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Abstract: Tian proposed a general iterative algorithm for finding a solution for variational inequalities over the
set of fixed points of a nonexpansive mapping on Hilbert spaces and obtained the strong convergence theorem
[M. Tian, Nonlinear Analysis, 73 (2010) 689-694]. Zhou et al. proposed a simpler explicit iterative algorithm for
finding a solution for variational inequalities over the set of common fixed points of a finite family of nonexpansive
mappings on Hilbert spaces and proved the strong convergence [H. Y. Zhou, P. Y. Wang, J. Optim. Theory Appl.09
November 2013]. In this paper, we firstly give a new proof of Tian’s convergence theorem, which is much more
simpler than Tian’s original proof. Then we improve the main convergence result of Zhou et al., more precisely,
using a recent new lemma, we prove the strong convergence of this algorithm under more weaker conditions
(indeed, one of the original conditions is removed). Based on the two results, a more general algorithm is then
proposed for solving a more general class of variational inequalities over the set of common fixed points of a finite
family of nonexpansive mappings on Hilbert spaces and its strong convergence is proved. Finally, some extensions
to our main results have been obtained. Our results in this paper extend and improve ones of Tian and Zhou et al.

Key–Words: Variational inequalities, Hybrid steepest-descent method, Nonexpansive mappings, Common fixed
points

1 Introduction

Let H be a real Hilbert space with the inner product
⟨·, ·⟩ and the norm ∥ · ∥, let C be a nonempty closed
convex subset of H, and let F : C → H be a non-
linear operator. The variational inequality problem
V I(C,F ) can mathematically be formulated as the
problem of finding a point x∗ ∈ C with the property

⟨Fx∗, x− x∗⟩ ≥ 0, ∀ x ∈ C. (1)

The variational inequality problem was initially intro-
duced and studied by Stampacchia [1] in 1964. After-
ward, some mathematicians extended the main result
of [1] to the more general framework of locally con-
vex topological vector spaces, see, for instance, [2-6].
Ever since, variational inequalities have been widely
investigated by many authors because they cover a
large variety of problems arising in structural analy-
sis, economics, optimization, operations research and
engineering sciences, see [7-30] and the references
therein.

Recall the characteristic inequality on projection
operators: given a point z ∈ H and u ∈ C, then the

inequality

⟨z − u, v − u⟩ ≤ 0, ∀ v ∈ C

holds if and only if u = PCz, where PC is the metric
projection operator of H onto the closed convex set
C; that is, u is the unique point in C such that

∥u− z∥ = inf
v∈C
∥v − z∥.

It is well known that the projection PC is nonexpan-
sive; namely,

∥PCx− PCy∥ ≤ ∥x− y∥, ∀ x, y ∈ H.

In fact, PC is also a firmly nonexpansive mapping,
that is, the relation

∥PCx−PCy∥2 ≤ ∥x−y∥2−∥(I−PC)x−(I−PC)y∥2

holds for all x, y ∈ H .
Using the characteristic inequality on projection

operators, it is very easy to show that the variational
inequality problem is equivalent to the fixed point
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problem: x∗ ∈ C is a solution of variational inequal-
ity (1) if and only if x∗ ∈ C satisfies the fixed-point
relation:

x∗ = PC(I − λF )x∗,

where λ is an arbitrary positive constant.
Recall that an operator F : C → H is called

monotone, if

⟨Fx− Fy, x− y⟩ ≥ 0 ∀x, y ∈ C.

Moreover, a monotone operator F is called strictly
monotone if the equality ‘=’ holds only when x = y
in the last relation. It is easy to see that V I(C,F ) (1)
has at most one solution if F is strictly monotone.

Recall that F : C → H is said to be a κ− Lip-
schitzian and η-strongly monotone operator, if there
exist some positive constants κ and η such that

∥Fx− Fy∥ ≤ κ∥x− y∥,
⟨Fx− Fy, x− y⟩ ≥ η∥x− y∥2,

hold for all x, y ∈ C. Under these two conditions, it
is not difficult to show that the operator PC(I−λF ) :
C → C is a contraction provided the constant λ is
selected such that 0 < λ < 2η/κ2. By using the
well-known Banach contraction mapping principle,
PC(I − λF ) has a unique fixed point in C and thus
V I(C,F ) (1) has a unique solution. Throughout the
rest of this paper, I denotes the identity mapping onH
and F : H → H is a κ− Lipschitzian and η-strongly
monotone operator.

Recall that T : H → H is said to be a nonexpan-
sive mapping, if ∥Tx − Ty∥ ≤ ∥x − y∥, ∀x, y ∈ H .
Assume that T : H → H is a nonexpansive mapping
with the nonempty set of fixed points, i.e.,Fix (T ) ∆

=
{x ∈ H : Tx = x} ̸= ∅. It is well-known that
Fix(T ) is a closed convex subset of H . Yamada [7]
considered a particular class of variational inequali-
ties: finding a point x∗ ∈ Fix(T ) such that

⟨Fx∗, x− x∗⟩ ≥ 0, ∀x ∈ Fix(T ). (2)

To solve (2), Yamada [7] introduced the hybrid
steepest-descent method:

xn+1 = (I − λnµF )Txn, n ≥ 0, (3)

where the initial point x0 is selected in H arbitrarily,
µ is a constant such that 0 < µ < 2η/κ2 and (λn) is
a sequence in (0, 1). Algorithm (3) is implementable
since it has nothing to do with the metric projection
operator, which is its evident advantage. Yamada [7]
proved the following result.

Theorem 1 ([7]) Let F : H → H be a κ− Lips-
chitzian and η-strongly monotone operator. Let the
initial guess x0 be taken inH arbitrarily. Assume that
the sequence (λn) satisfies the conditions

(i) limn→∞ λn = 0,

(ii)
∑∞

n=1 λn =∞,

(iii) either
∑+∞

n=1 |λn+1 − λn| < +∞ or
limn→∞ λn/λn+1 = 1.

Then the sequence (xn) generated by (3) converges
strongly to the unique solution of the variational in-
equality (2).

Yamada also considered the hybrid steepest-
descent cycle method for solving Lipschitzian and
strongly monotone variational inequalities over the set
of common fixed points of a finite family of nonexpan-
sive mappings.

Recall that f : H → H is said to be a contraction
with coefficient α ∈ [0, 1), if ∥f(x)−f(y)∥ ≤ α∥x−
y∥, ∀x, y ∈ H . Henceforth, f : H → H always
denotes a contraction with coefficient α ∈ (0, 1).

Moudafi proposed [31] the viscosity approxima-
tion method: take an initial guess x0 ∈ C arbitrarily
and define (xn) recursively by

xn+1 = λnf(xn) + (1− λn)Txn, n ≥ 0,

where (λn) is a sequence in the interval (0, 1). In this
case, f is a contractive self mapping on C and T is
a nonexpansive self mapping on C, respectively. In
the setting of Hilbert spaces, Moudafi proved that If
(λn) satisfies the same conditions (i)-(iii) as in The-
orem 1, then the sequence (xn) generated by the vis-
cosity approximation method converges strongly to a
fixed point x∗ of T , which also solves the variational
inequality problem: finding an element x∗ ∈ Fix(T )
such that

⟨f(x∗)− x∗, x− x∗⟩ ≤ 0, x ∈ Fix(T ).

H. K. Xu studied the viscosity approximation
method in the setting of Banach spaces and obtained
the strong convergence theorems [32].

Yamada’s algorithm (3) has very close connection
with the viscosity approximation method. In fact, al-
gorithm (3) can be rewritten as the form:

xn+1 = λn(I − µF )Txn + (1− λn)Txn.

Noting the fact that (I−µF )T : H → H is a contrac-
tion with coefficient 1−λτ , where τ = 1

2µ(2η−µκ
2),

if µ is selected such that 0 < µ < 2η/κ2 (see Lemma
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4 below), it is easy to see that algorithm (3) is indeed
a special case of the viscosity approximation method.

Tian [8] proposed a much more general iterative
algorithm: the initial guess x0 is selected in H arbi-
trarily and the xn+1 is defined by

xn+1 = λnγf(xn) + (I − λnµF )Txn, n ≥ 0, (4)

where T is a nonexpansive self-mapping of H such
that Fix(T ) ̸= ∅, µ and γ are two constants such that

µ ∈ (0, 2η
κ2 ) and 0 < γ < µ(η − µκ2

2 )/α
∆
= τ/α

respectively, and (λn) is a sequence in (0, 1). Al-
gorithm (4) is an extension not only to the viscos-
ity approximation method but also to Yamada’s hy-
brid steepest-descent method for solving fixed points
problems of nonexpansive mappings and variational
inequalities problems.

Tian [8] proved the following strong convergence
result.

Theorem 2 ([8]) Let F : H → H be a κ− Lips-
chitzian and η-strongly monotone operator and let f :
H → H be a contraction with coefficient α ∈ (0, 1).
Assume that the sequence (λn) satisfies the same con-
ditions (i)-(iii) as in Theorem 1. Then the sequence
(xn) generated by (4) converges strongly to the unique
solution of the variational inequality problem: finding
a point x̃ ∈ Fix(T ) such that

⟨(µF − γf)x̃, x− x̃⟩ ≥ 0, ∀x ∈ Fix(T ). (5)

Very recently, Zhou et al. [9] were concerned with
the following variational inequality problem: finding
a point x∗ ∈

∩N
i=1 Fix(Ti) such that

⟨Fx∗, x− x∗⟩ ≥ 0, ∀x ∈
N∩
i=1

Fix(Ti), (6)

whereN ≥ 1 is an integer, (Ti)Ni=1 is a family of finite
nonexpansive self-mappings of H with the nonempty
set of common fixed points, i.e.,

∩N
i=1 Fix(Ti) ̸= ∅.

To solve (6), Zhou et al.[9] proposed a simpler
iterative algorithm: take an initial guess x0 ∈ H arbi-
trarily and define a sequence (xn) in the manner:

xn+1 = (I − λnµF )Tn
NT

n
N−1 · · ·Tn

1 xn, n ≥ 0, (7)

where µ ∈ (0, 2η
κ2 ), (λn) ⊂ (0, 1) and Tn

i =

(1 − βin)I + βinTi such that (βin) ⊂ (0, 1) for i =
1, 2, · · · , N .

For the strong convergence of algorithm (7), Zhou
et al.[9] proved the following result.

Theorem 3 ([9])Let F : H → H be a κ−
Lipschitzian and η-strongly monotone operator and
let (Ti)

N
i=1 be a family of finite nonexpansive self-

mappings of H with the property
∩N

i=1 Fix(Ti) ̸=
∅. Assume that the sequences (λn) and (βin) (i =
1, 2, · · · , N) satisfy the conditions:

(i) limn→∞ λn = 0,

(ii)
∑∞

n=0 λn =∞,

(iii) there exist some β∗, β∗ ∈ (0, 1) such that βkn ∈
[β∗, β

∗] for i = 1, 2, · · · , N and all n ≥ 0,

(iv) for i = 1, 2, · · · , N , limn→∞ |βin+1 − βin| = 0.

Then the sequence (xn), generated by (7), converges
strongly to the unique solution x∗ of the variational
inequality (6).

In this paper, we shall firstly give a new proof of
Theorem 2, which is much more simpler than Tian’s
original proof in [8]. Secondly, we improve Theorem
3. More precisely, we prove that condition (iv) is un-
necessary, i.e., if condition (iv) is removed, the result
of Theorem 3 still holds. Our new proof is very dif-
ferent from one given by Zhou et al. in [9]. In fact,
we shall see that a recent new tool (see Lemma 6 be-
low) shows very important action on our proof. Based
on this result, we thirdly propose a more general al-
gorithm than (7): the initial guess x0 is selected in H
arbitrarily and the xn+1 is defined by

xn+1 = λnγf(xn) + (I−
λnµF )T

n
NT

n
N−1 · · ·Tn

1 xn, n ≥ 0,
(8)

where µ ∈ (0, 2η
κ2 ), (λn) ⊂ (0, 1), γ is a constant

such that 0 < γ < µ(η − µκ2

2 )/α
∆
= τ/α and

Tn
i , i = 1, 2, · · · , N ;n ≥ 0 are the same as above.

We shall prove that under the same conditions (i)-(iii)
as in Theorem 3 (note that condition (iv) is also unnec-
essary), the sequence (xn) generated by (8) converges
strongly to a point in

∩N
i=1 Fix(Ti) ̸= ∅, which also

solves the variational inequality of finding a point
x∗ ∈

∩N
i=1 Fix(Ti) such that

⟨(µF −γf)x∗, x−x∗⟩ ≥ 0, ∀x ∈
N∩
i=1

Fix(Ti). (9)

The rest of this paper is organized as follows.
Some useful lemmas are listed in the next section. In
Section 3, our main results are given. In the last sec-
tion, three extensions to our main results are given.
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2 Preliminaries
Throughout the rest of this paper, we denote by H a
real Hilbert space. We will use the notations:
• → denotes strong convergence.
• ⇀ denotes weak convergence.
• ωw(xn) = {x | ∃ {xnk

} ⊂ {xn} such that
xnk

⇀ x} denotes the weak ω − limit set of {xn}.
Now we collect some necessary facts and useful

tools in order to establish our main convergence theo-
rems.

Lemma 4 ([1]) Assume that F : H 7→ H is a
κ−Lipschitzian and η−strongly monotone operator,
λ ∈ (0, 1) and µ ∈ (0, 2η

κ2 ). Then I − λµF is
a contraction with coefficient 1 − λτ , where τ =
1
2µ(2η − µκ

2).

Lemma 5 For all x, y ∈ H and λ ∈ [0, 1], there
holds the relation:

∥(1− λ)x+ λy∥2 = (1− λ)∥x∥2 + λ∥y∥2

−λ(1− λ)∥x− y∥2.

This equality is trivial but in common use.

Lemma 6 ([10]) Assume (sn) is a sequence of non-
negative real numbers such that

sn+1 ≤ (1− γn)sn + γnδn, n ≥ 0, (10)

sn+1 ≤ sn − ηn + αn, n ≥ 0, (11)

where (γn) is a sequence in (0, 1), (ηn) is a sequence
of nonnegative real numbers and (δn) and (αn) are
two sequences in R such that

(i)
∞∑
n=0

γn =∞,

(ii) lim
n→∞

αn = 0,

(iii) lim
k→∞

ηnk
= 0 implies lim supk→∞ δnk

≤ 0 for

any subsequence (nk) ⊂ (n).

Then limn→∞ sn = 0.

We shall see that Lemma 6 shows very important
action on our proof of the main convergence result
(see the proof of Theorem 11 in Section 3).

Lemma 7 ([33]) Let T be a nonexpansive mapping
defined on a closed convex subsetK of a Hilbert space
H . Then I −T is demi-closed; that is, whenever (xn)
is a sequence in K weakly convergent to some x ∈ K
and the sequence ((I − T )xn) strongly converges to
some y ∈ H , it follows that (I − T )x = y.

Lemma 8 ([34]) Assume (an) is a sequence of non-
negative real numbers such that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where (γn) is a sequence in (0,1) and (δn) is a se-
quence in R such that

(i)
∞∑
n=0

γn =∞,

(ii) lim sup
n→∞

δn ≤ 0 or
∞∑
n=0
|γnδn| <∞.

Then limn→∞ an = 0.

Lemma 9 ([8]) Let H be a real Hilbert space, f :
H 7→ H be a contraction with coefficient α ∈ [0, 1)
and F : H 7→ H be a κ−Lipschitzian and η−strongly
monotone operator. Then for 0 < γ < µη/α,

⟨(µF − γf)x− (µF − γf)y, x− y⟩
≥ (µη − γα)∥x− y∥2, x, y ∈ H,

that is, µF − γf is (µη − γα)-strongly monotone.

3 Iterative Algorithms
In this section, we always assume that H is a real
Hilbert space, T is a nonexpansive mapping on H
with Fix(T ) ̸= ∅, f is a contraction on H with co-
efficient α ∈ [0, 1) and F is a κ−Lipschitzian and
η−strongly monotone operator on H .

Now we give a new proof of Theorem 2, which is
much more simpler than Tian’s original proof in [8].
In fact, our new proof is a indirect method since it
draws support from Theorem 1.

Proof: Firstly, we consider the following supplemen-
tary algorithm

zn+1 = (I − αn(µF − γf))Tzn, n ≥ 0, (12)

where the initial guess z0 is selected in H arbitrar-
ily. Obviously, µF − γf is a (µκ+ γα)-Lipschitzian
operator. By Lemma 9, we assert from the condi-
tion 0 < γ < τ/α(< µη/α) that µF − γf is also
(µη − γα)-strongly monotone.

Then we show that the sequence (zn) generated
by (12) converges strongly to the unique solution of
variational inequality (5). To see this, we set κ̂ =
µκ+γα, η̂ = µη−γα and rewrite the algorithm (12)
in the form:

zn+1 = (I − λnµ̂(µF − γf))Tzn, n ≥ 0, (13)
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where µ̂ is a arbitrary constant such that 0 < µ̂ < 2η̂
κ̂2

and λn = αn
µ̂ . Noting that (λn) also satisfies the con-

ditions (i)-(iii) in Theorem 1, we have from Theorem 1
that the sequence (zn) generated by (12) (or (13)) con-
verges strongly to the unique solution of variational
inequality (5). Thus in order to complete the proof, it
suffices to show ∥xn − zn∥ → 0 as n→∞.

In fact, (12) can also be rewritten in the another
form:

zn+1 = αnγf(Tzn)+(I−αnµF )Tzn, n ≥ 0. (14)

Combining (4) and (14), we have from Lemma 4 that

∥xn+1 − zn+1∥
= ∥αnγ(f(xn)− f(Tzn))

+((I − αnµF )Txn − (I − αnµF )Tzn)∥
≤ αnγα∥xn − Tzn∥+ (1− ταn)∥xn − zn∥
≤ [1− αn(τ − γα)]∥xn − zn∥

+αnγα∥zn − Tzn∥
= (1− βn)∥xn − zn∥+ βnδn,

(15)

where βn = αn(τ − γα) and δn = γα
τ−γα∥zn− Tzn∥.

Observing that the sequence (βn) satisfies the condi-
tions (i)-(iii) in Theorem 1 and δn → 0 holds due to
the fact that (zn) converges strongly to a fixed point
of T and T is continuous, it follows by using Lemma
8 that ∥xn − zn∥ → 0 as n→∞. This completes the
proof. ⊓⊔

The technique in the proof above will be used
again for proving Theorem 12 below.

On the other hand, it is not difficult to see from the
proof course above that Theorem 2 can be improved
as follows.

Theorem 10 Let F : H → H be a κ− Lipschitzian
and η-strongly monotone operator and let g : H → H
be a L− Lipschitzian mapping. Assume that µ and
γ are two constants such that µ ∈ (0, 2η

κ2 ) and 0 <

γ < µ(η − µκ2

2 )/L
∆
= τ/L respectively, and the se-

quence (λn) satisfies the same conditions (i)-(iii) as in
Theorem 1. Then the sequence (xn) generated by the
scheme:

xn+1 = λnγg(xn) + (I − λnµF )Txn, n ≥ 0,

where the initial guess x0 is selected in H arbitrar-
ily, converges strongly to the unique solution of the
variational inequality problem: finding a point x̃ ∈
Fix(T ) such that

⟨(µF − γg)x̃, x− x̃⟩ ≥ 0, ∀x ∈ Fix(T ).

Proof: Obviously, µF − γg is a (µκ + γL)-
Lipschitzian operator. Similar to Lemma 9, we also
assert from the condition 0 < γ < τ/L(< µη/L) that
µF −γg is also (µη−γL)-strongly monotone. By an
argument very similar to the new proof of Theorem 2
above, we can accomplish the proof of this theorem.

We are now in a position to prove that if condition
(iv) in Theorem 3 is removed, the result of Theorem
3 still holds, that is, an improvement to Theorem 3 is
obtained as follows. Lemma 6 will play a part in the
proof of our result.

Theorem 11 Let F : H → H be a κ− Lipschitzian
and η-strongly monotone mapping. Let (Ti)Ni=1 be a
family of finite nonexpansive self-mappings of H such
that

∩N
i=1 Fix(Ti) ̸= ∅. Assume that the sequences

(λn) ⊂ (0, 1) and (βin) ⊂ (0, 1) (i = 1, 2, · · · , N)
satisfy the conditions:

(i) lim
n→∞

λn = 0,

(ii)
∞∑
n=0

λn =∞,

(iii) there exist some β∗, β∗ ∈ (0, 1) such that βkn ∈
[β∗, β

∗] for i = 1, 2, · · · , N and all n ≥ 0.

Then the sequence (xn), generated by (7), converges
strongly to the unique solution x∗ of the variational
inequality (6).

Proof: Without loss of the generality, we prove The-
orem 11 for N = 2 (since it is easy to see that
our methods carry over the general case). We Firstly
show that (xn) is bounded. To see this, for any point
p ∈

∩N
i=1 Fix(Ti), by (7) and Lemma 4, we have

∥xn+1 − p∥
= ∥(I − λnµF )Tn

2 T
n
1 xn − p∥

= ∥(I − λnµF )Tn
2 T

n
1 xn − (I − λnµF )p

−λnµF (p)∥
≤ ∥(I − λnµF )Tn

2 T
n
1 xn − (I − λnµF )p∥

+λnµ∥F (p)∥
≤ (I − τλn)∥Tn

2 T
n
1 xn − Tn

2 T
n
1 p∥

+λnµ∥F (p)∥
≤ (I − τλn)∥xn − p∥+ τλn

µ
τ ∥F (p)∥

≤ max{∥x0 − p∥, uτ ∥F (p)∥}
∆
=Mp,

(16)

for all n ≥ 0, which shows that (xn) is bounded, so
are (Tn

2 T
n
1 (xn)) and (F (Tn

2 T
n
1 (xn))).

On the other hand, noting the fact that Fix(Ti) =
Fix(Tn

i ) (i = 1, 2; n ≥ 0), we deduce from (7) and

WSEAS TRANSACTIONS on MATHEMATICS Yang Caiping, He Songnian

E-ISSN: 2224-2880 834 Volume 13, 2014



Lemma 4 that

∥xn+1 − x∗∥2
= ∥(I − λnµF )Tn

2 T
n
1 xn − (I − λnµF )x∗

−λnµFx∗∥2
≤ ∥(I − λnµF )Tn

2 T
n
1 xn − (I − λnµF )x∗∥2

+2λnµ∥Fx∗∥ · ∥(I − λnµF )Tn
2 T

n
1 xn

−(I − λnµF )x∗∥+ λ2nµ
2∥Fx∗∥2

≤ (1− τλn)∥Tn
2 T

n
1 xn − x∗∥2

+2λnµ(1− τλn)∥Fx∗∥ · ∥xn − x∗∥
+λ2nµ

2∥Fx∗∥2
≤ ∥Tn

2 T
n
1 xn − x∗∥2

+λn[2µ∥Fx∗∥ · ∥xn − x∗∥+ µ2∥Fx∗∥2]
≤ ∥Tn

2 T
n
1 xn − x∗∥2 + λnM1,

(17)

where M1 is a positive constant such that M1 ≥
supn≥0{2µ∥Fx∗∥ · ∥xn− x∗∥+µ2∥Fx∗∥2}. Noting
that

Tn
1 = (1− β1n)I + β1nT1,

Tn
2 = (1− β2n)I + β2nT2,

and using Lemma 5, we have

∥Tn
2 T

n
1 xn − x∗∥2

= ∥(1− β2n)(Tn
1 xn − x∗)

+β2n(T2T
n
1 xn − x∗)∥2

= (1− β2n)∥Tn
1 xn − x∗∥2

+β2n∥T2Tn
1 xn − x∗∥2

−β2n(1− β2n)∥Tn
1 xn − T2Tn

1 xn∥2
≤ ∥Tn

1 xn − x∗∥2 − β2n(1− β2n)∥Tn
1 xn

−T2Tn
1 xn∥2

= ∥(1− β1n)(xn − x∗) + β1n(T1xn − x∗)∥2
−β2n(1− β2n)∥Tn

1 xn − T2Tn
1 xn∥2

= (1− β1n)∥xn − x∗∥2 + β1n∥T1xn − x∗∥2
−β1n(1− β1n)∥xn − T1xn∥2
−β2n(1− β2n)∥Tn

1 xn − T2Tn
1 xn∥2

≤ ∥xn − x∗∥2 − β1n(1− β1n)∥xn − T1xn∥2
−β2n(1− β2n)∥Tn

1 xn − T2Tn
1 xn∥2.

(18)

Substituting (18) into (17), we get

∥xn+1 − x∗∥2
≤ ∥xn − x∗∥2 − β1n(1− β1n)∥xn − T1xn∥2
−β2n(1− β2n)∥Tn

1 xn − T2Tn
1 xn∥2

+λnM1.

(19)

Set

sn = ∥xn − x∗∥2,
ηn = β1n(1− β1n)∥xn − T1xn∥2

+β2n(1− β2n)∥Tn
1 xn − T2Tn

1 xn∥2,
αn =M1λn,

then (19) is rewritten as follows

sn+1 ≤ sn − ηn + αn. (20)

By the virtue of (7) and Lemma 4, we have

∥xn+1 − x∗∥2
= ∥(I − λnµF )Tn

2 T
n
1 xn − x∗∥2

= ∥(I − λnµF )Tn
2 T

n
1 xn − (I − λnµF )x∗

−λnµF (x∗)∥2
= ∥(I − λnµF )Tn

2 T
n
1 xn − (I − λnµF )x∗∥2

+µ2λ2n∥Fx∗∥2
+2λnµ⟨Fx∗, (I − λnµF )x∗
−(I − λnµF )Tn

2 T
n
1 xn⟩

≤ (1− τλn)∥xn − x∗∥2
+2µ2λ2n∥Fx∗∥ · ∥F (Tn

2 T
n
1 )xn∥

+2λnµ⟨Fx∗, x∗ − xn⟩
+2µλn∥Fx∗∥ · ∥xn − Tn

2 T
n
1 xn∥

≤ (1− τλn)∥xn − x∗∥2 + τλnδn,

(21)

where δn = 2µ
τ (⟨Fx∗, x∗ − xn⟩ + ∥Fx∗∥ · ∥xn −

Tn
2 T

n
1 xn∥)+

2µ2M2

τ λn and M2 is a constant such that
M2 ≥ supn ∥F (Tn

2 T
n
1 xn)∥. Set γn = τλn, thus (21)

can also be rewritten as follows

sn+1 ≤ (1− γn)sn + γnδn. (22)

Now we use Lemma 6 to (20) and (22) to prove
sn → 0 as n → ∞. It is easy to see that γn → 0
and

∑∞
n=0 γn =∞ hold due to conditions (i) and (ii).

Therefore, in order to complete the proof, it suffices
to verify that

lim
k→∞

ηnk
= 0

implies
lim sup
k→∞

δnk
≤ 0

for any subsequence (nk) ⊂ (n). Firstly, we assert
that ηnk

→ 0 as k → ∞ implies ∥Tnk
2 Tnk

1 xnk
−

xnk
∥ → 0 as k → ∞. Indeed, noting the following

inequality

∥xnk
− T2xnk

∥
≤ ∥xnk

− Tnk
1 xnk

∥
+∥Tnk

1 xnk
− T2Tnk

1 xnk
∥

+∥T2Tnk
1 xnk

− T2xnk
∥

≤ 2∥xnk
− Tnk

1 xnk
∥

+∥Tnk
1 xnk

− T2Tnk
1 xnk

∥
= 2β1nk

∥xnk
− T1xnk

∥
+∥Tnk

1 xnk
− T2Tnk

1 xnk
∥

(23)

and condition (iii), it is easy to see that ηnk
→ 0 as

k →∞ implies that ∥xnk
− T1xnk

∥ → 0 and ∥xnk
−

T2xnk
∥ → 0 as k →∞. Thus we obtain that

∥Tnk
2 Tnk

1 xnk
− xnk

∥
≤ ∥Tnk

2 Tnk
1 xnk

− Tnk
2 xnk

∥
+∥Tnk

2 xnk
− xnk

∥
≤ ∥Tnk

1 xnk
− xnk

∥+ ∥Tnk
2 xnk

− xnk
∥

= β1nk
∥xnk

− T1xnk
∥+ β2nk

∥xnk
− T2xnk

∥
→ 0.

(24)
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Moreover, if ηnk
→ 0, we have by using Lemma 7

that ω(xnk
) ⊂ Fix(T1)

∩
Fix(T2) holds, noting that

ηnk
→ 0 implies ∥xnk

− T1xnk
∥ → 0 and ∥xnk

−
T2xnk

∥ → 0. Consequently, we assert that

lim
k→∞
⟨Fx∗, x∗ − xnk

⟩ ≤ 0.

In fact, take a subsequence (xnkj
) ⊂ (xnk

) such that
xnkj

⇀ x̂ (j →∞) and

lim
k→∞
⟨Fx∗, x∗ − xnk

⟩ = lim
j→∞
⟨Fx∗, x∗ − xnkj

⟩,

then we have by ω(xnk
) ⊂ Fix(T1)

∩
Fix(T2) that

x̂ ∈ Fix(T1)
∩
Fix(T2). Observing that x∗ is the

unique solution of (6), we have

limk→∞⟨Fx∗, x∗ − xnk
⟩

= limj→∞⟨Fx∗, x∗ − xnkj
⟩

= ⟨Fx∗, x∗ − x̂⟩
≤ 0.

(25)

Combining (24), (25) and the condition λn → 0,
we have lim supk→∞ δnk

≤ 0, for any subsequence
(nk) ⊂ (n). From Lemma 6, limn→∞ sn = 0. ⊓⊔

We now turn to prove the strong convergence the-
orem for the algorithm (8) by using the result of The-
orem 11.

Theorem 12 Let F : H → H be a κ-Lipschitzian
and η-strongly monotone mapping and let f : H →
H be a contraction with coefficient α ∈ (0, 1).
Let (Ti)

N
i=1 be a family of finite nonexpansive self-

mappings of H such that
∩N

i=1 Fix(Ti) ̸= ∅. Assume
that µ and γ are two constants such that µ ∈ (0, 2η

κ2 )

and 0 < γ < µ(η − µκ2

2 )/α
∆
= τ/α respectively, and

the sequences (λn) ⊂ (0, 1) and (βin) ⊂ (0, 1) (i =
1, 2, · · · , N) satisfy the conditions:

(i) lim
n→∞

λn = 0,

(ii)
∞∑
n=0

λn =∞,

(iii) there exist some β∗, β∗ ∈ (0, 1) such that βkn ∈
[β∗, β

∗] for i = 1, 2, · · · , N and all n ≥ 0.

Then the sequence (xn), generated by (8), converges
strongly to the unique solution x∗ of the variational
inequality (9).

Proof: Without loss of the generality, we prove The-
orem 12 just for the case N = 2. Firstly, we consider
the following supplementary algorithm

zn+1 = (I − λn(µF − γf))Tn
2 T

n
1 zn, n ≥ 0, (26)

where the initial guess z0 is selected in H arbitrar-
ily. Obviously, µF − γf is a (µκ+ γα)-Lipschitzian
operator. By Lemma 9, we assert from the condi-
tion 0 < γ < τ/α(< µη/α) that µF − γf is also
(µη − γα)-strongly monotone.

Then we show that the sequence (zn) generated
by (26) converges strongly to the unique solution of
variational inequality (9). To see this, we set κ̂ =
µκ+γα, η̂ = µη−γα and rewrite the algorithm (26)
in the form:

zn+1 = (I − λ̂nµ̂(µF − γf))Tn
2 T

n
1 zn, n ≥ 0, (27)

where µ̂ is an arbitrary fixed constant such that 0 <
µ̂ < 2η̂

κ̂2 and λ̂n = λn
µ̂ . Noting that (λ̂n) also satis-

fies the conditions (i)-(ii) in Theorem 11 (there exists
some integer n0 such that λ̂n ∈ (0, 1) for all n ≥ 0
due to the condition λn → 0 as n → ∞ ), we have
from Theorem 11 that the sequence (zn) generated by
(26) (or (27)) converges strongly to the unique solu-
tion of variational inequality (9). Thus in order to
complete the proof, it suffices to show ∥xn−zn∥ → 0
as n→∞.

In fact, (26) can also be rewritten in the another
form:

zn+1 = λnγf(T
n
2 T

n
1 zn)

+(I − λnµF )Tn
2 T

n
1 zn, n ≥ 0.

(28)

Combining (8) and (28), we have from Lemma 4 that

∥xn+1 − zn+1∥
= ∥λnγ(f(xn)− f(Tn

2 T
n
1 zn))

+((I − λnµF )Tn
2 T

n
1 xn

−(I − λnµF )Tn
2 T

n
1 zn)∥

≤ λnγα∥xn − Tn
2 T

n
1 zn∥

+(1− τλn)∥xn − zn∥
≤ [1− λn(τ − γα)]∥xn − zn∥

+λnγα∥zn − Tn
2 T

n
1 zn∥

= (1− γn)∥xn − zn∥+ γnδn,

(29)

where γn = λn(τ − γα) and

δn =
γα

τ − γα
∥zn − Tn

2 T
n
1 zn∥.

Obviously, γn → 0 as n → ∞ and
∑∞

n=1 γn = ∞.
Now we verify that limn→∞ δn = 0. Indeed, it fol-
lows that ∥zn − T1zn∥ → 0 and ∥zn − T2zn∥ →
0 (n → ∞) hold due to the fact that (zn) converges
strongly to x∗ ∈ Fix(T1)

∩
Fix(T2) and T1 and T2

are all continuous. This together with the simple rela-
tion

∥zn − Tn
2 T

n
1 zn∥

≤ ∥zn − Tn
2 zn∥+ ∥Tn

2 − Tn
2 T

n
1 zn∥

≤ ∥zn − T2zn∥+ ∥zn − T1zn∥
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leads to ∥zn − Tn
2 T

n
1 zn∥ → 0. Consequently,

limn→∞ δn = 0. Thus we obtain that ∥xn − zn∥ → 0
by using Lemma 8. ⊓⊔

Similar to Theorem 10, Theorem 12 can be easily
improved as follows.

Theorem 13 Let F : H → H be a κ-Lipschitzian
and η-strongly monotone mapping and let g : H 7→
H be a L- Lipschitzian mapping. Let (Ti)Ni=1 be a
family of finite nonexpansive self-mappings of H such
that

∩N
i=1 Fix(Ti) ̸= ∅. Assume that µ and γ are

two constants such that µ ∈ (0, 2η
κ2 ) and 0 < γ <

µ(η− µκ2

2 )/L
∆
= τ/L respectively, and the sequences

(λn) ⊂ (0, 1) and (βin) ⊂ (0, 1) (i = 1, 2, · · · , N)
satisfy the conditions:

(i) lim
n→∞

λn = 0,

(ii)
∞∑
n=0

λn =∞,

(iii) there exist some β∗, β∗ ∈ (0, 1) such that βkn ∈
[β∗, β

∗] for i = 1, 2, · · · , N and all n ≥ 0.

Then the sequence (xn), generated by the scheme:

xn+1 = λnγg(xn) + (I−
λnµF )T

n
NT

n
N−1 · · ·Tn

1 xn, n ≥ 0,

where the initial guess x0 is selected in H arbitrar-
ily, converges strongly to the unique solution of the
variational inequality problem: finding a point x∗ ∈∩N

i=1 Fix(Ti) such that

⟨(µF − γg)x∗, x− x∗⟩ ≥ 0, ∀x ∈
N∩
i=1

Fix(Ti).

4 Extensions
In this section, we extend above results to more broad
family of strict pseudo-contractions. Recall that a
mapping S : H → H is said to be a strict pseudo-
contraction if there exists a constant γ ∈ (0, 1) such
that

∥Sx− Sy∥2 ≤ ∥x− y∥2 + γ∥(I − S)x
−(I − S)y∥2, ∀x, y ∈ H.

In this case, S is also called a γ−strict pseudo-
contraction. In principle, every fixed point problem
for strict pseudo-contractions can be transformed into
a fixed point problem for nonexpansive mappings. In
fact, take an arbitrary fixed constant θ ∈ [γ, 1), we can

always define a nonexpansive mapping Tθ : H → H
by

Tθx = θx+ (1− θ)Sx, x ∈ H (30)

such that Fix(Tθ) = Fix(S). Thus we can firstly
extend Theorem 10 to γ−strict pseudo-contraction.

Theorem 14 Let F : H → H be a κ− Lipschitzian
and η-strongly monotone operator, let g : H 7→ H be
a L− Lipschitzian mapping and let S be a γ−strict
pseudo-contraction such that Fix(S) ̸= ∅. Assume
that µ and γ are two constants such that µ ∈ (0, 2η

κ2 )

and 0 < γ < µ(η − µκ2

2 )/L
∆
= τ/L respectively,

and the sequence (λn) satisfies the same conditions
(i)-(iii) as in Theorem 1. Then the sequence (xn) gen-
erated by the scheme:

xn+1 = λnγg(xn) + (I − λnµF )Tθxn, n ≥ 0,

where Tθ is given as in (30) and the initial guess x0
is selected in H arbitrarily, converges strongly to the
unique solution of the variational inequality problem:
finding a point x̃ ∈ Fix(S) such that

⟨(µF − γg)x̃, x− x̃⟩ ≥ 0, x ∈ Fix(S).

Secondly, we extend Theorem 11 to the family
{Si}Ni=1 of γi−strict pseudo-contractions. To do this,
define

T̂i = θiI + (1− θi)Si, i = 1, 2, · · · , N,

then {T̂i}Ni=1 is a family of nonexpansive mappings
whenever 0 < γi ≤ θi < 1 (i = 1, 2, · · · , N). Define

T̂n
i = (1−βin)I+βinT̂i, i = 1, · · · , N ; n ≥ 0; (31)

where (βin) ⊂ (0, 1).

Theorem 15 Let F : H → H be a κ-Lipschitzian
and η-strongly monotone mapping. Let (Si)

N
i=1 be

a family of γi−strict pseudo-contractions such that∩N
i=1 Fix(Si) ̸= ∅. Assume that µ is constant such

that µ ∈ (0, 2η
κ2 ) and the sequences (λn) ⊂ (0, 1)

and (βin) ⊂ (0, 1) (i = 1, 2, · · · , N) satisfy the condi-
tions:

(i) lim
n→∞

λn = 0,

(ii)
∞∑
n=0

λn =∞,

(iii) there exist some β∗, β∗ ∈ (0, 1) such that βkn ∈
[β∗, β

∗] for i = 1, 2, · · · , N and all n ≥ 0.
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Then the sequence (xn), generated by the manner:

xn+1 = (I − λnµF )T̂n
N T̂

n
N−1 · · · T̂n

1 xn, n ≥ 0,

where T̂n
i is given as in (31) and the initial guess x0

is selected in H arbitrarily, converges strongly to the
unique solution of the variational inequality problem:
finding a point x∗ ∈

∩N
i=1 Fix(Si) such that

⟨Fx∗, x− x∗⟩ ≥ 0, ∀x ∈
N∩
i=1

Fix(Si),

Finally, we extend Theorem 13 to the family
{Si}Ni=1 of γi−strict pseudo-contractions.

Theorem 16 Let F : H → H be a κ− Lips-
chitzian and η-strongly monotone mapping and let
g : H 7→ H be a L- Lipschitzian mapping. Let
(Si)

N
i=1 be a family of γi−strict pseudo-contractions

such that
∩N

i=1 Fix(Si) ̸= ∅. Assume that µ and γ
are two constants such that µ ∈ (0, 2η

κ2 ) and 0 < γ <

µ(η− µκ2

2 )/L
∆
= τ/L respectively, and the sequences

(λn) ⊂ (0, 1) and (βin) ⊂ (0, 1) (i = 1, 2, · · · , N)
satisfy the conditions:

(i) lim
n→∞

λn = 0,

(ii)
∞∑
n=0

λn =∞,

(iii) there exist some β∗, β∗ ∈ (0, 1) such that βkn ∈
[β∗, β

∗] for i = 1, 2, · · · , N and all n ≥ 0.

Then the sequence (xn) generated by the scheme:

xn+1 = λnγg(xn) + (I−
λnµF )T̂

n
N T̂

n
N−1 · · · T̂n

1 xn, n ≥ 0,

where T̂n
i is given as in (31) and the initial guess x0

is selected in H arbitrarily, converges strongly to the
unique solution of the variational inequality problem
of finding a point x∗ ∈

∩N
i=1 Fix(Si) such that

⟨(µF − γf)x∗, x− x∗⟩ ≥ 0, ∀x ∈
N∩
i=1

Fix(Si).
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