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Abstract: In this paper, the periodic solution of hypersonic functionally graded plate subjected to aero-thermal load
with two degrees of freedom is investigated. Firstly, the average equations in 1:2 internal resonances are obtained
by using multi-scale method. Based on the Poincare mapping and the Melnikov function, we get the sufficient
condition for the existence of periodic solution about the system. Then we obtain the phase diagrams of the
solution which were under different parameters by using Matlab. The simulation results demonstrate the sufficient
condition which we have got is correct. Finally, by using the integral manifold theory and average method, we
analyze the stability of the periodic orbit.
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1 Introduction
The concept of Functional material was proposed by
Dr. Morton J A in 1965. The development of contem-
porary aerospace and other high-technologies demand
higher performance for the materials. Traditional ma-
terials can not satisfy the increasingly stringent envi-
ronmental. So in 1987, Japanese scholars put forward
a kind of advanced composite material, which is func-
tionally graded material (FGM). Now this kind of ma-
terial is widely used in many fields, such as aerospace
engineering, nuclear engineering and so on. The non-
linear properties of FGMs can lead to a different be-
havior of the system from that predicted by a linear
model. So it is worthwhile studying its nonlinear dy-
namical behavior.

It is a hot issue for the research on the nonlinear
dynamic systems. In 2006, Zhou and Xu [1] analyzed
a heteronomy strong nonlinear dynamics system by
using the good properties of Chebyshev polynomials.
The method used in this paper could be convenience
for the analysis of systems with periodical varying co-
efficients or high dimensional problems. Finally, they
compared the analytical results of Duffing equation
with those obtained through using a Runge-Kutta inte-
gration algorithm and the standard Harmonic Balance
Method. In 2007, Li et al [2] presented the bifurca-
tions of the multiple limit cycles for a parametrically
and externally excited mechanical system. The orig-
inal mechanical system was first transformed to the
average equation in the Cartesian form, which was

in the form of a Z2-symmetric perturbed polynomial
Hamiltonian system of degree 5. Then, by using the
bifurcation theory of planar dynamical system and the
method of detection function, the bifurcations of the
multiple limit cycles of the system were investigated
and the configurations of compound eyes were also
obtained. In 2008, Li et al [3] investigated the bifur-
cations of multiple limit cycles for a rotor-active mag-
netic bearings (AMB) system with the time-varying
stiffness. The governing nonlinear equation of mo-
tion was established for the rotor-AMB system with
single-degree-of-freedom and parametric excitation.
By using the method of multiple scales, the govern-
ing nonlinear equation of motion was first transformed
to the average equation. Then, the bifurcation the-
ory of planar dynamical system and the method of
detection function were utilized to analyze the bifur-
cations of multiple limit cycles of the average equa-
tion. Four groups of parametric controlling condi-
tions are given to obtain the configurations of com-
pound eyes. Found that there exist respectively at least
17, 19, 21 and 22 limit cycles in the rotor-AMB sys-
tem with the time-varying stiffness under the different
controlling conditions. In 2009, Liu and Han [4] con-
sidered a four-dimensional system of ordinary differ-
ential equation depending on a small parameter. By
using the Poincare mapping and the integral manifold
theory, the invariant tori of the four-dimensional sys-
tem is obtained. And with the results they discussed
a nonlinearly coupled Van der Pol-Duffing oscillator
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system. In 2010, Malekzadeh [5] discussed the free
vibration of the functionally graded round face beams
subjected to thermal load. The first order shear defor-
mation theory and the Hamilton principle were used
in this article. And the effects of the boundary con-
dition and geometrical parameters on the natural fre-
quency were discussed. In 2011, Wang and Zhang
[6] studied a neutral delay model, by using the ab-
stract continuous theorem of k-set contractive oper-
ator, some new results on the existence of the pos-
itive periodic solution are obtained, and they estab-
lished the global asymptotically stability of the posi-
tive periodic solution. In 2011, Zhang et al [7] inves-
tigated the existence and the uniqueness of periodic
solution by means of contraction mapping principle.
Then they discussed the global exponential stability
of periodic solution for the system. In 2012, Guo et
al [8] predicted the accurate bifurcating periodic solu-
tion for a general class of first-order nonlinear delay
differential equation by constructing an approximate
technique. The zeroth-order solution using just one
Fourier term is applied by solving a set of nonlinear al-
gebraic equations containing the delay term. The un-
balanced residues due to Fourier truncation were con-
sidered iteratively by solving linear equations to im-
prove the accuracy and increase the number of Fourier
terms of the solutions successively. It is shown that
the solutions are valid for a wide range of variation of
the parameters by two examples. In 2012, Zhang [9]
investigated the existence and stability of the positive
equilibrium. In particular, they found that the system
has Hopf bifurcation at the positive equilibrium; they
analyzed the stability of the periodic solutions by re-
ducing the original system on the center manifold. Fi-
nally, some numerical examples were given to verify
their theoretical results. In 2012, Li et al [10] con-
sidered a type of coupled map lattice (CML). Due to
the infinite property of the problem, they tried the pe-
riodic case, which can be dealt with on a finite set.
The main approach for this study is the implicit ex-
istence theorem. The results indicate that if the pa-
rameters of the system satisfy some exact conditions,
then there exists a periodic traveling wave solution
in an exact neighborhood of a given one. In 2013,
Li and Yin[12] shown the sufficient condition for the
existence of the FGM load by using the multi-scale
approach method. By using the Melinkov function,
the nonsingular linear transformation and the Poincar
map. In 2013, Wei[13] considered the existence and
global exponential stability of periodic solutions for
inertial Cohen-Grossberg-type BAM neural networks
with time delays. With variable transformation the
system is transformed to first order differential equa-
tions. Finally, an example is given to demonstrate the
obtained results. In 2008 the complex formulas of

computing the Lyapunov values were investigated for
two planar polynomial systems by Li at el [14]. The
relations between the two systems and their standard
forms were discussed and the corresponding complex
formulas of computing the Lyapunov values were ob-
tained.In 2012, Yao and Han [15] considered the bi-
furcation of limit cycles of a class of polynomial dif-
ferential systems; they got the upper bound and the
lower bound of the limit cycles. Li and Wei[16] in-
vestigated the behavior of iced cable with two degrees
of freedom.By using the Melnikov function and the
Poincare mapping, they get the sufficient condition
for the existence of the periodic solution about the
system.The invariant tori of the system is investigated
by using transformations and average equation. Wu
and Ding [17] got the average equations of the aero-
dynamic and thermal loads by using the multi-scale
method. They studied the dynamical behavior of the
system in this paper. The solutions of the system were
divided into six types. They discussed the existence
of the various solutions. By establishing a dynamic
model of the FGM subjected to aero-dynamic load,
they obtained the nonlinear ordinary differential equa-
tions which with multiple degrees of freedom.

Periodic system and periodic solution exist in
many natural and man-made systems.Due to the rise
of the supersonic vehicle in recent years, it is a hot
issue for the research on hypersonic materials. In
this paper, the periodic behavior of hypersonic func-
tionally graded plate subjected to aero-thermal load
is investigated. Firstly, by using the Melnikov func-
tion, the Maple symbolic computation software and
the periodic transformation, we get the sufficient con-
dition for the existence of periodic orbit of the system.
Then, three groups of parametric controlling condi-
tions were given to obtain the phase diagrams. We
get the phase diagrams when ε ̸= 0, in this condi-
tion, the first planar system is a Hamiltonian system.
When n11 ̸= 3n13, δ2 ̸= 0, then v = 0 is a 1-order
weak focus for the other planar system. We also get
the phase diagrams when M(h0) ̸= 0 and c0001 ̸= k,
M ′(h0) ̸= 0. Numerical simulations are performed
to verify the analytical predictions. Finally, by using
the average method, blow-up transformation and dis-
cussing the eigenvalues of the matrix in two different
conditions, we get the stability of the periodic orbit.

2 The Existence of the Periodic orbit
A functional gradient material is a new kind of com-
posite material. This new material usually consists of
high temperature ceramic material and the composite
metal material. That leads to the new material has the
good characteristics such as high temperature resis-
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tance and strong toughness. Here we give the original
system of hypersonic functionally graded plate sub-
jected to aero-thermal load is:

ẍ1 +m0x1 +m1ẋ1 +m2x
2
1 +m3x

2
2 +m4x1x2

+m5x1x
2
2 +m6x

3
1 +m7ẋ

2
1 +m8ẋ

2
2

+m9ẋ1ẋ2 +m10ẋ1x
2
2 +m11ẋ1x

2
1

+m12ẋ1ẋ
2
2 +m13ẋ

3
1 = 0,

ẍ2 + n0x2 + n1ẋ2 + n2x
2
2 + n3x

2
1 + n4x1x2

+ n5x2x
2
1 + n6x

3
2 + n7ẋ

2
2 + n8ẋ

2
1

+ n9ẋ1ẋ2 + n10ẋ2x
2
1 + n11ẋ2x

2
2

+ n12ẋ2ẋ
2
1 + n13ẋ

3
2 = 0. (1)

By using the multi-scale method, we present the
average equations of FGM in 1:2 internal resonances.
Then applying the linear transformation

u1 =
δ1x1 +m1x2

M
, u2 = x2,

v1 =
δ2x3 + n1x4

N
, v2 = x4

to the average equations, we have the following forms:

du1
dτ

= −u2 +M1a(u1, u1, v1, v2),

du2
dτ

= u1 + b0100u2 +M1b(u1, u1, v1, v2),

dv1
dτ

= c0001v2 +M1c(u1, u1, v1, v2),

dv2
dτ

= d0010v1 + d0001v2 +M1d(u1, u1, v1, v2).

(2)

where M1i are higher polynomials about
u1, u2, v1, v2, i = a, b, c, d

The perturbed system of (2) can be written as

du

dτ
= f(u) + εP (u, v),

dv

dτ
= g(v) + εQ(u, v) (3)

where

u = (u1, u2)
T ,

v = (v1, v2)
T ,

f(u) = (−u2, u1)T ,
g(v) = (c0001v2+M3c(v), d0010v1+M3d(v))

T ,

P (u, v) = (M1a(u, v), b0100u2 +M1b(u, v))
T ,

Q(u, v) = (M1c(u, v)−M3c(v), d0001v2

+M1d(u, v)−M3d(v))
T .

M3c(v) and M3d(v) are three homogeneous polyno-
mial about v.

The unperturbed system of the system (3) holds
that the planar autonomous system

du

dτ
= f(u) (4)

is a Hamiltonian system and there exists an open J ⊂
R , the system(4) has a family of periodic orbits.

When n11 ̸= 3n13, δ2 ̸= 0 then v = 0 is a 1-
order weak focus of planar autonomous system (see
[12,14])

dv

dτ
= g(v). (5)

Lemma 1 When 0 ≪ θ ≪ 2π, the system (3)
can be transformed into the system of (6) with
the transformation (see [12]) u = G(θ, h) =

(
√
2h cos θ,

√
2h sin θ)T , v = v,

dh

dθ
= −ε f(G(θ, h)) ∧ P (G(θ, h), v)

1 + εGh(θ, h) ∧ P (G(θ, h), v)
,

dv

dθ
=
g(G(θ, h), v) + εQ(G(θ, h), v)

1 + εGh(θ, h) ∧ P (G(θ, h), v)
, (6)

through calculate the system (6), then we have the
Melnikov function h1(2π, r), we denote it by M(r),
that is :

M(r) =

∫ 2π

0
(f(G(θ, r)) ∧ P (G(θ, r), 0))dθ.

Through using the bifurcation equations and Mel-
nikov function, the following theorem gives the suffi-
cient condition for the existence of the periodic orbit.

Theorem 2 (Sufficient Condition for the Existence of
Periodic Orbit)For 0 < ε << 1

(i) if M(r) ̸= 0, for any r ∈ J the system of (3)
does not have any periodic orbit with period near 2π;

(ii) If there exist a h0 ∈ J , such that c0001 ̸= k,
M(h0) = 0 and M ′(h0) ̸= 0, then in the neighbor
of Lh0 , the system of (3) has a unique periodic orbit
with periodic near 2π.

Proof: (i) Considering the theory of successor func-
tion, it is easy to see that,if M(r) ̸= 0, there does not
exist any periodic orbit with period near 2π.

(ii) As M(h0) = 0, we know that in the neighbor
of Lh0 the system (3) has a periodic orbit by using the
theory of successor function. Hence, by Lemma 2 in
[12], we have:

h1(2π, r) + h2(2π, r)v0 + εh3(2π, r)

+O(v0, ε) = 0, (7)
(v1(2π, r)− I2)v0 + εv2(2π, r)

+O(v0, ε) = 0. (8)
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When M(h0) = 0 and M ′(h0) ̸= 0, that is
h1(2π, h0) = 0, h′1(2π, h0) ̸= 0, the Taylor expan-
sion of (7) is:

h′1(2π, h0)(r − h0) + εh3(2π, h0)

+O(v0, ε) = 0. (9)

By solving the equations of (8) and (9), we get:

2π[2b0100 + h0M1](r − h0)− εh0

+O(v0, ε) = 0, (10)
(exp(2πB)− I2)v0 + εexp(2πB)

+O(v0, ε) = 0. (11)

If c0001 ̸= k then the matrix v1(2π, h0) − I2 is
invertible, then through solving the system (10)-(11),
we know the system of (3) has a unique periodic orbit
with periodic near 2π in the neighbor of Lh0 .

Assuming that the periodic orbit has the form (see
[12]):

u = G(θ, h0 + h0(θ, ε)),

v(θ, ε) = (v10(θ), v20(θ))
T +O(ε2).

3 Stability of the Periodic Orbit

We have discussed the existence of the periodic orbit
in part 2. In this section, we will present the stability
of the periodic solution by using the blow-up transfor-
mation, the average method and the integral manifold
theory.

Suppose the following inequality holds: n11 ̸=
3n13, δ2 ̸= 0. Thus, v = 0 is a 1-order weak focus
of planar autonomous system

dv

dτ
= g(v).

Without loss of generality, the system of (3) can be
written as:

du

dτ
= f(u) + εP (u, v),

dv1
dτ

= c0001v1 + c0012v1v
2
2 + c0021v

2
1

+ c0030v
3
1 + c0003v

3
2 + εQ1(u, v),

dv2
dτ

= d0010v1 + d0021v
2
1v2 + d0003v

3
2

+ d0012v1v
2
2 + d0030v

3
1 + εQ2(u, v).

(12)

where Qi(u, v) are higher polynomials of u , v, i =
1, 2.

It has shown that, if there exists a h0 ∈ J such
that M(h0) = 0 , M ′(h0) ̸= 0 and c0001 ̸= k, the
system of (3) have a unique periodic orbit Lε in the
neighborhood of Lh0 .

3.1 The blow-up transformation
In order to use the average method, we should use the
blow-up transformation to (6). Hence for |u| << 1
and h = h0 + u , the system (6) becomes:

du

dθ
= ε(a01(θ) + a02(θ)u+ a03(θ)v1

+ a04(θ)v2 +R1(θ, u, v)),

dv1
dθ

= c0001v1 + b11(θ)ε+ b12(θ)uε

+ b14(θ)v2ε+ c0030v
3
1 + c0012v1v

2
2

+ c0021v
2
1v2 + c0003v

3
2 + b13(θ)v1ε

+R2(θ, u, v)),

dv2
dθ

= d0010v1 + b21(θ)ε+ b22(θ)εu

+ b23(θ)v1ε+ d0003v
3
2 + d0021v

2
1v2

+ d0012v1v
2
2 + d0030v

3
1 + b24(θ)v2ε

+R3(θ, u, v)). (13)

where

a02(θ) = fx(G(θ, h0))G
′
h ∧ P (G(θ, h0), 0)

+ f(G(θ, h0)) ∧ P ′
x(G(θ, h0), 0),

a01(θ) = f(G(θ, h0)) ∧ P (G(θ, h0), 0),
a03(θ) = f(G(θ, h0)) ∧ P ′

y1(G(θ, h0), 0),

a04(θ) = f(G(θ, h0)) ∧ P ′
y2(G(θ, h0), 0),

b11(θ) = Q1(G(θ, h0), 0),

b13(θ) = Q1y1(G(θ, h0), 0),

b12(θ) = Q1x(G(θ, h0), 0),

b14(θ) = Q1y2(G(θ, h0), 0),

b21(θ) = Q2(G(θ, h0), 0),

b22(θ) = Q2x(G(θ, h0), 0)G
′
h(θ, h0),

b23(θ) = Q2y1(G(θ, h0), 0),

b24(θ) = Q2y2(G(θ, h0), 0).

(14)

Let

u = h0 + p,

(v1, v2)
T = ε(v10, v20)

T + (z1, z2)
T .

Then it follows that:

dp

dθ
= ε(a02(θ)p+ a03(θ)z1 + a04(θ)z2)

+ R̃1(θ, p, z, ε),

dz1
dθ

= c0001z2 + b12(θ)pε+ b13(θ)z1ε

+ c0030(3v
2
01z1 + 3v01z

2
1 + z31)

+ c0012(v01z
2
2 + 2v01v02z2 + z1z

2
2
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+ 2v02z1z2) + c0021(v
2
01z2 + z21v02

+ 2v01v02z1 + 2v01z1z2 + z21z2)

+ c0003(3v
2
02z2 + z32 + 3v02z

2
2

+ b14(θ)z2ε+ R̃2(θ, p, z, ε),

dz2
dθ

= d0010z1 + b22(θ)pε+ b23(θ)z1ε

+ d0003(3v
2
02z2 + 3v02z

2
2 + z32)

+ d0021(2v01v02z1 + 2v01z1z2

+ v201z2 + z21z2 + d0021(v01z
2
2

+ 2v01v02z2 + z1v02
2 + z1z

2
2

+ 2v02z1z2) + d0030(3v
2
01z1

+ 3v01z
2
1 + z31) + εb24(θ)z2

+ R̃3(θ, p, z, ε). (15)

From the above equations, we have

R̃1θ, p, z, ε) = R1(θ, h0 + p, v01 + z1, v02 + z2)

−R1(θ, h0, v10, v20),

R̃2θ, p, z, ε) = R2(θ, h0 + p, v01 + z1, v02 + z2)

−R2(θ, h0, v10, v20),

R̃3θ, p, z, ε) = R3(θ, h0 + p, v01 + z1, v02 + z2)

−R3(θ, h0, v10, v20).

In order to use the average method, the func-
tions should have the same scales, so we introduce the
blow-up p = γp̃, z1 = γz̃1, z2 = γz̃2, γ =

√
|ε|. The

system of (15) becomes:

dp̃

dθ
= µ2(a02(θ)p̃+ a03z̃1 + a04(θ)z̃2)sgn(ε)

+ µ3R̃01(θ, u, v, ε),

dz̃1
dθ

= c0001z̃2 + sgn(ε)µ2(b12(θ)p̃+ b13(θ)z̃1

+ b14(θ)z̃2) + c0030z̃
3
1 + c0012z̃1z̃

2
2

+ c0021z̃
2
1 z̃2 + c0003z̃

3
2

+ µ3R̃02(θ, u, v, ε),

dz̃2
dθ

= d0010z̃1 + sgn(ε)µ2(b22(θ)p̃+ b23(θ)z̃1

+ b24(θ)z̃2) + d0003z̃
3
1 + d0021z̃

2
1 z̃2

+ d0012z̃1z̃
2
2 + d0030z̃

3
1

+ µ3R̃03(θ, u, v, ε). (16)

In order to simplify the expressions, we assume

I1(θ, p̃, z̃) = sgn(ε)(a02(θ)p̃+ a03(θ)z̃1

+ a04(θ)z̃2),

I2(θ, p̃, z̃) = sgn(ε)(b12(θ)p̃+ b13(θ)z̃1

+ c0012z̃1z̃
2
2 + c0003z̃

3
2

+ b14(θ)z̃2) + c0030z̃
3
1 ,

I3(θ, p̃, z̃) = sgn(ε)(b22(θ)p̃+ b23(θ)z̃1

+ b24(θ)z̃2 + d0003z̃
3
2 + d0030z̃31

+ d0021z̃
2
1 z̃2 + d0012z̃1z̃

2
2 .

Thus the system of (16) can be written as:

dp̃

dθ
= µ2I1(θ, p̃, z̃) + µ3R̃01(θ, p̃, z̃, ε),

dz̃1
dθ

= c0001z̃2 + µ2I2(θ, p̃, z̃) + µ3R̃02(θ, p̃, z̃, ε),

dz̃2
dθ

= d0010z̃1 + µ2I3(θ, p̃, z̃) + µ3R̃03(θ, p̃, z̃, ε).

(17)

Proposition 3 Set z̃1 = ρ cosφ, z̃2 = −ρ sinφ, p̃ =
ρω. Then the system of (17) can be written as:

dφ

dθ
= c0001 −

µ2

ρ
(I2 sinφ+ I3 cosφ)

− µ3

ρ
(R̃02 sinφ+ R̃03 cosφ),

dρ

dθ
= µ2(I2 cosφ− I3 sinφ) + µ3(R̃02 cosφ

− R̃03 sinφ),

dω

dθ
=
µ2

ρ
[I2 − ω(I1 cosφ− I3 sinφ)]

+
µ3

ρ
(−ωR̃02 cosφ+ ωR̃03 sinψ + R̃01).

(18)

Proof: For z̃1 = ρ cosφ, z̃2 = −ρ sinφ, p̃ = ρω,
we differentiate the both sides of each formula with
respect to θ, then we obtain:

dp̃

dθ
=
dρ

dθ
ω + ρ

dω

dθ
, (19)

dz̃1
dθ

=
dρ

dθ
cosφ− ρ sinφ

dφ

dθ
, (20)

dz̃2
dθ

= −dρ
dθ

sinφ− ρ cosφ
dφ

dθ
. (21)

Then, (20)× sinφ+ cosφ× (21), we get

dφ

dθ
= −1

ρ
(
dz̃1
dθ

sinφ+
dz̃2
dθ

cosφ),

On the other hand, combing (20) with (21), we con-
clude that

dφ

dθ
= c0001 −

µ2

ρ
(I2 sinφ+ I3 cosφ)

−µ
3

ρ
(R̃02 sinφ+ R̃03 cosφ).
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By (20)× cosφ− sinφ× (21), we also have

dz̃1
dθ

cosφ− dz̃2
dθ

sinφ =
dρ

dθ
.

Combing with the equations of (20) and (21), we have

dρ

dθ
= µ2(I2 cosφ− I3 sinφ

+µ3(R̃02 cosφ− R̃03 sinφ).

Combing (19) with dρ
dθ gives

dω

dθ
=
µ2

ρ
[I1 − ω(I1 cosφ− I3 sinφ)]

+
µ3

ρ
(R̃01 − ωR̃02 cosφ

+ωR̃03 sinφ).

3.2 The average method
If c0001 is irrational, then the method of averaging can
be applied to (18) to obtain the equivalent equations

dφ

dθ
= c0001 − µ2Ĩ1(ρ, ω) + µ3R̃1(ρ, ω, ε),

dρ

dθ
= µ2Ĩ2(ρ, ω) + µ3R̃2(ρ, ω, ε),

dω

dθ
= µ2Ĩ3(ρ, ω) + µ3R̃3(ρ, ω, ε). (22)

with the following forms:

Ĩ1(ρ, ω) =
3ρ2

8
(d0030 − c0003) +

ρ2

8
(d0012 − c0021)

+
1

4π

∫ 2π

0
(b23(θ)− b14(θ))dθsgn(ε),

Ĩ2(ρ, ω) =
ρ3

8
(c0012 + d0021) +

3ρ3

8
(c0030 + d0003)

+
ρ

4π

∫ 2π

0
(b13(θ) + b24(θ))dθsgn(ε),

Ĩ3(ρ, ω) = −ρ2ω
8

(c0012 + d0021)−
3ρ2ω

8
(c0030

+d0003) +
ω

4π

∫ 2π

0
(2a02(θ)− b13(θ)

−b24(θ))dθsgn(ε).

In order to use the theory of the invariant torus, we
should prepare for the following works. Considering
the solutions of the following equations

Ĩ2(ρ, ω) = 0, Ĩ3(ρ, ω) = 0. (23)

It is easy to get that the equations of (23) has a zero
solution (ρ, ω) = (0, 0).

If adsgn(ε) < 0, then (23) has a nonzero solution
(ρ0, 0), where

ρ0 =

√
−2b

aπ
,

a =

∫ 2π

0
(Q1y1 +Q2y2)dθ,

b =

∫ 2π

0
a02(θ)dθ,

c = c0012 + d0021 + 3c0030 + 3d0003.

In order to make further reduction of the average
equation, we define

A(ρ, ω) =

 ∂Ĩ2(ρ,ω)
∂ρ

∂Ĩ2(ρ,ω)
∂ω

∂Ĩ3(ρ,ω)
∂ρ

∂Ĩ3(ρ,ω)
∂ω

 .
Therefore, for the zero solution (ρ, ω) = (0, 0) , we
have

A(0, 0) =

 ∂Ĩ2(0,0)
∂ρ

∂Ĩ2(0,0)
∂ω

∂Ĩ3(0,0)
∂ρ

∂Ĩ3(0,0)
∂ω


=

(
a
4πsgn(ε) 0

0 2b−a
4π sgn(ε)

)
.

Furthermore, for the nonzero solution (ρ0, 0), we have

A(ρ0, 0) =

 ∂Ĩ2(ρ0,0)
∂ρ

∂Ĩ2(ρ0,0)
∂ω

∂Ĩ3(ρ0,0)
∂ρ

∂Ĩ3(ρ0,0)
∂ω


=

(
− a

2πsgn(ε) 0

0 b
2πsgn(ε)

)
.

Hence, if a(2b − a) ̸= 0, then system of (12) has an
invariant torus S1 (see, [11])

S1 = ((θ, φ, ρ, ω) : ρ = 0, ω = ψ1(θ, φ, ω), θ ∈ R,

φ ∈ R) with ψ1(θ, φ, 0) = 0.

When 2aε < cε < 0, then S1 is exponentially asymp-
totically stable. If ab ̸= 0 , then system of (12) has an
invariant torus S2:

S2 = ((θ, φ, ρ, ω) : ρ = ρ0 + ψ2(θ, φ, ω),

ω = ψ3(θ, φ, ω), θ ∈ R,φ ∈ R).

with ψi(θ, φ, 0) = 0, i = 2, 3.

The invariant torus S2 is exponentially asymptotically
stable when bε < 0 and aε > 0.

Summarizing the above, we are able to state our
main result.
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Theorem 4 (Stability of the Periodic Orbit) If there
exists a h0 ∈ J , such that M(h0) = 0,M(h0)

′ ̸=
0 and c0001 ̸= k. Then in the neighbor of Lh0 , we
conclude that

(i) if 2bε < aε < 0,the periodic orbit of (3) is
asymptotically stable, and the invariant torus S1 ex-
ponentially asymptotically stable.

(ii) If bε < 0 < aε, the periodic orbit of (3),
is unstable, and the invariant torus is exponentially
asymptotically stable.

(iii) If 2bε > aε or 0 < 2bε < aε,the periodic
orbit of (3) is unstable and the invariant torus is un-
stable.

4 The numerical simulations of the
Periodic orbit

In this section, numerical simulations are performed
to verify the analytical predictions. Three groups of
parametric controlling conditions are given:

i) When ε = 0 , the unperturbed system of (4) is
a Hamiltonian system.

When n11 ̸= 3n13, v = 0 is a 1-order weak focus
for the unperturbed system of (5).

The figures we refer to Fig 1.1- Fig1.6.
ii) For 0 < |ε| << 1, if M(r) ̸= 0, the system of

(3) does not exist any periodic orbit with period near
2π in the neighborhood of Lr.

The figures we refer to Figs 2.1- Fig2.6.
iii) For 0 < |ε| << 1, if M(h0) = 0,M ′(h0) ̸= 0

and c0001 is not positive integer, then in the neighbor
of Lh0 the system (3) has a unique periodic orbit with
period near 2π (see [12]).

The figures we refer to Figs 3.1-Fig3.6.
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5 Conclusion
The paper presents the sufficient condition for the ex-
istence of the periodic solution of FGM subjected to
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Figure 1.1-1.6 Its shown that (4) is a Hamiltonian sys-
tem, (5) has a 1-order weak focus when ε = 0

aero-thermal load with two degrees of freedom by us-
ing periodic transformation, Poincare mapping and
Melnikov function. We get the results that when
M(r) ̸= 0, the system of (3) does not have any
periodic solution. When M(h0) = 0,M ′(h0) ̸=
0, c0001 ̸= k,the system of (3) has a unique peri-
odic solution. Then we present three groups of fig-
ures in the next part. In Fig1.1-Fig1.6, we give the
unperturbed system of (3), we can see that du

dτ =

f(u) = (−u2, u1)T is a Hamiltonian system. When
n11 ̸= 3n13, δ2 ̸= 0, then v = 0 is a 1-order
weak focus of planar autonomous system dv

dτ = g(v).
In the Fig2.1-Fig2.6, we get that the system of (3)
does not have any periodic solution when M(r) ̸= 0.
In the Fig3.1-Fig3.6, we can have the result that if
M(h0) = 0,M ′(h0) ̸= 0, c0001 ̸= k,then the sys-
tem of (3) has a unique periodic orbit. Then, in the

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X1

X
2

Fig2.1

−0.1 −0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

X3

X
4

Fig2.2

−1

0

1

−0.1

0

0.1
−0.1

−0.05

0

0.05

0.1

X2X3

X
4

Fig2.3

WSEAS TRANSACTIONS on MATHEMATICS Xiaona Yin, Jing Li, Bin He

E-ISSN: 2224-2880 370 Volume 13, 2014



−1

0

1

−1

0

1
−0.1

−0.05

0

0.05

0.1

X1X2

X
3

Fig2.4

−1

0

1

−0.1

0

0.1
−0.1

−0.05

0

0.05

0.1

X1X3

X
4

Fig2.5

−1

0

1

−0.1

0

0.1
−0.1

−0.05

0

0.05

0.1

X1X2

X
4

Fig2.6

Figure 2.1-2.6 In this condition there does not exist any
periodic orbit in the neighborhood of Lr.
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Figure 3.1-3.6 Figures of system (3), in this condition there
has a unique periodic orbit in the neighborhood of Lh0 .

next part, we analyze the stability of the periodic or-
bit. By using the Blow-up transformation, the average
method, we get the average equations. By discussing
the characteristic value of the matrices, we investigate
the stability of periodic solution about the FGM sub-
jected to aero-thermal load.

We anticipate that our proposal for the method
to analyze the periodic solution for high-dimensional
will contribute to improve the usage of nonlinear dy-
namics in the areas of new materials.
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