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1 Introduction
In the past few years, different types of neutral dif-
ferential and difference equations with periodic coef-
ficients have been studied extensively, see, for exam-
ple, [1-5] and the references therein. However, upon
considering long-term dynamical behaviors, the peri-
odic parameters often turn out to experience certain
perturbations, that is, parameters become periodic up
to a small error, then one has to consider the systems
to be almost periodic since there is no a priori reason
to expect the existence of periodic solutions. There-
fore, if we consider the effects of the environmental
factors, the assumption of almost periodicity is more
realistic, more important and more general.

On the other hand, in the real word, lots of
dynamic systems have variable structures subject to
stochastic abrupt changes, which may result from
abrupt phenomena such as stochastic failures and re-
pairs of components, changes in the interconnections
of subsystems, sudden environment changes, and so
on [6-10]. Moreover, in applications, there are many
systems whose developing processes are both contin-
uous and discrete. Hence, using the only differential
equation or difference equation can’t accurately de-
scribe the law of their developments. Therefore, there
is a need to establish correspondent dynamic models
on new time scales.

The theory of calculus on time scales (see [11]
and references cited therein) was initiated by Stefan
Hilger in his Ph.D. thesis in 1988 [12] in order to
unify continuous and discrete analysis, and it has a
tremendous potential for applications and has recently

received much attention since his foundational work,
one may see [13-18]. Therefore, it is practicable to
study that on time scales which can unify the con-
tinuous and discrete situations. However, to the best
of the authors’ knowledge, there are few papers pub-
lished on the existence of almost periodic solution of
neutral stochastic functional differential equations on
time scales.

Let (Ω,F , P ) be a complete probability space
equipped with the normal filtration {Ft, t ∈ T}, that
is, a right-continuous, increasing family of sub σ-
algebras of F . Let L2(P,Rn) be the set of all Rn-
valued random variables x on T with

E∥x∥2 =
∫
Ω
∥x∥2∆P <∞,

then, L2(P,Rn) is a Banach space equipped with the
norm ∥x∥2 = (

∫
Ω ∥x∥2∆P )

1
2 .

In the present paper, we focus on the following
neutral stochastic functional differential equations on
time scales:

∆x(t) = A(t)x(t)∆t+∆Q(t, x(t))

+G(t, x(t))∆W (t), t ∈ T, (1)

where T is an almost periodic time scale, A(t) is
a nonsingular n × n matrix with continuous real-
valued functions as its elements; the functions Q :
T × L2(P,Rn) → L2(P,Rn) and G : T × L2(P,
Rn) → L2(P,Rn) are jointly continuous functions;
{W (t), t ∈ T} is a Brownian motion or a stan-
dard Wiener process defined on a complete probabil-
ity space (Ω,F , P ) with a natural filtration {Ft}t≥0

WSEAS TRANSACTIONS on MATHEMATICS Meng Hu, Lili Wang

E-ISSN: 2224-2880 353 Volume 13, 2014



generated byW (t), and denote by F the associated σ-
algebra generated by W (t) with the probability mea-
sure P .

The purpose of this paper is to establish the exis-
tence of almost periodic solutions of (1) based on the
properties of almost periodic function and exponential
dichotomy of linear system on time scales as well as
krasnoselskii’s fixed point theorem.

In this paper, for each ϕ = (ϕ1, ϕ2, · · · , ϕn)T ∈
C(T, L2(P,Rn)), when it comes to that ϕ is continu-
ous, delta derivative, delta integrable, and so forth, we
mean that each element ϕi is continuous, delta deriva-
tive, delta integrable, and so forth.

2 Preliminaries

Let T be a nonempty closed subset (time scale) of R.
The forward and backward jump operators σ, ρ : T →
T and the graininess µ : T → R+ are defined, respec-
tively, by

σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t},
µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T
and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if
t < supT and σ(t) = t, and right-scattered if σ(t) >
t. If T has a left-scattered maximum m, then Tk =
T\{m}; otherwise Tk = T. If T has a right-scattered
minimum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous
provided it is continuous at right-dense point in T and
its left-side limits exist at left-dense points in T. If f
is continuous at each right-dense point and each left-
dense point, then f is said to be a continuous function
on T. The set of continuous functions f : T → R will
be denoted by C(T) = C(T,R).

For y : T → R and t ∈ Tk, we define the delta
derivative of y(t), y∆(t), to be the number (if it exists)
with the property that for a given ε > 0, there exists a
neighborhood U of t such that∣∣[y(σ(t))− y(s)]− y∆(t)[σ(t)− s]

∣∣ < ε|σ(t)− s|

for all s ∈ U.
If y is continuous, then y is right-dense continu-

ous, and y is delta differentiable at t, then y is contin-
uous at t.

Let y be right-dense continuous, if Y ∆(t) = y(t),
then we define the delta integral by∫ t

a
y(s)∆s = Y (t)− Y (a).

The basic theories of calculus on time scales, one
can see [9].

A function p : T → R is called regressive pro-
vided 1 + µ(t)p(t) ̸= 0 for all t ∈ Tk. The set of
all regressive and rd-continuous functions p : T → R
will be denoted by R = R(T,R).

If r is a regressive function, then the generalized
exponential function er is defined by

er(t, s) = exp

{∫ t

s
ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h , if h ̸= 0,
z, if h = 0.

Let p, q : T → R be two regressive functions,
define

p⊕q = p+q+µpq, ⊖p = − p

1 + µp
, p⊖q = p⊕(⊖q).

Lemma 1. (see [9]) Assume that p, q : T → R be two
regressive functions, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) = 1

ep(s,t)
= e⊖p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) (e⊖p(t, s))∆ = (⊖p)(t)e⊖p(t, s).

Lemma 2. (see [9]) If p ∈ R be an n × n-matrix-
valued function on T and a, b, c ∈ T, then

[ep(c, ·)]∆ = −p[ep(c, ·)]σ,∫ b

a
p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

The following definitions of almost periodic func-
tion and uniformly almost periodic function on time
scales can be found in [19,20].

A time scale T is called an almost periodic time
scale if

Π := {τ ∈ R : t± τ ∈ T,∀t ∈ T} ̸= {0}.

Let T be an almost periodic time scale. A function
f ∈ C(T,Rn) is called an almost periodic function if
the ε-translation set of function f

E{ε, f} = {τ ∈ Π : |f(t+ τ)− f(t)| < ε, t ∈ T}

is a relatively dense set in T for all ε > 0; that is for
any given ε > 0, there exists a constant l(ε) > 0 such
that in any interval of length l(ε), there exists at least
a τ(ε) ∈ E{ε, f} and

|f(t+ τ)− f(t)| < ε, ∀t ∈ T.
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τ is called the ε-translation number of f .
Let T be an almost periodic time scale. A func-

tion f ∈ C(T × D,Rn) is called an almost periodic
function in T uniformly for x ∈ D if the ε-translation
set of function f

E{ε, f, S} = {τ ∈ Π : |f(t+τ)−f(t)| < ε, ∀t ∈ T}

is a relatively dense set in T for all ε > 0 and for each
compact subset S of D, where D denotes an open set
in Rn or D = Rn; that is for any given ε > 0 and
each compact subset S of D, there exists a constant
l(ε, S) > 0 such that each interval of length l(ε, S)
contains a τ(ε, S) ∈ E{ε, f, S} such that

|f(t+ τ, x)− f(t, x)| < ε,∀t ∈ T, x ∈ S.

τ is called the ε-translation number of f .

Definition 3. A stochastic process x : T → L2(P,
Rn) is said to be stochastically continuous whenever
lim
t→s

E∥x(t)− x(s)∥2 = 0.

Definition 4. A stochastic process x : T → L2(P,
Rn) is said to be stochastically bounded whenever
lim
N→∞

sup
t∈T

{P∥x(t)∥ > N} = 0.

Definition 5. A stochastically continuous process x :
T → L2(P,Rn) is called square-mean almost peri-
odic on T, if for any given ε > 0, there exists a con-
stant l(ε) > 0, such that in any interval of length l(ε),
there exists at least a τ for which sup

t∈T
E∥x(t + τ) −

x(t)∥2 < ε, where τ is called the ε-translation num-
ber of x.

Let AP (T) be the set of all Rn-valued square-
mean almost periodic stochastic processes x : T →
L2(P,Rn) on almost time scales T, then (AP (T), ∥ ·
∥) is a Banach space equipped with the norm

∥x∥∞ = sup
t∈T

∥x(t)∥2 = sup
t∈T

(E∥x(t)∥2)
1
2 .

In what follows, we need the following notation.
For every real sequence α = (αn) and a stochasti-
cally continuous process x : T → L2(P,Rn), define
Tαx = lim

n→∞
x(t+ αn) if lim

n→∞
x(t+ αn) exists.

Similar to the proof of Theorem 3.14 in [20], we
have

Lemma 6. A stochastically continuous process x :
T → Rn is square-mean almost periodic if and only if
f is continuous and for each α = (αn), there exists a
subsequence α

′
of (αn) such that Tα′f = g uniformly

on T.

Lemma 7. (see [21]) If x belongs to AP (T), then
(i) the mapping t → E∥x(t)∥2 is uniformly continu-
ous;
(ii) there exists a constantM > 0 such that E∥x(t)∥2
≤M , for all t ∈ T;
(iii) x is stochastically bounded.

Definition 8. A function f : T×L2(P,Rn) → L2(P,
Rn), which is jointly continuous, is said to be square-
mean almost periodic on T uniformly in x ∈ K, where
K ⊂ L2(P,Rn) is compact, if for any ε > 0, there
exists a constant l(ε,K) > 0, such that any inter-
val of length l(ε,K) contains at least a τ for which
sup
t∈T

E∥f(t+ τ, x)− f(t, x)∥2 < ε, for each stochas-

tic process x : T → K, where τ is called the ε-
translation number of f(t, x).

Similar to the proof of Lemma 9 in [22], we can
get

Lemma 9. Let f : T × L2(P,Rn) → L2(P,Rn) be
a square-mean almost periodic process in t ∈ T uni-
formly in x ∈ K, where K ⊂ L2(P,Rn) is compact.
Suppose that f is Lipschitz in the following sense:

E∥f(t, x)− f(t, y)∥ ≤ME∥x− y∥2,

for all x, y ∈ L2(P,Rn) and for each t ∈ T, where
M > 0. Then for any square-mean almost periodic
process ϕ : T → L2(P,Rn), the stochastic process
t→ f(t, ϕ(t)) is square-mean almost periodic.

Definition 10. Let x ∈ Rn and A(t) be an n × n
rd-continuous matrix on T, the linear system

x∆(t) = A(t)x(t) (2)

is said to admit an exponential dichotomy on T, if
there exist positive constants α > 0, k ≥ 1, projec-
tion P and the fundamental solution matrix X(t) of
(2) satisfying

∥X(t)PX−1(σ(s))∥2 ≤ ke⊖α(t, σ(s))

s, t ∈ T, t ≥ σ(s), (3)
∥X(t)(I − P )X−1(σ(s))∥2 ≤ ke⊖α(σ(s), t)

s, t ∈ T, t ≤ σ(s), (4)

where ∥ · ∥ is a matrix norm on T.

Remark 11. In the case A(t) ≡ A, a constant ma-
trix, (2) admits exponential dichotomy if and only if
the eigenvalues of A have a nonzero real part.

Lemma 12. Suppose (2) admits exponential di-
chotomy, that is there exist constants α > 0, k ≥
1, such that (3), (4) hold. If A(t + tk) con-
verges to A(t) uniformly on any compact subset
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of T, then {X(t + tk)PX
−1(σ(s) + tk)} and

{X(t + tk)(I − P )X−1(σ(s) + tk)} converges to
{X(t)P X

−1
(σ(s))} and {X(t)(I − P )X

−1
(σ(s))}

uniformly on any compact subset T× T, respectively.
Furthermore, the following inequalities hold:

∥X(t)P X
−1

(σ(s))∥2 ≤ ke⊖α(t, σ(s))

s, t ∈ T, t ≥ σ(s),

∥X(t)(I − P )X
−1

(σ(s))∥2 ≤ ke⊖α(σ(s), t)

s, t ∈ T, t ≤ σ(s),

whereX is the fundamental matrix solution of the fol-
lowing equation

x∆(t) = A(t)x. (5)

Proof. we first prove that {X(tk)PX
−1(tk)} is con-

vergent. From (3), we see that

∥X(tk)PX
−1(tk)∥2 ≤ k.

Suppose {X(tk)PX
−1(tk)} is not convergent. Then

we can find two subsequence:

{X(tkm)PX
−1(tkm)}, {X(tk′m

)PX−1(tk′m
)},

such that

lim
m→∞

X(tkm)PX
−1(tkm) = P ,

lim
m→∞

X(tk′m
)PX−1(tk′m

) = P ,

and P ̸= P .
Then from (3) we have

∥X(t+ tkm)PX
−1(σ(s) + tkm)∥2

≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s), (6)

and

∥X(t+ tk′m
)PX−1(σ(s) + tk′m

)∥2

≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s). (7)

Assume thatXkm(t), Xk′m
(t) are the fundamental ma-

trix solutions of systems

x∆(t) = A(t+ tkm)x, x
∆(t) = A(t+ tk′m

)x

respectively, then X(t + tkm) = Xkm(t)X(tkm),
X(t + tk′m

) = Xk′m
(t)X(tk′m

). Since {A(t + tk}
converges to A(t) uniformly on any compact subset
of T, then {A(t + tk)x} converges to A(t)x uni-
formly on any compact subset of T × Rn. It follows
that {A(t + tkm)x} and {A(t + tk′m

)x} converge to
A(t)x uniformly on any compact subset of T × Rn.

So Xkm(t), Xk
′
m
(t) converge to X(t) uniformly on

any compact set of T. Furthermore, it follows from
(6), (7) that

∥Xkm(t)X(tkm)PX
−1(tkm)X

−1
km

(σ(s))∥2

≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s)

and

∥Xk′m
(t)X(tk′m

)PX−1(tk′m
)X−1

k
′
m
(σ(s))∥2

≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s).

Let m→ ∞, we have

∥X(t)P X
−1

(σ(s))∥2 ≤ ke⊖α(t, σ(s))

s, t ∈ T, t ≥ σ(s) (8)

and

∥X(t)P X
−1

(σ(s))∥2 ≤ ke⊖α(t, σ(s))

s, t ∈ T, t ≥ σ(s). (9)

Similarly, we can obtain

∥X(t)(I − P )X
−1

(σ(s))∥2 ≤ ke⊖α(σ(s), t)

s, t ∈ T, t ≤ σ(s) (10)

and

∥X(t)(I − P )X
−1

(σ(s))∥2 ≤ ke⊖α(σ(s), t)

s, t ∈ T, t ≤ σ(s). (11)

From (8)-(11), we see that (5) admits exponential di-
chotomy; both P and P are its projections. So P = P
, which is a contradiction. Hence, {X(tk)PX

−1(tk)}
is convergent.

Let {X(tk)PX
−1(tk)} → P as k → ∞. Now

assume that Xk(t) is the fundamental matrix solu-
tion of the system x∆(t) = A(t + tk)x, then Xk(t)
converges to X(t) uniformly on any compact set of
T. It is easy to see that {X−1

k (σ(s))} converges to
X

−1
(σ(s)) uniformly on any compact subset of T.

So X(t+ tk)PX
−1(σ(s) + tk) and {X(t + tk)(I −

P )X−1(σ(s) + tk)} converges to X(t)P X
−1

(σ(s))

and X(t)(I − P )X
−1

(σ(s)) uniformly on any com-
pact subset T×T, respectively. Furthermore, from (6)
and (7) we have

∥X(t+ tk)PX
−1(σ(s) + tk)∥2 ≤ ke⊖α(t, σ(s))

s, t ∈ T, t ≥ σ(s)

and

∥X(t+ tk)(I − P )X−1(σ(s) + tk)∥2

≤ ke⊖α(σ(s), t) s, t ∈ T, t ≤ σ(s).
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That is

∥Xk(t)X(tk)PX
−1(tk)X

−1
k (σ(s))∥2

≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s)

and

∥Xk(t)X(tk)(I − P )X−1(tk)X
−1
k (σ(s))∥2

≤ ke⊖α(σ(s), t) s, t ∈ T, t ≤ σ(s).

Let k → ∞, we obtain

∥X(t)P X
−1

(σ(s))∥2 ≤ ke⊖α(t, σ(s))

s, t ∈ T, t ≥ σ(s)

and

∥X(t)(I − P )X
−1

(σ(s))∥2 ≤ ke⊖α(σ(s), t)

s, t ∈ T, t ≤ σ(s).

The proof is completed.

Lemma 13. (see [23]) Let M be a closed convex
nonempty subset of a Banach space (B, ∥ · ∥). Sup-
pose that B and C map M into B, such that
(1) x, y ∈M , implies Bx+ Cy ∈M ,
(2) C is continuous and C(M) is contained in a com-
pact set,
(3) B is a contraction mapping.
Then there exists z ∈M with z = Bz + Cz.

3 Main results

In this section, we require the following assumptions:

(H1) A(t) is a square-mean almost periodic func-
tion, Q(t, u) and G(t, u) be two square-mean al-
most periodic functions in t uniformly for u ∈
AP (T), respectively.

(H2) The functionsQ andG are Lipschitz, that is there
exist two positive numbers LQ and LG such that

E∥Q(t, u)−Q(t, v)∥2 ≤ LQE∥u− v∥2, (12)
E∥G(t, u)−G(t, v)∥2 ≤ LGE∥u− v∥2,(13)

for all t ∈ T, u, v ∈ AP (T).

(H3) System (2) admits exponential dichotomy, that is
there exist constants α > 0, k ≥ 1, such that (3)
and (4) hold.

Define a mapping Φ by

(Φu)(t) = Q(t, u(t))

+

∫ t

−∞
X(t)PX−1(σ(s))G(s, u(s))∆W (s)

−
∫ +∞

t
X(t)(I − P )X−1(σ(s))G(s, u(s))

×∆W (s). (14)

Lemma 14. If u is a square-mean almost periodic
function, then Φu is a square-mean almost periodic
function.

Proof. For u(t) is an almost periodic function,
from (H1) and Lemma 7 to Lemma 9, then
Q(t, u(t)), G(t, u(t)) are square-mean almost peri-
odic functions, so they are uniformly bounded on T.

Now, we prove that (Φu)(t) is a square-mean al-
most periodic function. First, it is clear that (Φu)(t) is
continuous on T. For any sequence α = (αn), since
Q(t, u(t)), G(t, u(t)) are square-mean almost peri-
odic functions, combining with Lemma 6 and Lemma
12, we can find a common subsequence of (αn), we
still denote it as (αn), such that

TαQ(t, u(t)) = Q1(t), TαG(t, u(t)) = G1(t) (15)

uniformly for t ∈ T and

lim
k→∞

X(t+ αk)PX
−1(σ(s) + αk)

= X(t)P X
−1

(σ(s)), t ≥ σ(s) (16)
lim
k→∞

X(t+ αk)(I − P )X−1(σ(s) + αk)

= X(t)(I − P )X
−1

(σ(s)), t ≤ σ(s). (17)

Let W̃ (s) :=W (s+αk)−W (αk) for each s ∈ T.
Note that W̃ is also a Brown motion and has the same
distribution as W .

From the above and (14), then

(Φu)(t+ αk)

= Q(t+ αk, u(t+ αk))

+

∫ t+αk

−∞
X(t+ αk)PX

−1(σ(s))G(s, u(s))

×∆W (s)

−
∫ +∞

t+αk

X(t+ αk)(I − P )X−1(σ(s))

×G(s, u(s))∆W (s)

= Q(t+ αk, u(t+ αk))

+

∫ t

−∞
X(t+ αk)PX

−1(σ(s) + αk)

×G(s+ αk, u(s+ αk))∆W̃ (s)

−
∫ +∞

t
X(t+ αk)(I − P )X−1(σ(s) + αk)

×G(s+ αk, u(s+ αk))∆W̃ (s).
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From (15)-(17) and Lebesgue’s control convergence
theorem, we see that (Φu)(t+ αk) converges to

Ψ(t)

= Q1(t) +

∫ t

−∞
X(t)P X

−1
(σ(s))G1(s)∆W̃ (s)

−
∫ +∞

t
X(t)(I − P )X

−1
(σ(s))G1(s)∆W̃ (s)

uniformly for t ∈ T.
By the continuous dependence of the integrands

of the deterministic and stochastic integrals [24], then

lim
k→∞

E∥(Φu)(t+ αk)−Ψ(t)∥2 = 0, ∀t ∈ T.

It follows from Lemma 6 that (Φu)(t) is a square-
mean almost periodic function. The proof is com-
pleted.

In order to apply Krasnoselskii’s theorem, we
need to construct two mappings, one is a contraction
and the other is compact. Let

(Φu)(t) = (Bu)(t) + (Cu)(t),

where B,C : AP (T) → AP (T) are given by

(Bu)(t) = Q(t, u(t)), (18)
(Cu)(t)

=

∫ t

−∞
X(t)PX−1(σ(s))G(s, u(s))∆W (s)

−
∫ +∞

t
X(t)(I − P )X−1(σ(s))

×G(s, u(s))∆W (s). (19)

Lemma 15. (see [25]) The operator B is a contrac-
tion provided LQ < 1.

Lemma 16. The operator C is continuous and the
image C(M) is contained in a compact set, where
M = {u ∈ AP (T) : E∥u∥2 ≤ R}, R is a fixed
constant.

Proof. First, by (19), we have

E∥(Cu)(t)∥2

= E∥
∫ t

−∞
X(t)PX−1(σ(s))G(s, u(s))∆W (s)

−
∫ +∞

t
X(t)(I − P )X−1(σ(s))G(s, u(s))

×∆W (s)∥2

≤ 2E∥
∫ t

−∞
X(t)PX−1(σ(s))G(s, u(s))

×∆W (s)∥2

+2E∥
∫ +∞

t
X(t)(I − P )X−1(σ(s))

×G(s, u(s))∆W (s)∥2

≤ 2

∫ t

−∞
∥X(t)PX−1(σ(s))∥2E∥G(s, u(s)∥2∆s

+2

∫ +∞

t
∥X(t)(I − P )X−1(σ(s))∥2

×E∥G(s, u(s))∥2∆s

≤ 2 sup
t∈T

E∥G(t, u(t))∥2
(∫ t

−∞
ke⊖α(t, σ(s))∆s

+

∫ +∞

t
ke⊖α(σ(s), t)∆s

)
.

By Lemma 2, we can get

∫ t

−∞
ke⊖α(t, σ(s))∆s+

∫ +∞

t
ke⊖α(σ(s), t)∆s

≤ k(
1

α
− 1

⊖α
).

Therefore,

E∥(Cu)(t)∥2 ≤ k(
1

α
− 1

⊖α
) sup
t∈T

E∥G(t, u(t))∥2. (20)

Now, we show that C is continuous. In fact,
let u, v ∈ AP (T), for any ε > 0, take δ =

ε
2kLG( 1

α
− 1

⊖α
)+1

, whenever E∥u− v∥2 < δ, we have

E∥(Cu)(t)− (Cv)(t)∥2

≤ 2E∥
∫ t

−∞
X(t)PX−1(σ(s))[G(s, u(s))

−G(s, v(s))]∆W (s)∥2

+2E∥
∫ +∞

t
X(t)(I − P )X−1(σ(s))

×[G(s, u(s))−G(s, v(s))]∆W (s)∥2

≤ 2

∫ t

−∞
∥X(t)PX−1(σ(s))∥2

×E∥G(s, u(s))−G(s, v(s))∥2∆s

+2

∫ +∞

t
∥X(t)(I − P )X−1(σ(s))∥2

×E∥G(s, u(s))−G(s, v(s))∥2∆s
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≤ 2LG sup
s∈T

E∥u(s)− v(s)∥2

×
(∫ t

−∞
ke⊖α(t, σ(s))∆s

+

∫ +∞

t
ke⊖α(σ(s), t)∆s

)
≤ 2kLG(

1

α
− 1

⊖α
) sup
s∈T

E∥u(s)− v(s)∥2

< ε.

This proves that C is continuous.
Let M = {u ∈ AP (T) : E∥u∥2 ≤ R}. Now,

we show that the image of C(M) is contained in a
compact set. In fact, let un be a sequence in M. In
view of (13), we have

E∥G(t, u(t))∥2

≤ 2E∥G(t, u(t))−G(t, 0)∥2 + 2E∥G(t, 0)∥2

≤ 2LGE∥u(t)∥2 + 2a

≤ 2LGR+ 2a, (21)

where a = sup
t∈T

E∥G(t, 0)∥2. From (20) and (21), we

have

E∥(Cun)(t)∥2

≤ k(
1

α
− 1

⊖α
)(2LGR+ 2a) := L. (22)

Next, we calculate (Cun)
∆(t) and show that it is

uniformly bounded. By a direct calculate, we have

(Cun)
∆(t)

= A(t)(Cun)(t) +X(t)PX−1(σ(s))G(t, un(t))

−X(t)(I − P )X−1(σ(s))G(t, un(t)). (23)

SinceA(t) is a square-mean almost periodic func-
tion, then A(t) is bounded. So, there exists a positive
constant A0, such that E∥A(t)∥2 ≤ A0.

Together with (21), (22) and (23), then

E∥(Cun)∆(t)∥2

≤ 3[A0L+ (ke⊖α(t, σ(s)) + ke⊖α(σ(s), t))

×E∥G(t, un(t))∥2]
≤ 3[A0L+ (k + k)(2RLG + 2a)]

≤ 3[A0L+ 2k(2RLG + 2a)].

Thus the sequence (Cun) is uniformly bounded and
equi-continuous. Hence, by the Arzela-Ascoli theo-
rem, C(M) is compact. The proof is completed.

Theorem 17. Assume that (H1) − (H3) hold. Let
a = sup

t∈T
E∥G(t, 0)∥2, b = sup

t∈T
E∥Q(t, 0)∥2. Let R0

be a positive constant satisfies

4[LQR0 + b+ k(
1

α
− 1

⊖α
)(2LGR0 + 2a)]

≤ R0. (24)

Then (1) has an almost periodic solution in M = {u ∈
AP (T) : E∥u∥2 ≤ R0}.

Proof. Define M = {u ∈ AP (T) : E∥u∥2 ≤ R0}.
By Lemma 16, the mapping C defined by (19) is con-
tinuous and C(M) is contained in a compact set. By
Lemma 15, the mapping B defined by (18) is a con-
traction and it is clear that B : AP (T) → AP (T).

Next, we show that if u, v ∈ M, we have
E∥Bu + Cv∥2 ≤ R0. In fact, let u, v ∈ M with
E∥u∥2,E∥v∥2 ≤ R0. Then

E∥Bu+ Cv∥2

≤ 4E∥Q(t, u(t))−Q(t, 0)∥2 + 4E∥Q(t, 0)∥2

+4

∫ t

−∞
∥X(t)PX−1(σ(s))∥

×E∥G(s, v(s))∥2∆s

+4

∫ +∞

t
∥X(t)(I − P )X−1(σ(s))∥

×E∥G(s, v(s))∥2∆s
≤ 4LQE∥u(t)∥2 + 4b

+4k(
1

α
− 1

⊖α
)(2LGR+ 2a)

≤ 4[LQR0 + b+ k(
1

α
− 1

⊖α
)(2LGR0 + 2a)]

≤ R0.

ThusBu+Cv ∈ M. Hence all the conditions of Kras-
noselskii’s theorem are satisfied. Hence there exists a
fixed point z ∈ M, such that z=Bz+Cz. By Lemma
13, (1) has an almost periodic solution. The proof is
completed.

Theorem 18. Assume that (H1)− (H3) hold. If

[3(LQ + kLG(
1

α
− 1

⊖α
))]

1
2 < 1, (25)

then (1) has a unique almost periodic solution.

Proof. Let the mapping Φ be given by (14). For
u, v ∈ AP (T), in view of (14), we have

E∥(Φu)(t)− (Φv)(t)∥2

≤ 3E∥Q(t, u(t))−Q(t, v(t))∥2

+3

∫ t

−∞
∥X(t)PX−1(σ(s))∥2

×E∥G(s, u(s))−G(s, v(s))∥2∆s
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+3

∫ −∞

t
∥X(t)(I − P )X−1(σ(s))∥2

×E∥G(s, u(s))−G(s, v(s))∥2∆s
≤ 3LQE∥u(t)− v(t)∥2

+3LG sup
t∈T

E∥u(t)− v(t)∥2

×
(∫ t

−∞
ke⊖α(t, σ(s))∆s

+

∫ +∞

t
ke⊖α(σ(s), t)∆s

)
≤ 3(LQ + kLG(

1

α
− 1

⊖α
)) sup

t∈T
E∥u(t)− v(t)∥2,

that is

∥(Φu)(t)− (Φv)(t)∥22
≤ 3(LQ + kLG(

1

α
− 1

⊖α
)) sup

t∈T
∥u(t)− v(t)∥22.

Note that

sup
t∈T

∥u(t)− v(t)∥22 ≤ (sup
t∈T

∥u(t)− v(t)∥2)2.

Then

∥(Φu)(t)− (Φv)(t)∥2

≤ [3(LQ + kLG(
1

α
− 1

⊖α
))]

1
2 sup
t∈T

∥u(t)− v(t)∥2

= [3(LQ + kLG(
1

α
− 1

⊖α
))]

1
2 ∥u− v∥∞.

Therefore

∥Φu− Φv∥∞

≤ [3(LQ + kLG(
1

α
− 1

⊖α
))]

1
2 ∥u− v∥∞.

This completes the proof by invoking the contraction
mapping principle.

4 Examples

Example 1. For small positive ε1 and ε2, we consider
the stochastic Van Der Pol equation

x∆∆ + (ε2x
2 − 1)x∆ + x− ε1(x

2 sin t)∆

−ε2 cos tW∆(t) = 0, t ∈ T. (26)

Using the transformation x∆1 = x2, we can transform
the equation (26) to(
x1
x2

)∆

=

(
0 1
−1 1

)(
x1
x2

)
+

(
0

ε1x
2
1 sin t

)∆

+

(
0

ε2 cos t− ε2x2x
2
1

)
W∆(t),

that is A =

(
0 1
−1 1

)
, Q(t, x(t)) =

(
0

ε1x
2
1 sin t

)
,

G(t, x(t)) =

(
0

ε2 cos t− ε2x2x
2
1

)
.

Since the real part of the eigenvalues of A is
nonzero, by Remark 11, we see that x∆(t) =
A(t)x(t) admits exponential dichotomy. Let ϕ(t) =
(ϕ1(t), ϕ2(t)), φ(t) = (φ1(t), φ2(t)). Define M =
{u ∈ AP (T) : E∥u∥2 ≤ R0}, where R0 is a positive
constant.

Then for ϕ, φ ∈ M, we have

E∥Q(t, ϕ(t))−Q(t, φ(t))∥2 ≤ 2ε1R0E∥ϕ(t)−φ(t)∥2,

and

E∥G(t, ϕ(t))−G(t, φ(t))∥2

= ε2E

∥∥∥∥(ϕ2(t)(ϕ1(t) + φ1(t)), φ
2
1(t))

×
(
ϕ1(t)− φ1(t)
ϕ2(t)− φ2(t)

)∥∥∥∥2
≤ 2ε2R

2
0E∥ϕ(t)− φ(t)∥2.

Let

LQ = 2ε1R0, LG = 2ε2R
2
0,

a = sup
t∈T

E∥G(t, 0)∥2 = ε2,

b = sup
t∈T

E∥Q(t, 0)∥2 = 0,

then, inequality (24) becomes

4[2ε1R
2
0 + k(

1

α
− 1

⊖α
)(4R3

0 + 2)ε2] ≤ R0,

which is satisfied for small ε1 and ε2. By Theorem 17,
(26) has an almost periodic solution.

Moreover,

[3(2ε1R0 + 2kε2R
2
0(

1

α
− 1

⊖α
))]

1
2 < 1

is also satisfied for small ε1 and ε2. By Theorem 18,
(26) has a unique almost periodic solution.

Example 2. For small positive ε1 and ε2, we consider
the stochastic integro equation

x∆ = x−
∫ t

−∞
e−0.5(t, σ(s))x(s)∆s

+ε1[(

∫ t

−∞
e−0.5(t, σ(s))x(s)∆s)

2 sin t]∆

+ε2[cos t− x(

∫ t

−∞
e−0.5(t, σ(s))x(s)∆s)

2]

×W∆(t), t ∈ T. (27)

WSEAS TRANSACTIONS on MATHEMATICS Meng Hu, Lili Wang

E-ISSN: 2224-2880 360 Volume 13, 2014



Now, we define a new variable

x1(t) =

∫ t

−∞
e−0.5(t, σ(s))x2(s)∆s, t ∈ T, (28)

then by Lemma 1, system (27) can be transformed into
the following system(
x1
x2

)∆

=

(
−0.5 1
−1 1

)(
x1
x2

)
+

(
0

ε1x
2
1 sin t

)∆

+

(
0

ε2 cos t− ε2x2x
2
1

)
W∆(t),

that is A =

(
−0.5 1
−1 1

)
, Q(t, x(t)) =

(
0

ε1x
2
1 sin t

)
,

G(t, x(t)) =

(
0

ε2 cos t− ε2x2x
2
1

)
.

Since the real part of the eigenvalues of A is
nonzero, by Remark 11, we see that x∆(t) =
A(t)x(t) admits exponential dichotomy. Let ϕ(t) =
(ϕ1(t), ϕ2(t)), φ(t) = (φ1(t), φ2(t)). Define M =
{u ∈ AP (T) : E∥u∥2 ≤ R0}, where R0 is a positive
constant.

Then for ϕ, φ ∈ M, we have

E∥Q(t, ϕ(t))−Q(t, φ(t))∥2 ≤ 2ε1R0E∥ϕ(t)−φ(t)∥2,

and

E∥G(t, ϕ(t))−G(t, φ(t))∥2

= ε2E

∥∥∥∥(ϕ2(t)(ϕ1(t) + φ1(t)), φ
2
1(t))

×
(
ϕ1(t)− φ1(t)
ϕ2(t)− φ2(t)

)∥∥∥∥2
≤ 2ε2R

2
0E∥ϕ(t)− φ(t)∥2.

Let

LQ = 2ε1R0, LG = 2ε2R
2
0,

a = sup
t∈T

E∥G(t, 0)∥2 = ε2,

b = sup
t∈T

E∥Q(t, 0)∥2 = 0,

then, inequality (24) becomes

4[2ε1R
2
0 + k(

1

α
− 1

⊖α
)(4R3

0 + 2)ε2] ≤ R0,

which is satisfied for small ε1 and ε2. By Theorem 17,
(27) has an almost periodic solution.

Moreover,

[3(2ε1R0 + 2kε2R
2
0(

1

α
− 1

⊖α
))]

1
2 < 1

is also satisfied for small ε1 and ε2. By Theorem 18,
(27) has a unique almost periodic solution.

5 Conclusion

This paper is focused on the existence of square-mean
almost periodic solutions of neutral stochastic func-
tional differential equations on time scales. Based on
the properties of almost periodic function and expo-
nential dichotomy of linear system on time scales as
well as Krasnoselskii’s fixed point theorem, some suf-
ficient conditions are obtained.

The results obtained in this paper can be applied
to the analysis of many other periodic and almost pe-
riodic dynamical systems, one may consider the sys-
tems which have been studied in [26-28].

Acknowledgements: This work is supported by the
Basic and Frontier Technology Research Project of
Henan Province (Grant No. 142300410113).

References:

[1] J. Ren, Z. Cheng, S. Siegmund, Neutral opera-
tor and neutral differential equation, Abstr. Appl.
Anal., Vol. 2011, Article ID 969276.

[2] Y. Raffoul, E. Yankson, Positive periodic solu-
tions in neutral delay difference equations, Adv.
Dyn. Sys. Appl., 5(1), 2010, pp.123-130.

[3] W. Cheung, J. Ren, W. Han, Positive periodic so-
lution of second-order neutral functional differ-
ential equations, Nonlinear Anal. TMA., 71(9),
2009, pp.3948-3955.

[4] Q. Wang, B. Dai, Three periodic solutions of
nonlinear neutral functional differential equa-
tions, Nonlinear Anal. RWA., 9(3), 2008,
pp.977-984.

[5] M. Islam, Y. Raffoul, Periodic solutions of neu-
tral nonlinear system of differential equations
with functional delay, J. Math. Anal. Appl., 331,
2007, pp.1175-1186.

[6] J. Wu, Y. Liu, Two periodic solutions of neu-
tral difference systems depending on two pa-
rameters, J. Comput. Appl. Math., 206(2), 2007,
pp.713-725.

[7] P. Bezandry, T. Diagana, Square-mean almost
periodic solutions to some stochastic hyperbolic
differential equations with infinite delay, Com-
mun. Math. Anal., 8(2), 2010, pp.1-22.

[8] R. Zhang, N. Ding, L. Wang, Mean square al-
most periodic solutions for impulsive stochas-
tic differential equations with delays, J. Appl.
Math., Vol. 2012, Article ID 414320.

[9] X. Mao, Exponential Stability of Stochastic Dif-
ferential Equations, Vol. 182, Marcel Dekker,
New York, NY, USA, 1994.

WSEAS TRANSACTIONS on MATHEMATICS Meng Hu, Lili Wang

E-ISSN: 2224-2880 361 Volume 13, 2014



[10] A. Friedman, Stochastic Differential Equations
and Applications, Academic Press, New York,
NY, USA, 1976.

[11] M. Bohner, A. Peterson, Dynamic equations on
time scales, An Introduction with Applications,
Boston: Birkhauser, 2001.

[12] S. Hilger, Analysis on measure chains-a unified
approach to continuous and discrete calculus,
Result. Math., 18, 1990, pp.18-56.

[13] M. Hu, L. Wang, Dynamic inequalities on
time scales with applications in permanence of
predator-prey system, Discrete Dyn. Nat. Soc.,
Vol. 2012, Article ID 281052.

[14] M. Hu, L. Wang, Unique existence theorem of
solution of almost periodic diffrential equations
on time scales, Discrete Dyn. Nat. Soc., Vol.
2012, Article ID 240735.

[15] M. Hu, L. Wang, Positive periodic solutions
for an impulsive neutral delay model of sin-
gle species population growth on time scales,
WSEAS Trans. Math., 11(8), 2012, pp.705-715.

[16] Y. Li, M. Hu, Three positive periodic solutions
for a class of higher-dimensional functional dif-
ferential equations with impulses on time scales,
Adv. Diff. Equ., Vol. 2009, Article ID 698463.

[17] M. Hu, L. Wang, Triple positive solutions for
an impulsive dynamic equation with integral
boundary condition on time scales, Int. J. Appl.
Math. Stat., 31(1), 2013, pp.67-78.

[18] M. Hu, L. Wang, Exponential synchronization of
chaotic delayed neural networks on time scales,
Int. J. Appl. Math. Stat., 34(4), 2013, pp.96-103.

[19] Y. Li, C. Wang, Almost periodic functions on
time scales and applications, Discrete Dyn. Nat.
Soc., Vol. 2011, Article ID 727068.

[20] Y. Li, C. Wang, Uniformly almost periodic func-
tions and almost periodic solutions to dynamic
equations on time scales, Abstr. Appl. Anal., Vol.
2011, Article ID 341520.

[21] P. Bezandry, T. Diagana, Existence of almost pe-
riodic solutions to some stochastic differential
equations, Appl. Anal., 86(7), 2007, pp.819-827.

[22] J. Cao, Q. Yang, Z. Huang, Q. Liu, Asymp-
totically almost periodic solutions of stochas-
tic functional differential equations, Appl. Math.
Comput., 218(5), 2011, pp.1499-1511.

[23] D. Smart, Fixed points Theorem, Cambridge
Univ. Press, Cambridge, UK, 1980.

[24] L. Arnold, Stochastic differential equations:
Theory and Applications, John Wiley, New
York-London-Sydney, 1974.

[25] S. Abbas, D. Bahuguna, Almost periodic solu-
tions of neutral functional differential equations,
Comput. Math. Appl., 55(11), 2008, pp.2593-
2601.

[26] L. Pekar, F. Neri, An introduction to the spe-
cial issue on time delay systems: Modelling,
identification, stability, control and applications,
WSEAS Trans. Syst., 11(10), 2012, pp.539-540.

[27] C. Miao, Y. Ke, Mean square stability of pe-
riodic solution for stochastic Cohen-Grossberg-
type BAM neural networks with delays, WSEAS
Trans. Math., 11(9), 2012, pp.731-741.

[28] G. He, L. Wen, Dissipativity of θ-methods
and one-leg methods for nonlinear neutral de-
lay integro-differential equations, WSEAS Trans.
Math., 12(4), 2013, pp.405-415.

WSEAS TRANSACTIONS on MATHEMATICS Meng Hu, Lili Wang

E-ISSN: 2224-2880 362 Volume 13, 2014




