Some iterative algorithms for k-strictly pseudo-contractive mappings in a $CAT(0)$ space

AYNUR ŞAHİN
Sakarya University
Department of Mathematics
Sakarya, 54187
TURKEY
ayuce@sakarya.edu.tr

METİN BAŞARIR
Sakarya University
Department of Mathematics
Sakarya, 54187
TURKEY
basarir@sakarya.edu.tr

Abstract: In this paper, we prove the Δ-convergence theorems of the cyclic algorithm and the new multi-step iteration for k-strictly pseudo-contractive mappings and give also the strong convergence theorem of the modified Halpern’s iteration for these mappings in a $CAT(0)$ space. Our results extend and improve the corresponding recent results announced by many authors in the literature.

Key–Words: $CAT(0)$ space, fixed point, strong convergence, Δ-convergence, k-strictly pseudo-contractive mapping, iterative algorithm.

1 Introduction

Let C be a nonempty subset of a real Hilbert space X. Recall that a mapping $T : C \rightarrow C$ is said to be k-strictly pseudo-contractive if there exists a constant $k \in [0, 1)$ such that

$$\|Tx - Ty\|^2 \leq \|x - y\|^2 + k \|(I - T)x - (I - T)y\|^2$$

for all $x, y \in C$.

A point $x \in C$ is called a fixed point of T if $x = Tx$. We will denote the set of fixed points of T by $F(T)$. Note that the class of k-strictly pseudo-contractive includes the class of nonexpansive mappings which are mappings T on C such that

$$\|Tx - Ty\| \leq \|x - y\|, \forall x, y \in C.$$

That is, T is nonexpansive if and only if T is 0-strictly pseudo-contractive. The mapping T is also said to be pseudo-contractive if $k = 1$ and T is said to be strongly pseudo-contractive if there exists a constant $\lambda \in (0, 1)$ such that $T - \lambda I$ is pseudo-contractive. Clearly, the class of k-strictly pseudo-contractive mappings is the one between classes of nonexpansive mappings and pseudo-contractive mappings. Also we remark that the class of strongly pseudo-contractive mappings is independent from the class of k-strictly pseudo-contractive mappings (see, e.g., [1]-[3]). Recently, many authors have been devoted the studies on the problems of finding fixed points for k-strictly pseudo-contractive mappings (see, e.g., [4]-[10]).

We define the concept of k-strictly pseudo-contractive mapping in a $CAT(0)$ space as follows.

Let C be a nonempty subset of a $CAT(0)$ space X. A mapping $T : C \rightarrow C$ is said to be k-strictly pseudo-contractive if there exists a constant $k \in [0, 1)$ such that

$$d(Tx, Ty)^2 \leq d(x, y)^2 + k \left(d(x, Tx) + d(y, Ty) \right)^2$$

for all $x, y \in C$.

For an arbitrary fixed order $k \geq 2$,

$$\begin{cases}
 x_0 \in C, \\
 x_{n+1} = (1 - \alpha_n)y_n + \alpha_n Ty_n, \\
 y_n^1 = (1 - \beta_n^1)y_n^1 + \beta_n^1 Ty_n^2, \\
 y_n^2 = (1 - \beta_n^2)y_n^2 + \beta_n^2 Ty_n^3, \\
 \vdots \\
 y_n^{k-2} = (1 - \beta_n^{k-2})y_n^{k-1} + \beta_n^{k-2}Ty_n^{k-1}, \\
 y_n^{k-1} = (1 - \beta_n^{k-1})x_n + \beta_n^{k-1}Tx_n, \quad \forall n \geq 0,
\end{cases}$$

or, in short,

$$\begin{cases}
 x_0 \in C, \\
 x_{n+1} = (1 - \alpha_n)y_n^1 + \alpha_n Ty_n^1, \\
 y_n^i = (1 - \beta_n^i)y_n^i + \beta_n^i Ty_n^{i+1}, \quad i = 1, 2, ..., k - 2, \\
 y_n^{k-1} = (1 - \beta_n^{k-1})x_n + \beta_n^{k-1}Tx_n, \quad \forall n \geq 0.
\end{cases}$$

By taking $k = 3$ and $k = 2$ in (2), we obtain the SP-iteration of Phuengrattana and Suantai [13] and the two-step iteration of Thianwan [14], respectively.
Acedo and Xu [15] introduced a cyclic algorithm in a Hilbert space. We modify this algorithm in a CAT(0) space.

Let \(x_0 \in C \) and \(\{a_n\} \) be a sequence in \([a, b]\) for some \(a, b \in (0, 1) \). The cyclic algorithm generates a sequence \(\{x_n\} \) in the following way:

\[
\begin{align*}
x_1 &= a_0x_0 \oplus (1 - a_0)T_0x_0, \\
x_2 &= a_1x_1 \oplus (1 - a_1)T_1x_1, \\
\vdots \\
x_N &= a_{N-1}x_{N-1} \oplus (1 - a_{N-1})T_{N-1}x_{N-1}, \\
x_{N+1} &= a_Nx_N \oplus (1 - a_N)T_0x_N, \\
\vdots
\end{align*}
\]

or, shortly,

\[
x_{n+1} = a_nx_n \oplus (1 - a_n)T_{[n]}x_n, \forall n \geq 0,
\]

where \(T_{[n]} = T_i, \) with \(i = n(modN) \), \(0 \leq i \leq N - 1 \).

By taking \(T_{[n]} = T \) for all \(n \) in (3), we obtain the Mann iteration in [16].

In this paper, motivated by the above results, we prove the demiclosedness principle for \(k \)-strictly pseudo-contractive mappings in a CAT(0) space. Also we present the \(\Delta \)-convergence theorems of the cyclic algorithm and the new multi-step iteration and the strong convergence theorem of the modified Halpern’s iteration which is introduced for Hilbert space by Hu [17] for these mappings in a CAT(0) space.

2 Preliminaries on CAT(0) space

A metric space \(X \) is a CAT(0) space if it is geodesically connected and if every geodesic triangle in \(X \) is at least as ‘thin’ as its comparison triangle in the Euclidean plane. It is well known that any complete, simply connected Riemannian manifold having non-positive sectional curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces (see [18]), Euclidean buildings (see [19]), R-trees (see [20]), the complex Hilbert ball with a hyperbolic metric (see [21]) and many others. For a thorough discussion of these spaces and of the fundamental role they play in geometry, we refer the reader to Bridson and Haefliger [18].

Fixed point theory in a CAT(0) space has been first studied by Kirk (see [22], [23]). He showed that every nonexpansive mapping defined on a bounded closed convex subset of a complete CAT(0) space always has a fixed point. Since then the fixed point theory in a CAT(0) space has been rapidly developed and many papers have appeared (see, e.g., [24]-[32]). It is worth mentioning that fixed point theorems in a CAT(0) space (specially in R-trees) can be applied to graph theory, biology and computer science (see, e.g., [20], [33]-[36]).

Let \((X, d) \) be a metric space. A geodesic path joining \(x \in X \) to \(y \in X \) (or more briefly, a geodesic from \(x \) to \(y \)) is a map \(c \) from a closed interval \([0, l] \subset R \) to \(X \) such that \(c(0) = x \), \(c(l) = y \) and \(d(c(t), c(t')) = |t - t'| \) for all \(t, t' \in [0, l] \). In particular, \(c \) is an isometry and \(d(x, y) = l \). The image of \(c \) is called a geodesic (or metric) segment joining \(x \) and \(y \). When it is unique, this geodesic is denoted by \([x, y]\). The space \((X, d)\) is said to be a geodesic space if every two points of \(X \) are joined by a geodesic and \(X \) is said to be a uniquely geodesic if there is exactly one geodesic joining \(x \) to \(y \) for each \(x, y \in X \).

A geodesic triangle \(\Delta(x_1, x_2, x_3) \) in a geodesic metric space \((X, d)\) consist of three points in \(X \) (the vertices of \(\Delta \)) and a geodesic segment between each pair of vertices (the edges of \(\Delta \)). A comparison triangle for geodesic triangle \(\Delta(x_1, x_2, x_3) \) in \((X, d)\) is a triangle \(\Delta'(\pi_1, \pi_2, \pi_3) \) in the Euclidean plane \(\mathbb{R}^2 \) such that

\[
d_{\mathbb{R}^2}(\pi_i, \pi_j) = d(x_i, x_j)
\]

for \(i, j \in \{1, 2, 3\} \). Such a triangle always exists (see [18]).

A geodesic metric space is said to be a CAT(0) space [18] if all geodesic triangles of appropriate size satisfy the following comparison axiom:

Let \(\Delta \) be a geodesic triangle in \(X \) and \(\Delta' \) be a comparison triangle for \(\Delta \). Then, \(\Delta \) is said to satisfy the CAT(0) inequality if for all \(x, y \in \Delta \) and all comparison points \(\pi, \mu \in \Delta' \),

\[
d(x, y) \leq d_{\mathbb{R}^2}(\pi, \mu).
\]

If \(x, y_1, y_2 \) are points in a CAT(0) space and if \(y_0 \) is the midpoint of the segment \([y_1, y_2]\), then the CAT(0) inequality implies that

\[
d(x, y_0)^2 \leq \frac{1}{2}d(x, y_1)^2 + \frac{1}{2}d(x, y_2)^2 - \frac{1}{4}d(y_1, y_2)^2.
\]

This is the (CN) inequality of Bruhat and Tits [37]. In fact (see [18, p.163]), a geodesic metric space is a CAT(0) space if and only if it satisfies the (CN) inequality. It is worth mentioning that the results in a CAT(0) space can be applied to any CAT(0) space with \(k \leq 0 \) since any CAT(0) space is a CAT(0') space for every \(k' \geq k \) (see [18, p.165]).

Let \(x, y \in X \) and by Lemma 2.1(iv) of [27] for each \(t \in [0, 1] \), there exists a unique point \(z \in [x, y] \) such that

\[
d(x, z) = td(x, y), \quad d(y, z) = (1 - t)d(x, y).
\]
From now on, we will use the notation \((1 - t)x \oplus ty\) for the unique point \(z\) satisfying (4). We now collect some elementary facts about \(CAT(0)\) spaces which will be used in sequel the proofs of our main results.

Lemma 1 Let \(X\) be a \(CAT(0)\) space. Then

(i) (see [27, Lemma 2.4]) for each \(x, y, z \in X\) and \(t \in [0, 1]\), one has

\[
d((1 - t)x \oplus ty, z) \leq (1 - t)d(x, z) + td(y, z),
\]

(ii) (see [27, Lemma 2.5]) for each \(x, y, z \in X\) and \(t \in [0, 1]\), one has

\[
d((1 - t)x \oplus ty, z)^2 \\
\leq (1 - t)d(x, z)^2 + td(y, z)^2 - t(1 - t)d(x, y)^2.
\]

3 Demiclosedness principle for \(k\)-strictly pseudo-contractive mappings

In 1976 Lim [38] introduced a concept of convergence in a general metric space setting which is called \(\Delta\)-convergence. Later, Kirk and Panyanak [39] used the concept of \(\Delta\)-convergence introduced by Lim [38] to prove on the \(CAT(0)\) space analogs of some Banach space results which involve weak convergence. Also, Dhompongsa and Panyanak [27] obtained the \(\Delta\)-convergence theorems for the Picard, Mann and Ishikawa iterations in a \(CAT(0)\) space for nonexpansive mappings under some appropriate conditions.

We now give the definition and collect some basic properties of the \(\Delta\)-convergence.

Let \(X\) be a \(CAT(0)\) space and \(\{x_n\}\) be a bounded sequence in \(X\). For \(x \in X\), we set

\[
r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n).
\]

The asymptotic radius \(r(\{x_n\})\) of \(\{x_n\}\) is given by

\[
r(\{x_n\}) = \inf \{ r(x, \{x_n\}) : x \in X \}.
\]

The asymptotic center \(A(\{x_n\})\) of \(\{x_n\}\) is the set

\[
A(\{x_n\}) = \{ x \in X : r(x, \{x_n\}) = r(\{x_n\}) \}.
\]

It is known that in a complete \(CAT(0)\) space, \(A(\{x_n\})\) consists of exactly one point (see [40, Proposition 7]).

Definition 2 ([38], [39]) A sequence \(\{x_n\}\) in a \(CAT(0)\) space \(X\) is said to be \(\Delta\)-convergent to \(x \in X\) if \(x\) is the unique asymptotic center of \(\{u_n\}\) for every subsequence \(\{u_n\}\) of \(\{x_n\}\). In this case, we write \(\Delta\)-lim_{n \to \infty} x_n = x\) and \(x\) is called the \(\Delta\)-limit of \(\{x_n\}\).

Lemma 3 (i) Every bounded sequence in a complete \(CAT(0)\) space always has a \(\Delta\)-convergent subsequence. (see [39, p.3690])

(ii) Let \(C\) be a nonempty closed convex subset of a complete \(CAT(0)\) space and let \(\{x_n\}\) be a bounded sequence in \(C\). Then the asymptotic center of \(\{x_n\}\) is in \(C\). (see [41, Proposition 2.1])

Lemma 4 ([27, Lemma 2.8]) If \(\{x_n\}\) is a bounded sequence in a complete \(CAT(0)\) space with \(A(\{x_n\}) = \{x\}\), \(\{u_n\}\) is a subsequence of \(\{x_n\}\) with \(A(\{u_n\}) = \{u\}\) and the sequence \(\{d(x_n, u)\}\) is convergent then \(x = u\).

Let \(C\) be a closed convex subset of a \(CAT(0)\) space \(X\) and \(\{x_n\}\) be a bounded sequence in \(C\). We denote the notation

\[
\{x_n\} \to w \Leftrightarrow \Phi(w) = \inf_{x \in C} \Phi(x) \tag{5}
\]

where \(\Phi(x) = \limsup_{n \to \infty} d(x, x_n)\).

Nanjaras and Panyanak [42] gave a connection between the "\(\to\)" convergence and \(\Delta\)-convergence.

Proposition 5 ([42, Proposition 3.12]) Let \(C\) be a closed convex subset of a \(CAT(0)\) space \(X\) and \(\{x_n\}\) be a bounded sequence in \(C\). Then \(\Delta\)-lim_{n \to \infty} x_n = p\) implies that \(\{x_n\} \to p\).

The purpose of this section is to prove demiclosedness principle for \(k\)-strictly pseudo-contractive mappings in a \(CAT(0)\) space by using the convergence defined in (5).

Theorem 6 Let \(C\) be a nonempty closed convex subset of a complete \(CAT(0)\) space \(X\) and \(T : C \to C\) be a \(k\)-strictly pseudo-contractive mapping such that \(k \in \left[0, \frac{1}{2}\right]\) and \(F(T) \neq \emptyset\). Let \(\{x_n\}\) be a bounded sequence in \(C\) such that \(\Delta\)-lim_{n \to \infty} x_n = w\) and \(\lim_{n \to \infty} d(x_n, Tx_n) = 0\). Then \(Tw = w\).

Proof: By the hypothesis, \(\Delta\)-lim_{n \to \infty} x_n = w\). From Proposition 5, we get \(\{x_n\} \to w\). Then we obtain \(A(\{x_n\}) = \{w\}\) by Lemma 3 (ii) (see [42]). Since \(\lim_{n \to \infty} d(x_n, Tx_n) = 0\), then we get

\[
\Phi(x) = \limsup_{n \to \infty} d(x_n, x) = \limsup_{n \to \infty} d(Tx_n, x) \tag{6}
\]

for all \(x \in C\). In (6) by taking \(x = Tw\), we have

\[
\Phi(Tw)^2 = \limsup_{n \to \infty} d(Tx_n, Tw)^2 \\
\leq \limsup_{n \to \infty} \{d(x_n, w)^2 \\
+ k(d(x_n, Tx_n) + d(w, Tw))^2\} \\
\leq \limsup_{n \to \infty} d(x_n, w)^2 \\
+ k \limsup_{n \to \infty} \{d(x_n, Tx_n) + d(w, Tw)^2\} \\
= \Phi(w)^2 + kd(w, Tw)^2 \tag{7}
\]
Let \(T \) defined by (2). Then the sequence \(x_{n+1} = w, T x_{n}, T^2 x_{n}, \ldots, k = 1, 2 \) be a nonempty closed convex subset of a complete CAT(0) space \(X \), \(T : C \to C \) be a k-strictly pseudo-contractive mapping such that \(k \in [0, \frac{1}{2}) \) and \(F(T) \neq \emptyset \). Let \(\{\alpha_n\} \) and \(\{\beta_n\} \), \(i = 1, 2, \ldots, k - 2 \) be sequences in \([a, b]\) for some \(a, b \in (0, 1) \) and \(k < 1 - b \). Let \(\{x_n\} \) be a sequence defined by (2). Then the sequence \(\{x_n\} \) is \(\Delta \)-convergent to a fixed point of \(T \).

Theorem 7 Let \(C \) be a nonempty closed convex subset of a complete CAT(0) space \(X \) and \(T : C \to C \) be a k-strictly pseudo-contractive mapping such that \(k \in [0, \frac{1}{2}) \) and \(F(T) \neq \emptyset \). Let \(\{\alpha_n\} \) and \(\{\beta_n\} \), \(i = 1, 2, \ldots, k - 2 \) be sequences in \([a, b]\) for some \(a, b \in (0, 1) \) and \(k < 1 - b \). Let \(\{x_n\} \) be a sequence defined by (2). Then the sequence \(\{x_n\} \) is \(\Delta \)-convergent to a fixed point of \(T \).

Proof: Let \(p \in F(T) \). From (1), (2) and Lemma 1, we have

\[
d(x_{n+1} - p)^2 = d((1 - \alpha_n)y_n^1 + \alpha_n Ty_n^1, p)^2
\leq (1 - \alpha_n)d(y_n^1, p)^2 + \alpha_n d(Ty_n^1, p)^2
- \alpha_n(1 - \alpha_n)d(y_n^1, Ty_n^1)^2
\leq (1 - \alpha_n)d(y_n^1, p)^2 + \alpha_n \{d(y_n^1, p)^2 + kd(y_n^1, Ty_n^1)^2\}
- \alpha_n(1 - \alpha_n)d(y_n^1, Ty_n^1)^2
= d(y_n^1, p)^2 - \alpha_n((1 - \alpha_n) - k)d(y_n^1, Ty_n^1)^2
\leq d(y_n^1, p)^2.
\]

Also, we obtain

\[
d(y_n^1, p)^2 = d((1 - \beta_n^1)y_n^2 + \beta_n^1Ty_n^2, p)^2
\leq (1 - \beta_n^1)d(y_n^2, p)^2 + \beta_n^1d(Ty_n^2, p)^2
\leq (1 - \beta_n^1)d(y_n^2, p)^2 + \beta_n^1 \{d(y_n^2, p)^2 + kd(y_n^2, Ty_n^2)^2\}
- \beta_n^1((1 - \beta_n^1) - k)d(y_n^2, Ty_n^2)^2
\leq d(y_n^2, p)^2.
\]

Continuing the above process we have

\[
d(x_{n+1}, p) \leq d(y_n^1, p) \leq \ldots \leq d(y_n^k, p) \leq d(x_n, p).
\]

This inequality guarantees that the sequence \(\{x_n\} \) is bounded and \(\lim_{n \to \infty} d(x_n, p) \) exists for all \(p \in F(T) \). Let \(\lim_{n \to \infty} d(x_n, p) = r \). By using (9), we get

\[
\lim_{n \to \infty} d(y_{n+1}, p) = r.
\]

By Lemma 1, we also have

\[
d(y_{n+1}, p)^2 = d((1 - \beta_n^{k-1})x_n + \beta_n^{k-1}Tx_n, p)^2
\leq (1 - \beta_n^{k-1})d(x_n, p)^2 + \beta_n^{k-1}d(Tx_n, p)^2
- \beta_n^{k-1}((1 - \beta_n^{k-1}) - k)d(x_n, Tx_n)^2
\leq (1 - \beta_n^{k-1})d(x_n, p)^2 + \beta_n^{k-1} \{d(x_n, p)^2 + kd(x_n, Tx_n)^2\}
- \beta_n^{k-1}((1 - \beta_n^{k-1}) - k)d(x_n, Tx_n)^2
= d(x_n, p)^2 - \beta_n^{k-1}((1 - \beta_n^{k-1}) - k)d(x_n, Tx_n)^2,
\]

which implies that

\[
\lim_{n \to \infty} d(x_{n+1}, p) = r.
\]

Thus \(\lim_{n \to \infty} d(x_n, Tx_n) = 0 \). To show that the sequence \(\{x_n\} \) is \(\Delta \)-convergent to a fixed point of \(T \), we prove that

\[
W_\Delta(x_n) = \bigcup_{u_n \subseteq \{x_n\}} A(A(u_n)) \subseteq F(T)
\]

and \(W_\Delta(x_n) \) consists of exactly one point. Let \(u \in W_\Delta(x_n) \). Then, there exists a subsequence \(\{u_n\} \) of \(\{x_n\} \) such that \(A(u_n) = \{u\} \). By Lemma 3, there exists a subsequence \(\{v_n\} \) of \(\{u_n\} \) such that \(\Delta \)-lim \(v_n \to v = v \in K \). By Theorem 6, we have \(v \in F(T) \) and by Lemma 4, we have \(u = v \in F(T) \). This shows that \(W_\Delta(x_n) \subseteq F(T) \). Now, we prove that \(W_\Delta(x_n) \) consists of exactly one point. Let \(\{u_n\} \)
be a subsequence of \(\{ x_n \} \) with \(A(\{ u_n \}) = \{ u \} \) and let \(A(\{ x_n \}) = \{ x \} \). We have already seen that \(u = v \) and \(v \in F(T) \). Finally, since \(\{ d(x_n, v) \} \) is convergent, we have \(x = v \in F(T) \) byLemma 4. This shows \(W_\Delta(x_n) = \{ x \} \). This completes the proof. \(\square \)

Also, we prove the \(\Delta \)-convergence of the cyclic algorithm for \(k \)-strictly pseudo-contractive mappings in a \(CAT(0) \) space.

Theorem 8 Let \(C \) be a nonempty closed convex subset of a complete \(CAT(0) \) space \(X \) and \(N \geq 1 \) be an integer. Let, for each \(0 \leq i \leq N-1 \), \(T_i : C \to C \) be \(k_i \)-strictly pseudo-contractive mappings for some \(0 \leq k_i < \frac{1}{2} \). Let \(k = \max \{ k_i ; 0 \leq i \leq N-1 \} \), \(\{ \alpha_n \} \) be a sequence in \([a, b]\) for some \(a, b \in (0, 1) \) and \(k < a \). Let \(F = \bigcap_{i=0}^{N-1} F(T_i) \neq \emptyset \). For \(x_0 \in C \), let \(\{ x_n \} \) be a sequence defined by (3). Then the sequence \(\{ x_n \} \) is \(\Delta \)-convergent to a common fixed point of the family \(\{ T_i \}_{i=0}^{N-1} \).

Proof: Let \(p \in F \). Using (1), (3) and Lemma 1, we have

\[
d(x_{n+1}, p)^2 = d(\alpha_n x_n + (1-\alpha_n) T[n] x_n, p)^2 \leq \alpha_n d(x_n, p)^2 + (1-\alpha_n) d(T[n] x_n, p)^2 - \alpha_n (1-\alpha_n) d(x_n, T[n] x_n)^2 \\
\leq \alpha_n d(x_n, p)^2 + (1-\alpha_n) \left(d(x_n, p)^2 + kd(x_n, T[n] x_n)^2 \right) - \alpha_n (1-\alpha_n) d(x_n, T[n] x_n)^2 \\
= d(x_n, p)^2 - (1-\alpha_n)(\alpha_n - k) d(x_n, T[n] x_n)^2 \leq d(x_n, p)^2.
\]

This inequality guarantees that the sequence \(\{ x_n \} \) is bounded and \(\lim_{n \to \infty} d(x_n, p) \) exists for all \(p \in F \).

By (10), we also have

\[
d(x_n, T[n] x_n)^2 \leq \frac{1}{(1-\alpha_n)(\alpha_n - k)} d(x_n, p)^2 - (1-\alpha_n) d(x_{n+1}, p)^2 \leq \frac{1}{(1-b)(a - k)} d(x_n, p)^2 - d(x_{n+1}, p)^2.
\]

Since \(\lim_{n \to \infty} d(x_n, p) \) exists, we obtain \(\lim_{n \to \infty} d(x_n, T[n] x_n) = 0 \). The rest of the proof closely follows the proof of Theorem 7 and is therefore omitted. \(\square \)

4 The strong convergence theorem for the modified Halpern’s iteration

In [17], Hu introduced a modified Halpern’s iteration. We modify this iteration in a \(CAT(0) \) space as follows.

For an arbitrary initial value \(x_0 \in C \) and a fixed anchor \(u \in C \), the sequence \(\{ x_n \} \) is defined by

\[
x_{n+1} = \alpha_n u + (1-\alpha_n) y_n, \\
y_n = \frac{1}{1-\alpha_n} x_n + \frac{\gamma_n}{1-\alpha_n} T x_n, \quad \forall n \geq 0,
\]

where \(\{ \alpha_n \}, \{ \beta_n \}, \{ \gamma_n \} \) are three real sequences in \((0, 1)\) satisfying \(\alpha_n + \beta_n + \gamma_n = 1 \).

Clearly, the iterative sequence (11) is a natural generalization of the well known iterations.

(i) If we take \(\beta_n = 0 \) for all \(n \) in (11), then the sequence (11) reduces to the Halpern’s iteration in [43].

(ii) If we take \(\alpha_n = 0 \) for all \(n \) in (11), then the sequence (11) reduces to the Mann iteration in [16].

In this section, we prove the strong convergence of the modified Halpern’s iteration in a \(CAT(0) \) space.

Recall that a continuous linear functional \(\mu \) on \(\ell_\infty \), the Banach space of bounded real sequences, is called a Banach limit if \(\| \mu \| = 1 \) and \(\mu(\{ a_n \}) = \mu(\{ a_n \}) \) for all \(\{ a_n \}_{n=1}^\infty \subset \ell_\infty \).

Lemma 9 (see [44, Proposition 2]) Let \(\{ a_n \} \in \ell_\infty \) be such that \(\mu(a_n) \leq 0 \) for all Banach limits \(\mu \) and \(\limsup_{n \to \infty} (a_{n+1} - a_n) \leq 0 \). Then, \(\limsup_{n \to \infty} a_n \leq 0 \).

Lemma 10 Let \(C \) be a nonempty closed convex subset of a complete \(CAT(0) \) space \(X \), \(T : C \to C \) be a \(k \)-strictly pseudo-contractive mapping with \(k \in [0, 1) \) and \(S : C \to C \) be a mapping defined by \(Sz = k z \oplus (1-k) T z \), for \(z \in C \). Let \(u \in C \) be fixed. For each \(t \in [0, 1] \), the mapping \(S_t : C \to C \) defined by

\[
S_t z = tu \oplus (1-t) S z = tu \oplus (1-t) (k z \oplus (1-k) T z)
\]

for \(z \in C \), has a unique fixed point \(z_t \in C \), that is,

\[
z_t = S_t(z_t) = tu \oplus (1-t) S(z_t).
\]

Proof: As it has been proven in [45], if \(T \) is a \(k \)-strictly pseudo-contractive mapping with \(k \in [0, 1) \), \(S \) is a nonexpansive mapping such that \(F(S) = F(T) \). Then, from Lemma 2.1 in [29], the mapping \(S_t \) has a unique fixed point \(z_t \in C \). \(\square \)
Lemma 11 Let X, C, T and S be as in Lemma 10. Then, $F(T) \neq \emptyset$ if and only if \{z$_t$\} given by (12) remains bounded as $t \to 0$. In this case, the following statements hold:

1. \{z$_t$\} converges to the unique fixed point z of T which is nearest to u;
2. $d(u, z)^2 \leq \mu d(u, x_n)^2$ for all Banach limits μ and all bounded sequences \{x$_n$\} with $\lim_{n \to \infty} d(x_n, T x_n) = 0$.

Proof: If $F(T) \neq \emptyset$, then we have $F(S) = F(T) \neq \emptyset$. Also, if $\lim_{n \to \infty} d(x_n, T x_n) = 0$, we obtain that
\[
d(x_n, S x_n) = d(x_n, k x_n \oplus (1 - k) T x_n) \leq (1 - k) d(x_n, T x_n) \to 0 \text{ as } n \to \infty.
\]
Thus, from Lemma 2.2 in [29], the rest of the proof of this lemma can be seen. \hfill \Box

The following lemma can be found in [46].

Lemma 12 (see [46, Lemma 2.1]) Let \{a$_n$\} be a sequence of non-negative real numbers satisfying the condition
\[
a_{n+1} \leq (1 - \gamma_n) a_n + \gamma_n \sigma_n, \quad \forall n \geq 0,
\]
where \{\gamma$_n$\} and \{\sigma$_n$\} are sequences of real numbers such that
1. \{\gamma$_n$\} \subset [0, 1] and $\sum_{n=1}^{\infty} \gamma_n = \infty$,
2. either $\lim \sup_{n \to \infty} \sigma_n \leq 0$ or $\sum_{n=1}^{\infty} |\gamma_n \sigma_n| < \infty$.
Then, $\lim_{n \to \infty} a_n = 0$.

We are now ready to prove our main result.

Theorem 13 Let C be a nonempty closed convex subset of a complete CAT(0) space X and $T : C \to C$ be a k-strictly pseudo-contractive mapping such that $0 \leq k < \frac{\beta_n}{1 - \alpha_n} < 1$ and $F(T) \neq \emptyset$. Let \{x$_n$\} be a sequence defined by (11). Suppose that \{a$_n$\}, \{b$_n$\} and \{\gamma$_n$\} satisfy the following conditions:

1. (C1) $\lim_{n \to \infty} \alpha_n = 0$,
2. (C2) $\sum_{n=1}^{\infty} \alpha_n = \infty$,
3. (C3) $\lim_{n \to \infty} \beta_n \neq k$ and $\lim_{n \to \infty} \gamma_n \neq 0$.

Then the sequence \{x$_n$\} converges strongly to a fixed point of T.

Proof: We divide the proof into three steps. In the first step we show that \{x$_n$\}, \{y$_n$\} and \{T x$_n$\} are bounded sequences. In the second step we show that $\lim_{n \to \infty} d(x_n, T x_n) = 0$. Finally, we show that \{x$_n$\} converges to a fixed point $z \in F(T)$ which is nearest to u.

First step: Take any $p \in F(T)$, then, from Lemma 1 and (11), we have
\[
d(y_n, p)^2 \leq \frac{\beta_n}{1 - \alpha_n} d(u, p)^2 + \frac{\gamma_n}{1 - \alpha_n} d(T x_n, p)^2
\]
\[
- \frac{\beta_n \gamma_n}{(1 - \alpha_n)^2} d(x_n, T x_n)^2
\]
\[
\leq \frac{\beta_n}{1 - \alpha_n} d(u, p)^2
\]
\[
+ \frac{\gamma_n}{1 - \alpha_n} \left(d(x_n, p)^2 + k d(x_n, T x_n)^2 \right)
\]
\[
- \frac{\beta_n \gamma_n}{(1 - \alpha_n)^2} d(x_n, T x_n)^2
\]
\[
d(x_n, p)^2 - \frac{\gamma_n}{1 - \alpha_n} \left(\frac{\beta_n}{1 - \alpha_n} - k \right) d(x_n, T x_n)^2
\]
\[
\leq d(x_n, p)^2.
\]
Also, we obtain
\[
d(x_{n+1}, p)^2 \leq \alpha_n d(u, p)^2 + (1 - \alpha_n) (d(y_n, p)^2
\]
\[
- \alpha_n (1 - \alpha_n) d(u, y_n)^2 \leq \alpha_n d(u, p)^2 + (1 - \alpha_n) \left\{ d(x_n, p)^2
\]
\[
- \frac{\gamma_n}{1 - \alpha_n} \left(\frac{\beta_n}{1 - \alpha_n} - k \right) d(x_n, T x_n)^2
\]
\[
- \alpha_n (1 - \alpha_n) d(u, y_n)^2 = \alpha_n d(u, p)^2 + (1 - \alpha_n) d(x_n, p)^2
\]
\[
- \gamma_n \left(\frac{\beta_n}{1 - \alpha_n} - k \right) d(x_n, T x_n)^2
\]
\[
- \alpha_n (1 - \alpha_n) d(u, y_n)^2 \leq \alpha_n d(u, p)^2 + (1 - \alpha_n) d(x_n, p)^2
\]
\[
\leq \max \left\{ d(u, p)^2, d(x_n, p)^2 \right\}.
\]
By induction,
\[
d(x_{n+1}, p)^2 \leq \max \left\{ d(u, p)^2, d(x_0, p)^2 \right\}.
\]
This proves the boundedness of the sequence \{x$_n$\}, which leads to the boundedness of \{T x$_n$\} and \{y$_n$\}.

Second step: In fact, we have from (13) (for some appropriate constant $M > 0$) that
\[
d(x_{n+1}, p)^2 \leq \alpha_n d(u, p)^2 + (1 - \alpha_n) d(x_n, p)^2
\]
\[
- \gamma_n \left(\frac{\beta_n}{1 - \alpha_n} - k \right) d(x_n, T x_n)^2
\]
\[
= \alpha_n d(u, p)^2 - d(x_n, p)^2 \leq d(x_n, p)^2
\]
\[
- \gamma_n \left(\frac{\beta_n}{1 - \alpha_n} - k \right) d(x_n, T x_n)^2
\]
Thus, following (14), we have
\[\leq \alpha_n M + d(x_n, p)^2\]
\[-\gamma_n \left(\frac{\beta_n}{1 - \alpha_n} - k\right) d(x_n, Tx_n)^2,\]
which implies that
\[\gamma_n \left(\frac{\beta_n}{1 - \alpha_n} - k\right) d(x_n, Tx_n)^2 - \alpha_n M \leq d(x_n, p)^2 - d(x_{n+1}, p)^2.\] (14)

If \(\gamma_n \left(\frac{\beta_n}{1 - \alpha_n} - k\right) d(x_n, Tx_n)^2 - \alpha_n M \leq 0\), then
\[d(x_n, Tx_n)^2 \leq \frac{\alpha_n}{\gamma_n \left(\frac{\beta_n}{1 - \alpha_n} - k\right)} M,\]
and hence the desired result is obtained by the conditions (C1) and (C3).

If \(\gamma_n \left(\frac{\beta_n}{1 - \alpha_n} - k\right) d(x_n, Tx_n)^2 - \alpha_n M > 0\), then following (14), we have
\[\sum_{n=0}^{m} \gamma_n \left(\frac{\beta_n}{1 - \alpha_n} - k\right) d(x_n, Tx_n)^2 - \alpha_n M \leq d(x_0, p)^2 - d(x_{m+1}, p)^2 \leq d(x_0, p)^2.\]

That is
\[\sum_{n=0}^{\infty} \gamma_n \left(\frac{\beta_n}{1 - \alpha_n} - k\right) d(x_n, Tx_n)^2 - \alpha_n M < \infty.\]
Thus
\[\lim_{n \to \infty} \gamma_n \left(\frac{\beta_n}{1 - \alpha_n} - k\right) d(x_n, Tx_n)^2 - \alpha_n M = 0.\]
Then we get
\[\lim_{n \to \infty} d(x_n, Tx_n) = 0.\] (15)

Third step: Using the condition (C1) and (15), we obtain
\[d(x_{n+1}, x_n) \leq d(x_{n+1}, Tx_n) + d(Tx_n, x_n) \leq \alpha_n d(u, Tx_n) + (1 - \alpha_n) d(y_n, Tx_n) + d(Tx_n, x_n) \leq \alpha_n d(u, Tx_n) + (1 - \alpha_n) \left(\frac{\beta_n}{1 - \alpha_n} d(x_n, Tx_n)\right) + d(Tx_n, x_n) = \alpha_n d(u, Tx_n) + (\beta_n + 1) d(x_n, Tx_n) \to 0, \text{ as } n \to \infty.\]

Also, from (15), we have
\[d(x_n, y_n) \leq \frac{\gamma_n}{1 - \alpha_n} d(x_n, Tx_n) \to 0, \text{ as } n \to \infty.\] (16)

Let \(z = \lim_{t \to 0} z_t\), where \(z_t\) is given by (12) in Lemma 10. Then, \(z\) is the point of \(F(T)\) which is nearest to \(u\). By Lemma 11 (2), we have \(\mu (d(u, z)^2 - d(u, x_n)^2) \leq 0\) for all Banach limits \(\mu\). Let \(\alpha_n = d(u, z)^2 - d(u, x_n)^2\). Moreover, since \(\lim_{n \to \infty} d(x_{n+1}, x_n) = 0\), we get
\[\lim_{n \to \infty} \sup (\alpha_{n+1} - \alpha_n) = 0.\]

By Lemma 9, we obtain
\[\lim_{n \to \infty} \sup \left(d(u, z)^2 - d(u, x_n)^2\right) \leq 0.\] (17)
It follows from the condition (C1) and (16) that
\[\lim_{n \to \infty} \sup \left(d(u, z)^2 - (1 - \alpha_n) d(u, y_n)^2\right) = \lim_{n \to \infty} \sup \left(d(u, z)^2 - d(u, x_n)^2\right).\] (18)

By (17) and (18), we have
\[\lim_{n \to \infty} \sup \left(d(u, z)^2 - (1 - \alpha_n) d(u, y_n)^2\right) \leq 0.\] (19)

We observe that
\[d(x_{n+1}, z)^2 \leq \alpha_n d(u, z)^2 + (1 - \alpha_n) d(y_n, z)^2 - \alpha_n (1 - \alpha_n) d(u, y_n)^2 \leq \alpha_n d(u, z)^2 + (1 - \alpha_n) d(x_n, z)^2 - \alpha_n (1 - \alpha_n) d(u, y_n)^2 = (1 - \alpha_n) d(x_n, z)^2 + \alpha_n \left(d(u, z)^2 - (1 - \alpha_n) d(u, y_n)^2\right).\]

It follows from the condition (C2) and (19), using Lemma 12, that \(\lim_{n \to \infty} d(x_n, z) = 0\). This completes the proof of Theorem 13. \(\square\)

We obtain the following corollary as a direct consequence of Theorem 13.

Corollary 14 Let \(X, C\) and \(T\) be as Theorem 13. Let \(\{\alpha_n\}\) be a real sequence in \((0, 1)\) satisfying the conditions (C1) and (C2). For a constant \(\delta \in (k, 1)\), an arbitrary initial value \(x_0 \in C\) and a fixed anchor \(u \in C\), let the sequence \(\{x_n\}\) be defined by
\[x_{n+1} = \alpha_n u + (1 - \alpha_n) (\delta x_n + (1 - \delta) T x_n),\] (20)
for all \(n \geq 0\). Then the sequence \(\{x_n\}\) is strongly convergent to a fixed point of \(T\).
Proof: If, in the proof of Theorem 13, we take $\beta_n = (1 - \alpha_n) \delta$ and $\gamma_n = (1 - \alpha_n)(1 - \delta)$, then we get the desired conclusion. □

Remark 15 The results in this section contain the strong convergence theorems of the iterative sequences (11) and (20) for nonexpansive mappings in a CAT(0) space. Also, our results contain the corresponding theorems proved for these iterative sequences in a Hilbert space.

Acknowledgements: This paper has been presented in "The EUROPMENT conference Pure Mathematics - Applied Mathematics 2014" in Venice, Italy, March 15-17, 2014. This paper was supported by Sakarya University Scientific Research Foundation (Project number: 2013-02-00-003).

References:

