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1 Introduction

Throughout this paper all groups are finite. We will
denote by xG the conjugacy class of x in G and (fol-
lowing Baer [1]) we call IndG(x) = |xG| = |G :
CG(x)|, the index of x in G(in some other papers,
IndG(x) = |xG| = |G : CG(x)| is called conjugacy
class size or length of x in G, for example, [2],[3]).
We will often refer to the index of an element, this
is just the size of the conjugacy class containing the
element. The benefit of this definition is entirely lin-
guistic. We say that a group element has primary or
biprimary order respectively if its order is divisible by
at most one or two primes. The rest of our notation
and terminology are standard. The reader may refer
to ref.[4].

It is well known that there is a strong relation be-
tween the structure of a group and the sizes of its con-
jugacy classes and there exist many results studying
the structure of a group under some arithmetical con-
ditions on its conjugacy class sizes. For instance, in
[5], N. Itô shows that if the sizes of the conjugacy
classes of a group G are {1,m}, then G is nilpo-
tent, m = pa for some prime p and G = P × A,
with P a Sylow p-subgroup of G and A ⊆ Z(G).
In [6], he shows that if the conjugacy class sizes of
G are {1, n,m}, then G is solvable. Later, A.Beltrán
and M.J.Felipe in [7] and [8] show that if the con-
jugacy class sizes of G are exactly {1,m, n,mn}
with (m,n) = 1, then G is nilpotent. Also in [9],
they prove that if the conjugacy class sizes of G
are {1,m,mn}, where m,n > 1 are coprime, then
m = p for some prime p dividing n-1 and G has an
abelian normal p-complement, also if P is a Sylow p-
subgroup of G, then |P ′| = p and |P/Z(G)p| = p2.

Further, they obtain other properties and determine
completely the structure of G.

Recently, we replace conditions for all conjugacy
classes by conditions referring to only some conju-
gacy classes to determine completely the structure of
G. We put our emphasis on conjugacy class sizes
of all elements of primary or biprimary orders of G
to analyze a new case of groups having four conju-
gacy class sizes of primary and biprimary orders of
G. For example, Kong and Guo in [10] prove that let
G be a group and assume that the conjugacy classes
sizes of primary and biprimary orders of G are ex-
actly {1, pa, n, pan} with (p, n) = 1, where p is a
prime and a and n are positive integers. If there is a
p-element in G whose index is precisely pa, then G
is nilpotent and n = qb for some prime q ̸= p. Also
in [11], Kong proves that if the set of conjugacy class
sizes of all elements of primary and biprimary orders
ofG is exactly {1, pa, qb, paqb}, where p and q are two
distinct primes and a and b are positive integers, then
G is nilpotent.

In this paper, we go on studying the structure
of a group under some arithmetical conditions on its
conjugacy class sizes and will replace conditions for
all conjugacy classes by conditions referring to only
some conjugacy classes to determine completely the
structure of G. That is, we use conjugacy class sizes
of all elements of primary or biprimary orders of G
to analyze the structure of groups having three or four
conjugacy class sizes of primary and biprimary orders
of G and generalize Theorem A in [9] and Theorem
3.1 in [10]. The first one of our results is the follow-
ing: Let G be a finite p-solvable group and let G∗ be
the set of elements of primary and biprimary orders of
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G. Suppose that the conjugacy class sizes of G∗ are
{1,m,mn} with (m,n) = 1, then G is an F -group,
m = p for some prime p and G contains an abelian
normal subgroup M = H × P0 of index p, where
P0 is a Sylow p-subgroup of M , and neither H nor
P0 is central in G. Furthermore, M is the set of all
elements of G of index 1 or p, and if P is a Sylow
p-subgroup of G then P/P0 acts fixed-point-freely on
H/Z(G)p′ and n = |H/Z(G)p′ |. Also |P ′| = p and
|P/Z(G)p| = p2. The second one is: Let G be a
group and assume that the conjugacy class sizes of all
elements of primary orders and {p, q}-elements of G
are exactly {1, pa, n, pan} with (p, n) = 1, where p
is a fixed prime, q is an arbitrary prime, a and n are
positive integers. If there is a p-element in G whose
index is precisely pa, then G is nilpotent and n = qb

for some prime q ̸= p.

2 Basic definitions and preliminary
results

In this section, we state the necessary results for the
proof of our main theorem.

Lemma 1 ([11, Lemma 5]) Let G be a group. A
prime p does not divide any conjugacy class length
of any element of prime power order of G if and only
if G has a central Sylow p-subgroup.

Lemma 2 ([11, Theorem 14])Let G be a group such
that pa is the highest power of the prime p which di-
vides the index of any element of primary and bipri-
mary orders of G. Assume that there is a p-element in
G whose index is precisely pa. Then G has a normal
p-complement.

Lemma 3 ([12, Lemma 1]) Let G be a group and let
x be an element of G whose index is pa where p is a
prime and a is a natural number. Then [xG, xG] ⊆
Op(G).

This has an immediate consequence.

Lemma 4 Let G a group and let x be an element of
G of index pa. Then x ∈ Op,p′(G).

Lemma 5 ([13, Corollary B])Let G be a finite group
and suppose that the class size of every element of
prime power order of G is 1 or m. Then G is nilpo-
tent. More precisely, m = pn for some prime p, and
G = P ×A with A abelian and P a p-group.

Lemma 6 ([14, Corollary 2.2]) Let P be a p-group
whose class sizes are {1, pa} . Then P/Z(P) has expo-
nent p.

Lemma 7 ([15, Theorem 5]) Suppose that G is a
group and let p be a prime such that every conjugacy
class size of any p′−element of prime power order of
G is a p′-number. Then G = P × H where P is a
Sylow p-subgroup and H is a p-complement of G.

Lemma 8 ([11, Lemma 8 (a)]) Suppose that G is a
group and p a prime. Then all conjugacy class sizes of
any p′−element of prime power order ofG are powers
of p if and only if G has an abelian p-complement.

Lemma 9 ([16, Theorem A]) Suppose that G is a fi-
nite p-solvable group and that 1 and m are the conju-
gacy class sizes of p′-elements of prime power order.
Then m = paqb, with q a prime distinct from p and a,
b ≥ 0. If b = 0, then G has abelian p-complement.
If b ̸= 0, then G = PQ × A, with P and Q a Sylow
p−subgroup and a Sylow q−subgroup of G, respec-
tively, and A ≤ Z(G). Furthermore, if a = 0, then
G = P ×Q×A.

We need to introduce for an arbitrary set of primes
π some new properties generalizing the ones given by
Itô in [6] for ordinary conjugacy classes. We will say
that G has the property Fπ, or that it is an Fπ-group,
if every non-central x ∈ Gπ satisfies

(i) if CG(x) ⊆ CG(a) for some a ∈ Gπ, then
a ∈ Z(G) or CG(x) = CG(a), and

(ii) if CG(a) ⊆ CG(x) for some a ∈ Gπ, then
CG(x) = CG(a).

This means that the centralizer of each non-
central p-element is maximal and minimal among the
centralizers of all non-central p-elements.

On the other hand, we will say that G has the
property Aπ if for all non-central x ∈ Gπ the cen-
tralizer factorizes as CG(x) = CG(x)π × CG(x)π′ ,
with CG(x)π an abelian p-subgroup and CG(x)π′ a
π′-subgroup. It is easy to see that every group having
the property Aπ is an Fπ-group. When p is the set
of all primes, an Fπ-group is trivially an F -group and
if G has the property Aπ we will say that G has the
property A. The following theorem is one of the key
results used in the proof of our main theorem and it
extends Lemmas 5 and 9.

Lemma 10 Let G be a group and π a set of primes.
Suppose that G∗ satisfies the property Aπ and sup-
pose that |xG|π = m for any non-central x ∈ Gπ,
where m > 1 is a fixed number. Suppose further that
the centralizers of non-central π-elements are not all
conjugate. Then m = pa for some prime p ∈ π and
P/Z(G)p has exponent p for any Sylow p-subgroup P
of G.

Proof The proof is based on the one which we have
cited for Lemma 5. We proceed in several claims.
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Claim 1. Let x and y be two non-central π-
elements of primary orders. If CG(x) ̸= CG(y), then
(CG(x)

∩
CG(y))π = Z(G)π.

Suppose that there exists a non-central element
a ∈ (CG(x)

∩
CG(y))π of primary order. Since G

satisfies Aπ, we have CG(x) ⊆ CG(a) and CG(y) ⊆
CG(a). Now, as G has the property Aπ, it also has
the property Fπ, and since CG(a) ̸= G, we conclude
CG(x) = CG(a) = CG(y), a contradiction.

In the following steps, we set G = G/Z(G)π and
use bars to work in the factor group.

Claim 2. Let x, y ̸= 1 be two π-elements of pri-
mary orders in G such that xy = yx and CG(x) ̸=
CG(y), Then o(x) = o(y) is a prime.

Notice that x and y are π-elements of primary or-
ders. Moreover, since x and y commute, then xy =
yx is a π-element and consequently, so is xy. Suppose
first that o(x) < o(y), then (xy)o(x) = yo(x) ̸= 1.
Furthermore,

1 ̸= (xy)o(x) = xyo(x) ∈ CG(xy) ∩ CG(y).

By applying Step 1, we deduce that CG(y) =
CG(xy), so in particular x ∈ CG(y). As G satisfies
Aπ then CG(x) ⊆ CG(y), and since y is not central
and G is an Fπ-group we have equality, contradicting
the hypothesis of this step. Therefore, o(x) = o(y).

On the other hand, if s is a prime divisor of o(x)
and xs ̸= 1, then we have CG(x) ⊆ CG(x

s) < G,
whence we obtain CG(x) = CG(x

s). Moreover,
xsy = yxs. By the above paragraph it follows that
o(xs) = o(y) = o(x), a contradiction.

Claim 3. Let g be a non-central element of pri-
mary order in Gπ and consider the conjugacy class
of g in G, gG. Then there exists some non-central
x ∈ Gπ of primary orders such that gG∩CG(x) = Ø.

Suppose that this is false. Then for every non-
central x ∈ Gπ of primary orders we have that CG(x)
must contain some conjugate of g, say gn for some
n ∈ G. Thus, gn = gn ∈ CG(x) and consequently
gn ∈ CG(x)π. As G satisfies Aπ we deduce that
CG(x) ⊆ CG(g

n) and hence equality holds because
G is an Fπ-group. It follows that the centralizers of
any two non-central π-elements of primary orders of
G are conjugate in G, contradicting the hypotheses of
the theorem.

Claim 4. The order of every non-trivial π-
element in G is a prime.

Suppose that o(g) is composite for some π-
element g. Notice that g is a π-element of primary or-
ders too. By Step 3, there exists a non-central element

x ∈ Gπ of primary orders such that gG∩CG(x) = Ø.
Write Cπ = CG(x)π and observe that Cπ operates on
gG by conjugation. Furthermore, by Step 2 no ele-
ment in Cπ distinct from 1 centralizes any element in
gG, and hence all orbits of Cπ on gG have the same
size, |Cπ|, which implies that |Cπ| divides |gG|.

On the other hand, again by applying Step 2, we
deduce that CG(g)π operates without fixed points on
gG−gG∩CG(g). As a result, |CG(g)π| divides |gG|−
|gG ∩ CG(g)|. As |CG(g)π| = |Cπ|, we conclude
that |CG(g)π| also divides |gG ∩ CG(g)|, which is a
contradiction because

0 < |gG ∩ CG(g)| < |CG(g)π|.

Claim 5. Conclusion.

As the subgroupsCG(x)π for non-central x ∈ Gπ
of primary orders are abelian and have the same order,
each |CG(x)π| is a power of some prime p ∈ π by
Step 4. Hence G is a {π′

∪
{p}}-group and thus m =

pa.
Moreover, by Step 4, if P ∈ Sylp(G) then every

element ofP has prime order, and thusP ∼= P/Z(G)p
has exponent p.

Finally, we will make use of two classical results
on automorphism groups. The first is Thompson′s
A × B Lemma and the second is due to Isaacs and
Passman. ⊓⊔

Lemma 11 ([17, 24.2]) LetAB be a finite group rep-
resented as a group of automorphisms of a p-group G
with [A,B] = 1 = [A,CG(B)], B a p-group and
A = Op(A). Then [A,G] = 1.

We recall that a permutation representation is
half-transitive if all orbits have the same size.

Lemma 12 ([18, Theorem 1]) Let A be a group of
automorphisms of G which acts half-transitively as a
permutation group on G-{1}. If |A| > 1, then ei-
ther A acts fixed-point-freely on G or G is elementary
abelian q-group for some prime q and A acts irre-
ducibly.

Lemma 13 (Wielandt′s theorem [1, Lemma 6])
Op(G) contains every element in G whose order and
index are powers of p.

Lemma 14 ([3, Lemma 1.1]) Let N EG, x ∈ N, and
y ∈ G. Then

(i) |xN | | |xG|.
(ii) |(yN)G/N | | |yG|.
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3 Main results
Theorem 15 Let G be a finite p-solvable group and
letG∗ be the set of elements of primary and biprimary
orders of G. Suppose that the conjugacy class sizes of
G∗ are {1,m,mn} with (m,n) = 1, then G is an F -
group, m = p for some prime p and G contains an
abelian normal subgroup M = H × P0 of index p,
where P0 is a Sylow p-subgroup of M , and neither H
nor P0 is central in G. Furthermore, M is the set of
all elements of G of index 1 or p, and if P is a Sylow
p-subgroup of G then P/P0 acts fixed-point-freely on
H/Z(G)p′ and n = |H/Z(G)p′ |. Also |P ′| = p and
|P/Z(G)p| = p2.

Proof: We denote by π the set of primes dividing m
and π′ the set of primes dividing n. By Lemma 1, we
can certainly assume that π(G) = π

∪
π′. The proof

splits into two cases, depending on whether there are
π-elements of index m in G or not. The first case
provides the structure described in the theorem and
the second will lead to a contradiction. We will use
several steps to finish the proof.

Case 1. We can assume that G has π-elements
of index m. Suppose that x is such an element and
observe that the maximality of CG(x) and the pri-
mary decomposition of x allow us to assume that x
is a p-element for some p ∈ π. Now, if y is a p′-
element of primary order of CG(x), then CG(xy) =
CG(x)

∩
CG(y) ⊆ CG(x) and thus the hypotheses

on class sizes imply that y may have index 1 or n in
CG(x). Since n is a p′-number, by Lemma 7 we can
write CG(x) = CG(x)p × CG(x)p′ . We will distin-
guish the cases when CG(x)p′ is abelian and when it
is not. We will see first that the second case is not
possible.

Case 1.1. Assume that CG(x)p′ is not abelian,
which means that the class sizes of p′-elements of pri-
mary order in CG(x) are exactly {1, n}. As CG(x) is
a p-solvable group, we may apply Lemma 9 to obtain
that n = parb for some prime r ∈ π. But since p does
not divide n, we get n = rb and

CG(x) = Px ×Rx ×Ax,

where Px and Rx are Sylow p and r-subgroups of
CG(x) and Ax is abelian. Note that in fact Rx is a Sy-
low r-subgroup of G. We distinguish two cases and
prove that both lead to a contradiction.

Case 1.1.a. Suppose that there are no r-
elements of index m. Since a Sylow r-subgroup of
G cannot be central in G, there must exist r-elements
of index mn. Consider an element w ∈ G∗ of in-
dex mn and its decomposition w = wrwr′ , where wr

and wr′ are elements of primary orders. If wr is cen-
tral in G, then CG(w) = CG(wr′) and it follows that
every r-element of CG(w) must be central in CG(w)
by its minimality. Therefore, we can write CG(w) =
Rw × Tw, with Rw an abelian Sylow r-subgroup of
CG(w). Moreover, Rw cannot be central in G, oth-
erwise Rw = Z(G)r, so |G : Z(G)|r = n and this
certainly contradicts the existence of r-elements of in-
dex mn. Consequently, we can take some non-central
b ∈ Rw, so CG(w) ⊆ CG(b) and as no r-element
has index m, we get CG(w) = CG(b). If wr is not
central in G, then clearly CG(wr) = CG(w). There-
fore, in any case we have CG(w) = CG(b) for some
b in some Sylow r-subgroup Rw of CG(w). Notice
also that Rw ⊆ Rgx for some g ∈ G. Then b ∈ Rgx
and as CG(xg) = P gx × Agx × Rgx, we deduce that
P gx × Agx ⊆ CG(b), and this is a Hall r′-subgroup of
CG(b). On the other hand, any r′-element of primary
order of CG(b) is central in CG(b) by its minimality,
so CG(w) = CG(b) = Rw × P gx × Agx. So we have
shown that wr ∈ Rgx and that wr′ ∈ P gx × Agx ⊆
CG(R

g
x). Then for any w ∈ G∗ of index mn we

conclude that w ∈ RgxCG(Rgx) for some g ∈ G. Fi-
nally, if w ∈ G∗ has index m, then CG(w) contains
some conjugate of Rx, say Rgx for some g ∈ G, so
w ∈ CG(Rgx). We conclude that

G =
∪
g∈G

RgxCG(R
g
x),

and as a result, G = RxCG(Rx) that is, Rx is a direct
factor of G. But this cannot happen since the class
sizes of G∗ do not allow this situation.

Case 1.1.b. There are r-elements of index m.
Let us fix some r-element y of index m, which up
to conjugacy can be assumed to centralize Rx, so
y ∈ Z(Rx) and thus CG(x) ⊆ CG(y). As these sub-
groups have the same order then CG(x) ⊆ CG(y),
whence every r′-element of primary order of CG(x)
must have index 1 or rb in CG(x). Lemma 8 asserts
that the r-complement of CG(x), that is, Px × Ax,
is abelian. Now we observe that there must exist r′-
elements of indexmn since if every r′-element of pri-
mary order of G has index 1 or m, then Lemma 7 im-
plies that the Sylow r-subgroup of G is a direct factor
of G, which is a contradiction. Therefore, we may
take an r′-element w of index mn and assert that ev-
ery r-element in CG(w) is central by the minimality
of CG(w), so we write CG(w) = Rw × Tw with Rw
an abelian Sylow r-subgroup of CG(w). We distin-
guish two cases: Rw central or non-central in G. We
prove that both provide a contradiction.

Suppose first that Rw * Z(G) and take some
non-central b ∈ Rw. It is clear that CG(w) ⊆ CG(b).
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Assume that b has index m. Then CG(b) must con-
tain some Sylow r-subgroup of G, say Rgx for some
g ∈ G. So in particular b ∈ Z(Rgx) and thus

CG(x
g) = (Px ×Ax ×Rx)g ⊆ CG(b).

Since they have the same order these subgroups
are equal. Hence (Px × Ax)

g is the only Hall r′-
subgroup of CG(b), so it coincides with Tw. As
w ∈ (Px × Ax)g then Rgx ⊆ CG(w) which is a con-
tradiction. Thus, any non-central element b of Rw has
index mn and accordingly, CG(w) = CG(b). From
this we easily obtain that Tw is abelian and therefore
CG(w) is abelian. But Rw ⊆ Rgx for some g ∈ G,
and since y ∈ Z(Rx), we get yg ∈ CG(b) = CG(w).
This cannot happen as we have proved that there are
no r-elements of index m in CG(w).

Suppose finally that Rw ⊆ Z(G). This implies
that |G|r/|Z(G)|r = rb and hence there are no r-
elements of index mn in G, so all r-elements have
index 1 or m. Now if we take b ∈ Rx of index m then
b ∈ Z(Rgx) for some g ∈ G. Hence

CG(x
g) = P gx ×Agx ×Rgx ⊆ CG(b)

and these subgroups coincide because they have the
same order. On the other hand, since b ∈ Rx then
Px ×Ax ×Rgx ⊆ CG(b), so Rgx ⊆ CG(Px) ⊆ CG(x)
and Rx = Rgx. Consequently, b ∈ Z(Rx) and Rx is
abelian. But this shows that CG(x) is abelian, which
contradicts the assumption of this case.

Case 1.2. Assume thatCG(x)p′ is abelian. In this
case, we can write

CG(x) = Px × Sx ×Hx

where Px is a p-subgroup, Sx is an abelian (π−{p})-
subgroup andHx is an abelian Hall π′-subgroup ofG.
We will prove that Px, and hence CG(x) is abelian.
Observe that Hall π′-subgroups exist and they are all
conjugate in G by a well-known theorem of Wielandt.
Also, notice that Hx cannot be central in G. So, if we
take some non-central b ∈ Hx of primary order, then
we have CG(x) ⊆ CG(b) and by maximality we get
CG(x) = CG(b). Now for any p-element w ∈ Px we
have CG(wb) = CG(w)

∩
CG(b) ⊆ CG(b). Then the

index of w in CG(b) may be 1 or n and necessarily
must be 1 because Hx ⊆ CG(w). So Px is central in
CG(x) and hence CG(x) is abelian, as wanted.

We claim that the centralizers of all elements of
indexm are abelian. Ifw ∈ G has indexm, then there
exists a Hall π′-subgroup, say Hg

x for some g ∈ G,
such that Hg

x ⊆ CG(w) and if we choose some non-
central b ∈ Hg

x , then

CG(x
g) = P gx × Sgx ×Hg

x ⊆ CG(bg).

By maximality, CG(xg) = CG(b
g), and then w ∈

CG(xg). As this is abelian, we have CG(x
g) ⊆

CG(w). Since these subgroups have the same order
they are equal, and in particular CG(w) is abelian as
claimed.

We prove now that G is an F -group. Suppose
first that w ∈ G has index m. Clearly CG(w) is
maximal among the centralizers. On the other hand,
if CG(g) ⊆ CG(w) then equality also holds since
CG(w) is abelian. Suppose then that w has index
mn. It is obvious that CG(w) is minimal among
the centralizers and if CG(w) ⊆ CG(g) for some
g ∈ G, then necessarily CG(w) = CG(g). Other-
wise g would have index m and by the above para-
graph CG(g) would be abelian, which would imply
that CG(g) ⊆ CG(w) a contradiction.

We show now that m is a power of p. We as-
sume that m is not a prime power and we will prove
first that the centralizers of elements of index mn are
abelian. First of all, notice that if g has index mn and
write g = gπgπ′ , where gπ and gπ′ are elements of
primary orders, then CG(g) ⊆ CG(gπ′). However,
gπ′ has index 1 or m because the Hall π′-subgroups
are abelian, so since G is an F -group gπ′ is central
and g can be assumed to be a p-element. Further-
more, by using the primary decomposition, we can
also assume g to be an s-element for some prime
s ∈ π and by the minimality of the centralizer we
can write CG(g) = CG(g)s × CG(g)s′ with CG(g)s′
abelian. As m is not a prime power, let us take an-
other prime l ∈ π distinct from s. Observe that l
must divide |CG(g)| because a Sylow l-subgroup can-
not be central in G, and if t is a non-central l-element,
then l divides |CG(t)|l = |CG(g)|l. Also, for such
t we have CG(g) ⊆ CG(t). If t has index m we
know then that CG(t) is abelian and CG(g) is abelian
too, as we wanted to prove. If t has index mn then
CG(g) = CG(t) and by arguing with t as with g, it
follows that CG(g) is also abelian. In particular, we
have shown that G has the property A. Moreover, the
centralizers of non-central π-elements are clearly not
all conjugate because of the existence of π-elements
of index m and index mn. So we can apply Lemma
10 to get that m is a prime power, which is a contra-
diction.

Therefore, for the rest of this case we have
m = pa. As we have assumed the existence of p-
elements of index pa throughout Case 1, we may ap-
ply Lemma 2 to obtain that G has an (abelian) normal
p-complementH . We are ready to show thatG has the
structure described in the statement of the theorem.

Let M be the set of elements in G whose index is
1 or pa. Note that such elements are exactly those ele-
ments whose centralizer containsH , soM = CG(H),
whence M is a normal subgroup of G. Also if we
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take some non-central h ∈ H , then CG(H) ⊆ CG(h)
and as CG(h) and H are abelian we deduce that
CG(h) = CG(H). As a consequence, M is abelian
and we can write M = H×P0, with P0 a p-subgroup
(the set of p-elements in G of index pa or 1), which is
trivially normal in G. Also, P0 is non-central in G by
the assumption of Case 1.

Let P be a Sylow p-subgroup of G and con-
sider the coprime action of P/P0 on H defined by
hg = hg for all h ∈ H and all g ∈ P . As H is
abelian, we can write H = [H,P/P0] × CH(P0).
Moreover, if h ∈ CH(P0) then hg = h for all
g ∈ P , so h ∈ Z(G) and this shows that CH(P0) =
Z(G)p′ . We assert that P/P0 acts fixed-point-freely
on [H,P/P0]. To see this it is enough to notice that
any h ∈ [H,P/P0]−{1} is non-central and we know
that CG(h) = M = H × P0 by the above para-
graph, so h cannot be centralized by any element of
P −P0. Then, by [19, Theorem 16.12], P/P0 must be
cyclic or generalized quaternion. On the other hand,
we prove that the class sizes of P are {1, pa}. As
G = HP with H normal in G, it is easy to see that
CG(g) = CH(g)CP (g) for each g ∈ P . This implies
that

|G : CG(g)| = |H : CH(g)||P : CP (g)|,

and this index may be 1, pa or pan. This forces |P :
CP (g)| to be 1 or pa, as claimed. Then we can apply
Lemma 6 and P/Z(P ) has exponent p. But note that
the class sizes of G imply that Z(P ) = Z(G)p ⊆
P0 and then, by the results obtained above, the only
possibility for P/P0 is to be cyclic of order p, and
thus a = 1 and M has index p in G. Finally, observe
that if g ∈ P − P0 then

pan = |G : CG(g)| = |H : CH(g)||P : CP (g)|,

so n = |H : CH(g)| = |H/Z(G)p′ |.
Finally the structure stated in the theorem will be

completely established when we prove that |P ′| = p
and |P/Z(G)p| = p2. The first claim follows easily
from the fact that the class sizes of P are {1, p} (see
[20], for instance). On the other hand, P0 is an abelian
normal subgroup of P of index p, so we have P =
P0⟨y⟩ = P0CG(y) for any y ∈ P −P0. It follows that
CP0(y) = Z(P ) and then

|P : Z(P )| = |P : P0||P0 : Z(P )| = p|P : CP (y)| = p2.

We have shown above that Z(G)p = Z(P ) and thus
G has all properties stated in the theorem.

Case 2. Suppose that every π-element of G has
class size 1 or mn. We will prove that this case is
impossible.

For the rest of the proof, let us fix a q-element x of
indexm for some prime q ∈ π′. By the existence of π-
elements of indexmn, we have |CG(x)|π > |Z(G)|π,
so we can choose then a π-element g ∈ CG(x)
of index mn. The minimality of CG(g) yields that
CG(g) = CG(g)π × CG(g)π′ , where CG(g)π′ is
abelian. Hence x ∈ CG(g)π′ and thus CG(g) ⊆
CG(x). We will distinguish two subcases depending
on whether n is a prime power or not.

Case 2.1. Suppose that n = qb and thus π′ =
{q}. We are going to prove first that CG(z) is
abelian for any non-central z ∈ Gπ of primary or-
der. For such z, the minimality of CG(z) implies that
any q-element of CG(z) is central in CG(z), that is,
we have CG(z) = CG(z)π × CG(z)q with CG(z)q
abelian. Since |CG(z)|q = |CG(x)|q > |Z(G)|q
we can choose some non-central w ∈ CG(z)q of
primary order and get that either CG(z) is equal to
or is strictly contained in CG(w). In the first case,
CG(z) = CG(w) be abelian. In the second case, w is
a q-element of index m and every q′-element of pri-
mary order of CG(w) has index 1 or qb in CG(w),
so that by Lemma 2, the q-complement of CG(w) is
abelian, and consequently CG(z) is abelian too. In
particular, G has property Aπ and so has property Fπ.
We consider the following subcases in order to apply
Lemma 10 in the second one.

Case 2.1.a. Suppose that the centralizers of non-
central elements in Gπ are all conjugate. We will
prove that every element w ∈ G lies in a conjugate
of CG(V ) where V = CG(g). This will imply that
V ⊆ Z(G), which is a contradiction because g is not
central in G.

If w has index m, then as |CG(w)| > |Z(G)|π ,
there is some non-central π-element z ∈ CG(w)
of primary order, so CG(z) ⊆ CG(w). By hy-
pothesis, CG(z) = CG(g

h) with h ∈ G, whence
w ∈ CG(V )h. Now, if w has index mqb, again as
|CG(w)|π > |Z(G)|π, there exists some non-central
π-element t ∈ CG(w) of primary order. Since CG(t)
is abelian we have CG(t) ⊆ CG(w) and by orders,
CG(w) = CG(t). However, we are assuming that
CG(t) = CG(g)

h for some h ∈ G, so w belongs to
CG(V )h, as wanted.

Case 2.1.b. Suppose that the centralizers of non-
central elements in Gπ are not all conjugate. Since
|zG|π = m for all z ∈ Gπ − Z(G), we can apply
Lemma 10 and obtain that m = pa for some prime
p and that P/Z(G)p has exponent p for a Sylow p-
subgroup P of G. In particular, G is a {p, q}-group.

Now we show that Op(G) is central in G. As-
sume first that w is a q-element of index m = pa. By
the assumption of Case 2, there exists a p-element t
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such that CG(t) ⊆ CG(w) By applying Lemma 11,
we obtain that w ∈ CG(Op(G)). Assume now that
w is a q-element of index paqb. Notice that CG(w)
must be equal to the centralizer of some p-element.
By Lemma 11 again, we have w ∈ CG(Op(G)). So
any z ∈ Op(G) is centralized by any q-element of G
and since the index of z is 1 or paqb, we conclude that
z must be central in G. Therefore Op(G) = Z(G)p,
and thus Op,q(G) = Z(G)p ×Oq(G).

We prove now that G has a normal abelian Sy-
low q-subgroup. Suppose that G has a q-element w
of index paqb. Then G will have a p-element t such
that CG(t) = CG(w) and this centralizer is abelian.
Moreover, by Lemma 11, we have Oq(G) ⊆ CG(t) =
CG(w), so Oq(G) is also abelian. Hence

w ∈ CG(Oq(G)) = CG(Op,q(G)) ⊆ Op,q(G)

and so w ∈ Oq(G). On the other hand, if w is a
q-element of index pa, by Lemma 6 we have w ∈
Op,q(G), so w ∈ Oq(G) too. We conclude that
Q = Oq(G) is a Sylow q-subgroup of G. Further-
more, if there is a q-element of index paqb we have
proved that Q is abelian, and if every q-element has
index 1 or pa, by Lemma 2 we get that Q is abelian
too.

Let M be the set of elements in G whose index is
1 or pa. It follows that M = CG(Q), whence M is a
normal subgroup of G. Moreover, by the assumption
of Case 2, if z is a p-element of M then z ∈ Z(G), so
M = Q × Z(G)p. Let P be a Sylow p-subgroup of
G. Observe that Z(G)p = Z(P ) Write P0 = Z(P )

and P = P//P0 (which we know has exponent p).
The group P acts coprimely on the abelian group

Q, so we can write Q = [Q,P ] × CQ(P ). Also, ob-
serve that CQ(P ) = CQ(P ) = Z(G)q and [Q,P ] =

[Q,P ]. We claim that the action of P on [Q,P ]−{1}
is half-transitive, that is, all the orbits have the same
size. Indeed, if x ∈ [Q,P ]− {1} then its class size is
pa and the size of its orbit is

|P : CP (x)| = |P : CP (x)| = |G : CG(x)| = pa

where the first equality holds since P0 = Z(G)p and
the second follows from the fact that G = PCG(x).
By applying Lemma 12, either P acts fixed-point-
freely on [Q,P ] or P acts irreducibly. We will
see that this second possibility also yields to a fix-
point-free action. Suppose that P acts irreducibly on
[Q,P ] and take z ∈ Z(P ). Then C[Q,P ](z) is cer-
tainly a P -invariant subgroup, so either C[Q,P ](z)=1
or C[Q,P ](z) = [Q,P ]. In the latter case, as Q =
Z(G)q× [Q,P ], it follows that z lies in CP (Q) = P0,
so z = 1. Therefore, we conclude that Z(P ) acts
fixed-point-freely on [Q,P ]. On the other hand, as

G = QP with Q normal in G, it is easy to see that
CG(g) = CQ(g)CP (g) for each g ∈ P . In particular,
if z ∈ Z(P )− {1}, then

paqb = |G : CG(z)| = |Q : CQ(z)||P : CP (z)|.

So |Q : CQ(z)| = qb. But notice that

CQ(z) = CQ(z) = Z(G)q × C[Q,P ](z) = Z(G)q,

so |Q : Z(G)q| = qb. This implies that P acts fixed-
point-freely. If t ∈ Z(P )− {1}, then

paqb = |G : CG(t)| = |Q : CQ(t)||P : CP (t)|.

Thus |Q : CQ(t)| = qb and consequently we have
CQ(t) = Z(G)q. This proves that C[Q,P ](t) = 1, as
we wanted to show. Now we can apply [19, Theo-
rem 16.12] again. So P must be cyclic or generalized
quaternion; but as P has exponent p it is cyclic of or-
der p. This forces P to be abelian, which leads to a
contradiction.

Case 2.2. We assume that n is not a prime power
and distinguish two cases depending on whether there
are q′-elements of primary orders of index m or not.

Case 2.2.a. Suppose that every q′-element of pri-
mary order of G has index 1 or mn. Fix a prime
r ∈ π′ − {q}. For every r-element w of index mn
we can certainly write CG(w) = CG(w)π ×CG(w)π′

with CG(w)π an abelian p-subgroup. Since

|CG(w)|π = |CG(g)|π > |Z(G)|π

there exists a non-central π-element t ∈ CG(w) of
primary order. As t has index mn too, we have
CG(w) = CG(t) and hence this subgroup is abelian.
In general, if z is a non-central q′-element of primary
order of G then r divides |CG(z)|, and so CG(z) must
coincide with the centralizer of some non-central r-
element. However, we have seen that such centraliz-
ers are abelian, so all the centralizers of non-central
q′-elements of primary orders of G are abelian. Now,
if all centralizers of non-central elements of primary
orders in Gq′ are conjugate, using the argument of
Case 2.1.a, we arrive at a contradiction. If the cen-
tralizers of the non-central elements of primary orders
in Gq′ are not all conjugate, by the remark made after
Lemma 9, we can apply Lemma 9 although G is not
q-solvable, to get mn = paqb, for some prime p. This
contradicts the hypothesis of Case 2.2.

Case 2.2.b. Suppose now that G has q′-elements
of index m. We will prove that every element of G
lies in a conjugate of CG(V ) where V = CG(g)π,
which is the Hall π-subgroup of CG(g) and a Hall
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π-subgroup of CG(x) and where g and x are the el-
ements fixed at the beginning of Case 2. Then V ⊆
Z(G) and this is a contradiction because g is not cen-
tral in G. We study separately the elements of index
m and the elements of index mn in order to see this.

Let w be an element in G∗ of index m. By con-
sidering the primary decomposition of w and by the
assumption of Case 2, we can replace w so that its
order is a power of some prime in π′.

Suppose first that w is an r-element where r ̸= q,
and let Q be a Sylow q-subgroup of G such that Q ⊆
CG(x). There exists h ∈ G such that xh ∈ Qh ⊆
CG(w) so CG(wx

h) = CG(w)
∩
CG(x

h) ⊆ CG(w).
We have two possibilities according to whether these
centralizers are equal or not. Suppose first that
CG(wx

h) = CG(w) which implies that CG(wxh) =
CG(w) = CG(x

h). We deduce in this situation that
every element of primary order of CG(w) has index
1 or n in CG(w), so by Lemma 5 we get that n is a
prime power, which is a contradiction. Since the cen-
tralizer of the q′-elementw of primary order coincides
with the centralizer of the q-element xh, it easily fol-
lows that any q-element and any q′-element of primary
order of CG(w) must have index 1 or n in CG(w).
Now take an arbitrary element z of CG(w) and con-
sider its decomposition z = zqzq′ , where zq and zq′
are elements of primary orders. If zq or zq′ has index
mn in G, then CG(z) is equal to CG(zq) or CG(zq′)
and thus z has again index 1 or n in CG(w). So we
can assume that zq and zq′ have index m and that z
has index mn in G. Also it can be assumed without
loss that z is a π′-element of primary order, by the as-
sumption of Case 2. The existence of π-elements of
index mn implies that |CG(z)|π > |Z(G)|π. There-
fore, there is a non-central π-element k ∈ CG(z) of
primary order, but since k has indexmn inG, we have
CG(z) = CG(k) and this subgroup is abelian. Thus
CG(z) ⊆ CG(w) and z also has index n in CG(w),
so this case is finished. We assume now the sec-
ond possibility, that is, CG(wxh) ⊂ CG(w). Again
the existence of π-elements of index mn implies that
|CG(wxh)|π > |Z(G)|π and arguing similarly we get
that CG(wxh) coincides with the centralizer of some
π-element. In particular, this centralizer is abelian,
whence CG(wxh)π is an abelian Hall π-subgroup of
CG(x

h) which, by Wielandt′s theorem, is conjugate
to V h. We conclude that w belongs to some conjugate
of CG(V ) as wanted, and also that V is abelian.

Suppose now that w is a q-element. We are as-
suming that there are r-elements of index m for some
r ∈ π − {q}, so we can take without loss such an
element v ∈ CG(w).

Let Q be a Sylow q-subgroup of G such that
Q ⊆ CG(x). Then there exists h ∈ G such that
Qh ⊆ CG(v). Since xh and w are q-elements of

CG(v), we can replacew by a conjugate inCG(v) and
assume that w ∈ Qh and thus w ∈ CG(vxh). Argu-
ing as in the above paragraph for the r-element v, we
have that CG(vxh) is strictly contained in CG(v). It
follows that CG(vxh) is an abelian subgroup strictly
contained in CG(xh). Hence the Hall π-subgroup of
CG(vx

h) is conjugate to V h and also this subgroup is
abelian. As w ∈ CG(vx

h) we conclude that w cen-
tralizes the Hall π-subgroup of CG(vxh), and conse-
quentlyw centralizes some conjugate of V , as wanted.

Finally, assume that w has index mn and write
w = wπwπ′ , where wπ and wπ′ are elements
of primary order. We observe that |CG(w)|π′ =
|CG(g)|π′ > |Z(G)|π′ because x is a π′-element of
primary order inCG(g). Ifwπ is noncentral, it follows
thatCG(w) = CG(wπ) = CG(wπ)π×CG(wπ)π′ , and
CG(wπ)π′ is abelian. Then there exists k ∈ CG(w)π′ ,
which may be assumed of order r with r ∈ π′,
such that CG(w) ⊆ CG(k). If wπ is central, then
CG(w) = CG(wπ′) and by the primary composition
of wπ′ we can choose again an r-element k ∈ CG(w)
with r ∈ π′, such that CG(w) ⊆ CG(k). In both cases
we study two possibilities for the index of k in G. If
k has index m, the above paragraphs show that k cen-
tralizes V h for some h ∈ G, and V h is an abelian
Hall π-subgroup of CG(k). Hence CG(w)π = V t for
some t ∈ G, and w belongs to CG(V )t. On the other
hand, if k has index mn, then CG(k) = CG(w). As
|CG(g)|π > |Z(G)|π by the existence of π-elements
of index mn, then CG(k) coincides with the central-
izer of a π-element and therefore it is abelian. As
CG(x) contains a Sylow r-subgroup we can take an
element h ∈ G such that k ∈ CG(xh). It follows that
CG(k) ⊆ CG(xh). Therefore the Hall π-subgroups of
CG(k) are abelian Hall π-subgroups of CG(xh) and
so are conjugate to V h. We conclude that w also lies
in a conjugate of CG(V ), as wanted. Now the proof
of the theorem is finished. ⊓⊔

Remark 16 n − 1 must be divisible by p as a conse-
quence of the fixed-point-free action appearing in the
structure of the group. For any prime p the situation
described in Theorem 15 does exist. For instance, let

P = ⟨x, y|xp2 = yp = 1, xy = xp+1⟩

be a non-abelian p-group of order p3 and exponent
p2 and take P0 = ⟨x⟩. Let n be any integer such
that p divides q − 1 for any prime factor q dividing
n(accordingly p divides n − 1) and let H be a cyclic
group of order n. We consider the action of P on H
defined in the following way: x acts trivially on H
and y acts as a fixed-point-free automorphism of order
p on each direct factor of prime-power order of H .
ThenG = HP is an example of group with class sizes
{1, p, pn}.
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The following theorem can be seen as a general-
ization of [10, Theorem 3.1].

Theorem 17 Let G be a group and assume that the
conjugacy class sizes of all elements of primary orders
and {p, q}-elements of G are exactly {1, pa, n, pan}
with (p, n) = 1, where p is a fixed prime, q is an
arbitrary prime, a and n are positive integers. If there
is a p-element in G whose index is precisely pa, then
G is nilpotent and n = qb for some prime q ̸= p.

Proof The proof has been divided into two steps.

Step 1. G is p-nilpotent.

Let H = Op(G) and Z = CG(Op(G)). By hy-
pothesis there is a p-element x ∈ G such that [G :
CG(x)] = pa. By Lemma 13, we know x ∈ Op(G).
Let y ∈ CG(x) be an r-element for some prime r with
r ̸= p. Then xy is biprimary and, as x and y commute,
CG(xy) = CG(x)∩CG(y). The main hypothesis im-
plies that |yCG(x)| = |CG(x) : CG(xy)| is coprime to
p. By Lemma 7,

CG(x) = Op′(CG(x))Op(CG(x)).

In particular, y centralizes Op(CG(x)) ≥ H ∩
CG(x) = CH(x). By Lemma 11, y ∈ Z. Since x ∈
H , we have Z ≤ CG(x) and so Z has Op′(CG(x)) as
a normal p-complement. Furthermore, |G : Z| = |G :
CG(x)||CG(x) : Z| is a power of p. Since Z is nor-
mal in G, we now have that Op′(CG(x)) is a normal
p-complement in G. Hence G is p-nilpotent.

Step 2. G is nilpotent and n = qb for some prime
q ̸= p.

By Step 1 we have that G has a normal p-
complement, say H . For every p′−element x of pri-
mary order of H we have that

|G : H||H : CH(x)| = |G : CG(x)||CG(x) : CH(x)|.

If |xG| = 1 or pa, then H ⊆ CG(x) and thus
|xH | = 1. If |xG| = n or pan, then the above equality
along with the fact that |xH | divides |xG| (by Lemma
13) imply that |xH | = n. Therefore, every conjugacy
class of p′−elements of primary order of G has size 1
or n. By Lemma 9 we have that n = pcqb for some
prime q ̸= p. Since (p, n)=1, then n = qb and again
by Lemma 9, we conclude that G is nilpotent, the the-
orem is proved. ⊓⊔

4 Conclusion
The results explained in the previous sections show
that the method that we replace conditions for all con-
jugacy classes by conditions referring to only some of

the classes in order to investigate the structure of a fi-
nite group is very useful. Results of this type are inter-
esting since they can be used to simplify the proofs of
new or known properties related to conjugacy classes.
Recently, in [21] and [22] the second author charac-
terized the structure of a finite group by using the
method. In addition, according to the parallel property
of conjugacy class sizes and character degrees in [23]
and [24], we may consider using the character degrees
to characterize the structure of finite groups. As an
application, we can investigate the structure of a finite
group when its character degrees ofG are {1,m,mn}
or {1,m, n,mn}, where m and n are integers with
(m,n)=1.
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