictly pseudo-contractive

mappings in a CAT'(0) space.

then we have T'w = w as desired. O

Theorem 7 Let C be a nonempty closed convex sub-
set of a complete C AT (0) space X and T : C — C
be a k-strictly pseudo-contractive mapping such that
k € [0, 2) and F(T) # 0. Let {a,} and {B.},
i = 1,2,...,k — 2 be sequences in [a,b] for some
a,b € (0,1)and k <1 —0b. Let {xy,} be a sequence
defined by (2). Then the sequence {x,} is A conver-
gent to a fixed point of T..

Proof: Letp € F(T). From (1), (2) and Lemma 1,
we have

d(xn_H,p)Q =d((1— O‘n)yi @ anTy}l,p)Q
(1= an)d(yp, p)* + and(Ty,,, p)?

—ap (1 — O‘n)d(y}w Tyrlz)g

(1= an)d(yy,, p)*

o {d(yh, p)? + kd(yh, Ty})? |

—an(1 — an)d(yp, Typ)?
= d(y},p)? — an((1 —ap) —
d(yy.p)*.

IN

IN

k)d(ys, Ty )?

IN
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Also, we obtain

d(yp,p)? = d((1 - BL)y2 ® BiTy2,p)*
S (1_6% d(y?wp) +671L (Tyg,p)Q
< (1- .

+8, {2 p)? + kd(y2, Ty2)?}

—Bh (1= By)d(ya, Tyz)®
d(yp,p)® — Ba((1 = B)) — k)d(yp, Tyz)?
d(yz,p)*.

IN

Continuing the above process we have

< d(yytp) < d(wn, p).

)
This inequality guarantees that the sequence {z,}
is bounded and lim,,_,~ d(xy,,p) exists for all p €
F(T). Let limy, o0 d(xy,p) = 7. By using (9), we
get

d(zn+1,p) < d(yp,p) <

lim d(y*

n—oo ) =

By Lemma 1, we also have

dyn~",p)* = d((1 = By )an ®

< (=B Yd(zn, p)? + B 'd(Tan, p)*
—52_1(1 - Bﬁ_l)d(ﬂﬁm Txn)Q
< (1 - Z_I)d(xmpf

+Bﬁfl {al(a:n,p)2 + kd(zp, T.CEn)Q}

_5713_1(1 - Brli_l)d(xna T"L‘n)g
= d(zn,p)* = B (1= By — k)d(@n, Ta,)?
which implies that
d(l’n,T:En)2
1 2 k=1 2
< - - _

Thus lim,, o d(xy,, Txy,) = 0. To show that the se-
quence {xz,} is A-convergent to a fixed point of T', we
prove that

Wa(zy) = U
{un}C{zn}

A({un}) € F(T)

and Wa (z,,) consists of exactly one point. Let u €
Wa(xy,). Then, there exists a subsequence {u,} of
{zn} such that A({u,}) = {u}. By Lemma 3,
there exists a subsequence {v,} of {u,} such that
A-lim, ,oo v, = v € K. By Theorem 6, we have
v € F(T) and by Lemma 4, we have u = v € F(T).
This shows that Wa(x,) C F(T'). Now, we prove
that Wa (z,,) consists of exactly one point. Let {u,,}
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be a subsequence of {x, } with A({u,}) = {u} and
let A({z,}) = {z}. We have already seen that u = v
and v € F(T). Finally, since {d(xy,,v)} is conver-
gent, we have x = v € F(T) by Lemma 4. This
shows Wa (zy,) = {x}. This completes the proof. O

Also, we prove the A-convergence of the cyclic

algorithm for k-strictly pseudo-contractive mappings
in a CAT(0) space.

Theorem 8 Let C' be a nonempty closed convex sub-
set of a complete C AT (0) space X and N > 1 be an
integer. Let, foreach0 < i < N—-1,T;: C —- C
be k;-strictly pseudo-contractive mappings for some
0 < ki < 3.Let k = max{k;0<i<N-—1},
{an} be a sequence in [a, b] for some a,b € (0,1) and
k<a Let F =Y, ' F(T) # 0. Forxzg € C, let
{x,} be a sequence defined by (3). Then the sequence
{xn} is A-convergent to a common fixed point of the

family {Tl}fif)l

Proof: Let p € F. Using (1), (3) and Lemma 1, we

have

d(zny1,p)°

= d(apz, ® (1 - an)T[n]l“mP)z

< apd(z,p)* + (1 = ap)d(Tjzn, p)?
—an (1 — ay)d(xy, T[n]:(:n)2

< apd(zy,p)?
+(1— ay) {d(avn,p)2 + kd(mn,T[n}an}
—an (1 — ap)d(xp, T[n]:vn)Q

= d(xn,p)?
—(1 = an) (e — k)d(zn, Ty n)? (10)

< d(wn,p)*.

This inequality guarantees that the sequence {z,,} is
bounded and lim,, ;. d(zy, p) exists for all p € F.
By (10), we also have

d(xn’ﬂn]xn)2
1
(1 — o) (ay — k)

1
S Aoa=h (@, p)? = d(wns1,p)?]

|d(@n,p)” = (w10’

Since  limy, o0 d(xy,p)  exists, we  obtain
limy, o0 d(7p, Tijzn) = 0.  The rest of the
proof closely follows the proof of Theorem 7 and is
therefore omitted. O
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4 The strong convergence theorem
for the modified Halpern’s itera-
tion

In [17], Hu introduced a modified Halpern’s iteration.

We modify this iteration in a CAT'(0) space as fol-

lows.

For an arbitrary initial value zg € C and a fixed
anchor u € C, the sequence {z,,} is defined by

an

Tnt1 = QpU B (1 - an)ym
Yn = 1?:;” Tn D 117(;” Txp, Vn >0,
where {an},{Bn}, {7} are three real sequences in
(0,1) satisfying o, + B + 1 = 1.
Clearly, the iterative sequence (11) is a natural
generalization of the well known iterations.
(i) If we take 3,, = 0 for all n in (11), then the se-
quence (11) reduces to the Halpern’s iteration in [43].
(i1) If we take «,, = O for all n in (11), then the
sequence (11) reduces to the Mann iteration in [16].

In this section, we prove the strong convergence
of the modified Halpern’s iteration in a C'AT(0)
space.

Recall that a continuous linear functional y on
{, the Banach space of bounded real sequences, is
called a Banach limit if ||u|| = p(1,1,...) = 1 and

plan) = plansr) forall {an}o? | C loo.

Lemma 9 (see [44, Proposition 2]) Let {a,} €
lso be such that p(a,) < 0 for all Banach lim-
its p and limsup, ,.(ap+1 — an) < 0. Then,
limsup,,_,o, an < 0.

Lemma 10 Let C be a nonempty closed convex sub-
set of a complete CAT(0) space X, T : C — C be a
k-strictly pseudo-contractive mapping with k € [0, 1)
and S : C — C be a mapping defined by Sz =
kz® (1—Fk)Tz, for z € C. Let u € C be fixed.
For each t € [0, 1], the mapping Sy : C' — C defined
by

Stz =tud(l —t) Sz =tud(l —t) (kz & (1 —k)T2)
for z € C, has a unique fixed point z; € C, that is,
2y = St(zt) =tu®d (1—t) S(zt) (12)

Proof: As it has been proven in [45], if T is a k-
strictly pseudo-contractive mapping with k& € [0, 1), S
is a nonexpansive mapping such that F'(S) = F(T).
Then, from Lemma 2.1 in [29], the mapping S; has a
unique fixed point z; € C. O
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Lemma 11 Let X,C,T and S be as in Lemma 10.
Then, F(T) # 0 if and only if {z} given by (12)
remains bounded as t — 0. In this case, the following
statements hold:

(1) {z:} converges to the unique fixed point z of
T which is nearest to u;

(2) d(u,2)®> < pd(u,z,)? for all Banach
limits p and all bounded sequences {x,} with
limy, o0 d(zp, Txy) = 0.

Proof: If F'(T) # 0, then we have F(S) = F(T) #
(). Also, if lim;,_, o d(xy, T'zy,) = 0, we obtain that

d(xn, Szy) d(xp, kxy ® (1 — k) Txy)

Thus, from Lemma 2.2 in [29], the rest of the proof of
this lemma can be seen. O
The following lemma can be found in [46].

Lemma 12 (see [46, Lemma 2.1]) Let {a,} be a se-
quence of non-negative real numbers satisfying the
condition

ant1 < (1= yn)an + Ynon, Yn >0,

where {v,} and {0, } are sequences of real numbers
such that

(1) {7} € [0,1] and 32524 n = 0,

(2) either limsup,,_,., op < 0

> et [Ynon| < oo.
Then, lim,, o, a, = 0.

or

We are now ready to prove our main result.

Theorem 13 Let C' be a nonempty closed convex sub-
set of a complete C AT (0) space X andT : C — C
be a k-strictly pseudo-contractive mapping such that
0<k< 1572” < land F(T) # 0. Let {z,} be a
sequence defined by (11). Suppose that {a,}, {6n}
and {~y,} satisfy the following conditions:

(C2) Y52 an = o,

(C3) limy, 00 By, # k and limy, o0 vn # 0.

Then the sequence {x,} converges strongly to a
fixed point of T..

Proof: We divide the proof into three steps. In the
first step we show that {z,},{y,} and {Tz,} are
bounded sequences. In the second step we show that
lim,, o0 d(zp, Tx,) = 0. Finally, we show that {z,, }
converges to a fixed point z € F'(T") which is nearest
to u.
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First step: Take any p € F(T), then, from Lemma 1
and (11), we have

d(yn, p)?
ﬁn 9 Yn 2
< _m
< P + (T p)
,Bni%zd(xmhnﬁ
(1—ap)
ﬁn 2
< d(xy,
- 1—oqy (@n, )
Tn 2 2
+1 m— (d(l‘n,p) + kd(xy, Tzy) )
—%d(:ﬁn,Tmn)Z
(1—ap)
B 5 Tn Bn 2
= o - 2 (T2 k) o, T
g d(xnap)Q
Also, we obtain
d($n+17p)2
< apd(u,p)* + (1 - an) d(yn,p)?
< d(up 1—an {d xn,p
Tn
1_an (1_an k) d(zy, Txzy,) }
—Qp (1 - an) (’LL, yn)2
= and(u p) (]- - an) d(ﬂ:n,p)
Bn )
— d(xn, Tx
" (1 — (= )
—Qp (1 ) (u7 yn)2 (13)
S and(u,p) (]- - an) (xna )

IA
8
3

max{d(u,p) ,d(zp,p) }

By induction,

d(wns1,p)? < max {d(u, p)?,d(x0,p)*}

This proves the boundedness of the sequence {x,},
which leads to the boundedness of {7z, } and {y,} .
Second step: In fact, we have from (13) (for some
appropriate constant M > 0) that

d($n+1ap)2
and(uvp)Q + (1 - an) d(ﬂfn,p>2
B ( B

Tn 1—a,

(
an(d(u, p)* — d(zn, p)?) + d(:tn,
d(

IN

- ( B
Tn 1— o,
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< a,M+ d(xnap)Q

—Tn (1 f"an - k) d(zn, Txy)?,
which implies that
Yn ( P _ k:> d(zn, Tzn)? — anM
1—a, ’
< d(xnap)Q - d(xn+17p)2' (14)
If (1 an k) d(a:anxn)z — ap M <0, then
d(mexn)z < $M,
Tn (1 on - k)

and hence the desired result is obtained by the condi-
tions (C1) and (C3).

If’)/n <1 an k) d(l’n, Txn)2 - anM > 0, then
following (14), we have

S Br

HZ:O {’Yn (1 — Op
S d(xo,p)z
S d(x07p)2'

- k> d(xp, T:cn)2 —a,M

- d(xm+1ap)2

That is

2[%@_&

Thus

— k) d(a:n,T:rn)2 — anM} < 0.

n

B

— ay

lim
n—oo

[7” (1

Then we get

- k:) d(xp, Tx,)* — anM} =0.
nh_)rglo d(xy, Txy,) = 0. (15)

Third step: Using the condition (C1) and (15), we
obtain

d(wn—l—l,xn)

< d($n+la Tmn) + d(Tl‘na xn)

< apd(u,Txy) + (1 — ap)d(yn, Ty)
—i—d(Twn,:cn)

< apd(u,Txy) + (1 — ay) (1 Bn d(xn,T$n)>
—|—d(Txn,xn)

= and(u,Tzy) + (Bn + 1) d(zy, Tzy)

— O, as n — 00.
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Also, from (15), we have

Tn

d(Tp,yn) < —a d(xp, Ty
— 0, asn — oo. (16)
Let z = limy_,0 2, where z; is given by (12)

in Lemma 10. Then, z is the point of F(T')
which is nearest to u. By Lemma 11 (2), we have
w(d(u, 2)? — d(u,z,,)?) < 0 for all Banach limits
p. Let a, = d(u,2)? — d(u,r,)% Moreover, since
limy, o0 d(Tp41, n) = 0, we get

limsup (ap+1 — an) = 0.
n—oo
By Lemma 9, we obtain

lim sup (d(u, 2)% — d(u,xn)Q) <0. 17

n—oo

It follows from the condition (C1) and (16) that
limsup (d(u, 2)? — (1 = o) d(u, yn)?)

(18)

lim sup (d(u, z)% — d(u,xn)2> .

n—oo

By (17) and (18), we have

lim sup (d(u, 2)2 — (1 — ap) d(u,yn)Q) <0. (19)

n—oo
We observe that
d(Tpt1,2)°
< O[nd(u, Z) (1 - an) d(yTH )
—0Qlp (1 - ) (u7 y”)2
< and(u, 2)* + (1 — ay) d(z,, 2)*
—ap (1 — ay) d(u, yn)2

(1 — ap)d(zp, 2)?
+ay, {d(m z)2 — (1 — ap)d(u, yn)ﬂ .

It follows from the condition (C2) and (19), using
Lemma 12, that lim,,_,o d(zy,z) = 0. This com-
pletes the proof of Theorem 13. O

We obtain the following corollary as a direct con-
sequence of Theorem 13.

Corollary 14 Let X, C and T be as Theorem 13. Let
{an} be a real sequence in (0, 1) satisfying the condi-
tions (C1) and (C2). For a constant 6 € (k,1), an ar-
bitrary initial value xo € C and a fixed anchoru € C,
let the sequence {x,} be defined by

Tpt1 = ud (1 —ay) (02, ® (1 —0)Txy,), (20)

for all n > 0. Then the sequence {xy} is strongly
convergent to a fixed point of T
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Proof: If, in the proof of Theorem 13, we take /3, =
(1 —ap)dand v, = (1 —ay)(1 — ), then we get the
desired conclusion. O

Remark 15 The results in this section contain the
strong convergence theorems of the iterative se-
quences (11) and (20) for nonexpansive mappings
in a CAT(0) space. Also, our results contain the
corresponding theorems proved for these iterative se-
quences in a Hilbert space.
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