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Abstract: - In the paper existing approaches are practice of quarry design and long-term planning are analyzed. 
Mathematical model of a quarry contour represented with a set of curves, namely bench edges (a SC model) is 
formulated for a quarry on a flat territory and an on-slope quarry; its likelihood to dynamic systems is shown. 
Most attention is given to optimization problems setup and solution on the basis of continuous-valued models 
resulting from piecewise-linear approximation of SC models. Sectoral and contour models aimed at solution of 
problems in question are presented; they are compared from viewpoints of adequacy and accuracy. 
Characteristic features of optimization problems based on presented models are shown resulting in specific 
features of direct methods application. Practical significance of multiobjective optimization for problems in 
question is substantiated. The solution of that type of problems is exemplified by multiobjective optimization of 
mining works for “Neriungrinskii” coal quarry as well as by a design stage contour optimization for Ekibastuz 
coal quarry. Main features of intelligent optimization software developed by the author and used in these 
computations are presented as well. 
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1 Introduction 
Optimization methods are undoubtedly a powerful 
tool for engineering systems design and business 
processes improvement [1–3]. It is taken for granted 
that mineral industry is a very important part of 
world economy. New achievements of IT 
applications to coal mining take place in many 
areas, i.e. in excavation and transportation processes 
control [4] with the use of GPS technologies as well 
as production processes simulation [5]. But as to 
development of optimization methods for opencast 
mining, their development stagnates for decades. 
This situation would be easily explained if general 
methods of nonlinear programming or optimum 
control were easily applicable to quarry design and 
planning problems. If fact, we have just opposite 
case. Specific features in mathematical description 
of production processes of opencast mining and 
therefore in optimization problems for them are 
numerous, moreover, all of them are unfavourable 
for application of most reliable methods. 

As we see below, optimization problems of 
open-pit design may be formulated either in 
functional space of curves or in a finite space. But 

newest achievements in numerical solution of 
optimization problems in abstract functional spaces 
[6], optimum control [7] or even mathematical 
programming [8–10] are related mostly to convex 
optimization or some other narrow classes of 
problems to which problems of question do not 
belong. It is very important, however, that 
contemporary mathematicians learned to cope with 
non-smooth problems, since non-smooth 
dependencies emerge frequently in the area of 
mining processes. 

The most widely known and practically used 
method, namely the method of optimal ultimate pit 
limits establishment by Lerchs and Grossman [11, 
12] was proposed almost fifty years ago. It 
represents both mined-out space of a quarry and a 
deposit as sets of blocks of regular shape. Based on 
correct use of dynamic programming, the method 
belongs to a very scarce set of optimization methods 
for mining industry problems that have strict 
mathematical substantiation. Since that time there 
were many perfections and similar methods [13–
15], but all of them do not change the original setup 
of the problem. However, it is known for many 
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years that this problem setup reflects the property of 
a real quarry in a very limited way, so the solution 
may give only preliminary recommendation as to 
quarry final contour and depth. It is practically 
useless for determination of stage quarry contours 
and mining work regime [16, pp. 412–437], what 
are the main problems of feasibility study of 
opencast mining design.  

On the contrary, there are many methods of 
industrial mathematics with much more narrow field 
of application of each. They are not more than 
heuristics. Worst of all, usually we have not only the 
absence of any proof of their convergence, but even 
the exact formulation of the problem being solved is 
absent. It is sometimes stated that practical results of 
their application turned to be satisfactory but no 
analysis confirming such assertions can be found. 

So we have a strange situation. There are a lot of 
strict methods for a problem with a clear 
formulation that, however, cannot give more than a 
crude assessment of a quarry design as a whole and 
hardly can be spread to assessment of stages of 
mining works. On the other hand, here are a lot of 
methods without any substantiation for various 
design and planning problems. And, after all, 
several widely used software packages aimed at 
design and planning problems solution with very 
little (if any) application of optimization methods, 
with which most decisions are made by users-
engineers with a trial-and-error method in a tedious 
low-level man-machine dialogue. Another question 
is whether general methods of linear, nonlinear or 
integer programming may be applied to problems in 
question without any adaptation to its specific 
features. My experience convinces me that more 
usual applications of linear programming require 
oversimplified models. On the contrary, more 
adequate models of nonlinear and mixed integer 
programming belong to the area where methods are 
less universal and the success of their application 
depends usually on taking into account specific 
features of a problem. In the regarded domain it is 
not likely to encounter problems with favourable 
features, e.g., smooth convex programming 
problems. 

For this reason, choices of more adequate model 
and more efficient method in the regarded area are 
interrelated and often must be performed 
simultaneously. My observations for the period of 
more than 20 years, discussion on several most 
important international scientific conferences — 
3rd, 5th and 20th International Symposium on Mine 
Planning and Equipment Selection (1994, 1996, 
2011}, 1st and 2nd regional APCOM Symposium 
on Application of Computers and Operations 

Research in the Mineral Industries (1994, 1997) — 
show that there are more difficulties than successes 
on this way [17]. 

After all, necessity to choose design solutions on 
the basis of several criteria makes the problem of 
optimization method application to these choices 
much more complicated. In Russia, the principal 
problem exist in balancing interests of the state — 
the owner of mineral resources — and 
manufacturers that running their business of mining 
them [18]. Interests of both cannot be reduced to the 
sole criterion as well.  

The paper presents author’s approach to setup 
and solution of the quarry stage contour and some 
examples of its practical application as well as 
author’s understanding of ways of its further 
development. 
 
 
2 Surface Mining Modelling 
During the process of surface mining the rock 
massif is permanently excavated and pit mined-out 
space grows, part of which can be used as 
overburden dumps. If a quarry is represented in 
more detail, we must distinguish collapses of a 
blasted rock that quickly change their shapes and 
sizes during excavation and slopes of rock massif 
sufficiently changing almost instantaneously by 
blasts separated in time with periods of several days 
or even weeks. In design and long-time planning 
problems it is sufficient to reduce consideration to 
shapes of these slopes as well as horizontal grounds 
(berms) used to allocate extraction machines and 
provide freight traffic by trucks or trains. The whole 
surface of mined-out space is named quarry contour. 
Its stepwise shape reflects separation of mining 
work places into a set of benches, each 
corresponding to a certain layer.  

Supposing that slope inclination does not change 
from the bottom to the top of one bench we fully 
represent an open pit contour with lower and higher 
edges of bench slopes. Moreover, for known slope 
angles depending on local rock properties it is 
sufficient to establish only the lower edge of each 
bench, the higher edge being wholly determined 
with the lower one. To guarantee the possibility of 
road allocation on grounds we assume that these 
edges are smooth lines on planes which curvature 
does not exceeds where minR  is the minimum radius 
of road turns. This representation of a quarry 
contour in plan with bench edges is shown on Fig.1.  

So the mined-out space bounded with a certain 
pit contour may be approximately treated as an 
irregular step pyramid. Its representation as a 
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combination of the same rectangular blocks or 
hexagonal prisms is universal but crude. Horizontal 
grounds used for excavators and dumpers allocation 
and horizontal segments of truck or train roads must 
be composed of block upper bases. So to obtain high 
accuracy very small blocks must be used. There is 
no need for high accuracy in the design of ultimate 
pit contour. Moreover, broad bases of large blocks 
constitute grounds enabling to locate roads with 
relatively small curvature that may be practically 
used. However, in design of stage pit contours so 
low accuracy is unsatisfactory... 
 

 
Fig. 1. The general view of a quarry in horizontal 

projection (as in design drawings) 
 
However, it was understood many years ago that 

the model in use expresses the only principal 
property of a quarry shape: it becomes wider from 
its bottom to top and inclination of its slopes 
corresponds to rock properties. Blocks models do 
not include any conditions for transport access that 
is the next practical requirement for quarry design 
and its implementation. So these methods may give 
satisfactory shape for upper benches, but for lower 
ones often quite non-implementable edges are 
obtained (see Fig. 2). 

 

 
Fig.2. An example of ultimate pit contour generated 
by Korobov’s method with MINEFRAME software 

package [19] 
 

In turn, we must emphasize, after all, that 
methods of this type admit the only criterion, 

namely the total profit of mining the deposit. 
Moreover, this profit is calculated in a conditional 
way, without possibility of taking into account 
discounting of the income and expenses. 

Bench edges must have no self-intersections and 
narrow loops (the minimum loop width is 

min2Rg ≥ ). We consider edges in their projection 
on the same horizontal plane. Then between the lth 
and (l+1)th edge must be a ground with  minimum 
width (where b is the minimum width of each bench 
ground, lH  is the absolute height of the lth bench 
bottom and 11 tan/)( ++−+= llll HHbd α  is the 
inclination angle for the lth bench slope). Here we 
consider a simplified model with uniform rock on 
the entire stretch of each bench. Using 
representation of each curve with dependencies of 
its points coordinates from natural parameter s (the 
length of the curve between point and conditional 
initial point) we formulate the model of a quarry 
shape in such a way 
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Relationships (1)–(5) describe a typical quarry 
having the only bottom and located on the territory 
with horizontal surface and may be modified in a 
natural way for other cases: for quarry on a 
mountain slope or between hills, for a quarry which 
lower area consists of several separate pits etc. For a 
simple case of an on-slope quarry we must 
determine its surface with equation 0),,( =zyxF  
meaning that points of the rock massif satisfy 

0),,( ≤zyxF  
Then we have, for initial and terminal points of open 
edge curves and intermediate points of these curves, 
resp. 

,0)),0(),0(( =lll HyxF  ,0)),(),(( =lllll HSySxF  
].,0[,0)),(),(( llll SsHsysxF ∈≤   (6) 

In more complicated cases extra lines 
representing contours of separate pits must be 
introduced. We name a model of this type 
represented with a set of curves a SC model.  

One can see that the model (1)–(5) and more 
general SC model containing restriction (6) etc 
resembles a dynamic system described with ODE. 
So optimization problems for SC models must be a 
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kind of optimum control problems. For example, a 
problem of optimization the entire value of minerals 
within the quarry bound corresponds to the criterion 
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where ),( yxCl  characterizes value of minerals in an 
elementary column of the l-th layer with base 
coordinates yx,  (including cost of extraction, 
transportation and overburden dumping) and 

∫=
y

dYYxCyxE
0

.),(),(  

However, restrictions (4)–(5) are very untypical 
and look like restrictions in semi-infinite 
programming problems but are imposed on 
continuum sets of curves points. There is no hope to 
solve the problem of this type analytically. Recent 
work [7] in the area of numerical solution of 
optimum control problem show that reliable strictly 
substantiated methods enable to solve more simple 
problems only. On the contrary, methods of 
optimum control problems reduction to 
mathematical programming show their efficiency 
three decades ago still [20, pp. 284–371]. A similar 
approach by author based on discrete-time 
approximation of optimum control problems with 
constraints on state coordinates showed its 
efficiency too [21]. 

So it was proposed to approximate a quasi-
dynamic SC model with a finite-dimensional SPL 
model in which curves are approximated with 
polylines (i.e., broken lines). Variables in a SPL 
model are coordinates of points — straight segments 
of polylines. They are denoted as xil, yil, and 
segment lengths as 

sil=ρ(xil, yil , xi+1l, yi+1l). 

To guarantee that the maximum approximation 
error has the order ε2Rmin for a given value ε  a 
condition is introduced  

si+1l≤εRmin        (8) 

Then (3) is approximated with 

2tg(ψl/2)/sil≤(Rmin)-1,    2tg(ψl/2)/si+1l≤(Rmin)-1,  (9) 

(4) and (5) — respectively with 

ρ1(xil, yil, xjl, yj, xj+1l, yj+1l)≥g,    (10) 

ρ1(xi+1l, yi+1l, xj, yj+1l, xj+1l, yj+1l)≥g,    (11) 

ρ1(xjl, yjl, xil, yil, xi+1l, yi+1l)≥g,    (12) 

ρ1(xj+1l, yj+1l, xil, yil, xi+1l, yi+1l)≥g    (13) 

for 
i<j,  si+1l+…+ sj-1l≤πRmin,   sj+1l+…+ snll+ s1l+…  

+ si-1l≤πRmin.       (14) 

and 

ρ1(xil, yil, xjl+1, yjl+1, xj+1l+1, yj+1l+1)≥dminl,   (15) 

ρ1(xi+1l, yi+1l, xjl+1, yj+1l, xj+1l+1, yj+1l+1)≥dminl,  (16) 

ρ1(xjl+1, yjl+1, xil, yil, xi+1l, yi+1l)≥dminl,   (17) 

ρ1(xj+1l+1, yj+1l+1, xil, yil, xi+1l, yi+1l)≥dminl,   (18) 

The listed restrictions are posed: (8), (9) —on all 
vertices of all polylines; (10)–(13) on all pairs (a 
vertex, a segment) of each polyline satisfying (14), 
(15)–(18) — on all pairs (a vertex, a segment of 
polyline of an adjacent level). 

Here ρ1(x0, y0, x1, y1, x2, y2) denotes the distance 
between a point with coordinates x0, y0 and a 
straight segment which ends have coordinates x1, y1 
and  x2, y2. Thus relationships (8)–(18) constitute a 
SPL model, i.e., a finite-dimensional contour model 
of a quarry. We shall the following notation: uil for a 
pair (xil, yil), ul for a vector comprising uil for all 
vertices of the l-th polyline; u for an N-dimensional 
vector comprising components of all ul.  
 
 
3 Optimization Problems of Quarry 
Design on a Finite-Dimensional 
Contour Model 
If an optimization problem of quarry design is 
formulated on the basis of a SPL model, then 
constraints (8)–(18) constitute most of relationships 
in it. Beside them, a problem may contain a relative 
small number of additional restrictions depending 
either on all variables or on variables representing a 
certain polyline or a pair of polylines; these 
restrictions may be equalities as well as inequalities. 
This fact is the most important in the choice of the 
proper optimization method: 

1. The number of all constraints is great, much 
more than N. 

2. Nevertheless, on each u satisfying (8)–(18) 
the number of active and ε-active constraints 
has the same order that N (an inequality 
constraint 0)( ≤uF is named active on 
vector v if 0)( =vF  and ε-active if 

0)( ≤≤− vFε ). 
3. For constraints (8)–(18) its residual 
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)(uF depends on a limited of components of 
u which number is not greater than 6. 

4. Therefore, matrix )(uM ε which rows are 
gradients of )(uF for ε-active constraints is a 
band-cellwise matrix. Besides, each cell is a 
sparse and usually triangular matrix 
resembling analogous matrices for discrete-
time optimum control problems. 

5. A vector u satisfying (8)–(18) may be easily 
found in many ways. It suffices to determine 
a succession of concentric circles with proper 
radii and determine each polyline as an arc 
polygon for respective circle. Then there are 
many ways of deformation of such polygons 
retaining (8)–(18) validity. As to additional 
constraints, it is much more difficult to satisfy 
them (it may be impossible, if the problem 
setup is unreasonable). 

 
For this reason, non-direct methods like modified 

Lagrange multipliers method [22] in its standard 
form seem to be inefficient since modified Lagrange 
function must be a sum of a too large number of 
terms. More crude methods like penalty functions 
methods may useful to find an admissible u 
satisfying all additional constraints [23]. Recent 
years showed new achievements in convex 
programming, including nonsmooth optimization 
[8–10]. It must be noted, however, that some of 
these constraints must reflect relations between 
quarry and deposit shapes and so are very unlike to 
be expressed with convex functions. So a penalty or 
modified Lagrange function is very likely to have 
many local minima that are useless for obtaining the 
optimum (and even feasible) solution. On the other 
hand, global minimization methods obviously 
cannot cope with dimensions and complex structure 
of existing problems. It looks more practical to use 
local optimization methods but repeat calculations, 
if necessary, from different and probably randomly 
generated initial points. 

Feasible directions method (FDM) and direct 
methods combining features of FDM and gradient-
restoration method (for problems with equality 
constraints) have some preferences. Starting from a  
satisfying (8)–(18) as an initial point, these methods 
enable to retain their validity. It is necessary to take 
into account on each iteration only ε-active 
constraints. Search of descent direction may be 
performed efficiently taking into account sparsity of 
matrix   determining the respective LP problem. 
More efficiency of the above mentioned direct 
methods is gained with the use of decomposition 
techniques. 

The general form of optimization problems in 
question (without equality constraints) is the 
following 

min,),...,( 10 →nuuF      (19) 

,,...,1,,0)( 1 nlIjuF llj =∈≤   (20) 

.,...,2,,0),( 21 nlIjuuF lllj =∈≤−  (21) 

.,0),...,( 01 IjuuF nj ∈≤   (22) 

With a formal equation of dynamics 

,,...,2,1 nlux ll == −  

it is transformed into a problem of discrete-time 
optimum control for which a FDM with 
decomposition determination of descent direction 
was proposed in [21] and evolved later in [24]. 
Principally it is based on representation of control 
vector variation in the form 

w=H1y1+H2y2+…+Hn+1yn+1    (23) 

where the set of ε-active constraints is divided into 
2n+1 subsets 

12212111 ...)( +∪∪∪∪∪= nn JJJJJuIε    (24) 
where  

),(11 uIJ lj ε⊆  ),,( 122 −⊆ lllj uuIJ ε   (25) 
and matrices H1,…, Hn+1 are determined from the 
condition: for any w 

,),),(()),(( 1liiijuiju JjyHuFwuF ∈=  (26) 

,),),(()),,(( 21 liiijuiiju JjyHuFwuuF ∈=−  (27) 

.),),(()),(( 111 +++ ∈= nnnjuju JjyHuFwuF  (28) 

In fact, formally representation (23) satisfying (24)–
(28) may be applied to any regular nonlinear 
programming problem, but is efficient only for 
dynamical or quasi-dynamical problems like (19)–
(22). Then the problems of descent directions 
determination for given εδ ≤  are 

,)),((min; 0 liiul syHuFs −≤→  (29) 
,)(,)),(( 1 lillljlllju JuIjsKyHuF ∩∈−≤ δ  (30) 

,),(,)),,(( 121 llillljllllju JuuIjsKyHuuF ∩∈−≤ −− δ (31) 

-1≤yil≤1, i=1,…, Ml.     (32) 

and the analogous problem for l=n+1 determined by 
(29), (32) and 

.)(,)),(( lilljllju JuIjsKyHuF ∩∈−≤ δ  (33) 

It is proved that for regular ways of determination 
of H1(u), H2(u), …,Hn+1(u) necessary condition of 
optimality is equivalent to the condition that for 
solutions of all the problems (29)–(32) and (29), 
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(32), (33) with 0=δ takes place .0=ls So the FDM 
with decomposition is equivalent to the original 
FDM by requires several times less computations. 

This approach was applied to optimization of 
stage contours of Ekibastuz quarry for variant of its 
mining with a sole quarry that was earlier put 
forward and developed with engineering methods by 
a group of scientists from Moscow State Mining 
University. With the proposed method, starting from 
their design contours it was achieved a significant 
improvement in main parameters. E.g., for the 7-th 
stage (see Fig. 3) stripping ratio was reduced from 
2.77 to 2.72 m3/ton. 
 

 
Fig. 3. A fragment of general view of design 

contour of Ekibastuz quarry for depth 480 m before 
and after optimization 

 
These results seem promising, but many serious 

difficulties arise. Most of them result from 
calculation of quantitative and qualitative indices of 
mineral production for design contours obtained 
during optimization process. Deposit is usually 
consists of a lot of separate seams (orebodies) with a 
complicated shape of bounds. Besides, these parts of 
a deposit are not uniform. Note, that in optimization 
process it is necessary calculate not only required 
indices but as well their derivatives with respect to 
xil, yil. Representing orebody bounds for a certain 
horizontal section with polylines and performing 
preliminary triangulation of its internal domain we 
reach moderate computational complexity of 
required calculations. Nevertheless, in many cases 
non-differentiable dependences take place; and 
worst feature of non-smoothness is that it is most 
likely in the vicinity of optimum contours. 

Fig. 4 shows cases in which the square of 
intersection of polygonal domains is continuously 
differentiable with respect to their vertices 
coordinates or not. One can see that the square of a 
polygon domain which bound includes polyline 

ABC is continuously differentiable with respect to 
xB, xC and yC and not continuously differentiable 
with respect to xA, yA and yB. Formula (7) displays 
the same properties. So regularization techniques 
are required for optimization reliability. 

 
 
 
 
 
 
 

Fig. 4. Mutual disposition of  a bench edge and a 
seam 

 
 

4  Sectoral Representation of a 
Quarry Contour in Optimization 
Problems 
Sectoral representation was proposed by I. B. 
Tabakman [25, pp. 64–72] for the sake of annual 
planning for quarries. The main idea consists in 
representation of each edge with points of its 
intersection with a system of lines. These lines may 
be either parallel or forming an acute angle between 
neighbouring lines. Domain between two lines is 
named sector. Dependencies of qualitative and 
quantitative characteristics of mineral along the 
sector axis are determined before solution of any 
optimization problems and used in further 
computations. For rounded columnar deposits it was 
sufficient to use the same system of sectors for all 
benches [25], in general it is impossible (see Fig. 5). 

It must be emphasized that sectoral 
representation is much less universal than (8)–(18) 
and enable to represent a subset of possible variants, 
their main property is that each edge intersects each 
sector axis one time. It would be better if 
intersection angles are close to the right angle.  
Nevertheless, on deep quarries with regular 
technology directions of mining works change 
slowly, and for periods of several years sectoral 
representation is satisfactory. 

In works by I. B. Tabakman and his followers 
[26] constraints expressing technological 
requirements on shape of a quarry were represented 
with linear inequality constraints. Slightly modified  
original model is expressed with sets of linear 
inequalities posed on positions of points of benches 
intersections with sector axes ijx measured as 
distances from sector origin points: 

,11 −− −+≤ iijlliij Ddxx    (34) 
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 ,|)(| 01 DLxx ijjiij ≤−− −   (35) 
They link, resp., the above points for adjacent 
benches in overlapping sectors to provide necessary 
width of working grounds (34) and in adjacent 
sectors of the same bench (35) to provide transport 
access. This representation turns to be crude. 
Another form of  a sectoral model is based on the 
use of relationships (8)–(18) supposing that each 
polyline vertex lie on border line of a corresponding 
sector. Additional relationship is the constraint on 
angles between sector border lines and edge 
polylines in vertices of the latter. 

It was developed, rather occasionally, a research 
software package aimed at solution of quarry 
contour optimization problems on the basis of 
sectoral models [27]. The initial objective was to 
work out computerized means for investigation of 
variants of mining work development on coal quarry 
“Neriungrinskii” in connection with equipment 
selection. Practical requirements resulted in 
multiobjective optimization implementation in the 
software package. In practice, it meant that a simple 
language of problem determination was proposed 
and each problem, including format and order of its 
inputted and resulting data is expressed not with 
program modules, but with special text files treated 
with program modules, as it is described in [28]. 
 

 
Fig. 5. Sectoral representation of a quarry contour 

 
See below the fragment of language 

representation of a planning problem: 
1pit 
 pit_name   c15:0:input 
 coal_dens  r:0:input 
 overburden_dens r:0:input 
 yr_advance r:0:input 
 CC_mass    r:2:sumobj(zone.CC_mass) 
 K9_mass    r:2:sumobj(zone.K9_mass) 
 ash_mass   r:2:sumobj(zone.ash_mass) 
 coal_mass  r:2:sumobj(zone.coal_mass) 

overburden_vol  
r:2:sumobj(zone.overburden_vol) 

 ash        r:2:100*pit.ash_mass/pit.coal_mass 
 sr         r:2:pit.overburden_vol/pit.coal_mass 
2 zone 
 CC_mass    r:2:sumobj(block.CC_mass) 
 K9_mass    r:2:sumobj(block.K9_mass) 
 ash_mass   r:2:sumobj(block.ash_mass) 
3 block 
 CC_mass    r:0:input 
 K9_mass   r:0:input 
 ash_mass   r:0:input 
 coal_mass   r:2: CC_mass+K9_mass 
 ash_mass   r:2:ash_content* 
. ash_content    r:0:input 
  
In this fragment we see description of both data 

structure and problem relationships expressed with 
arithmetic operators and a set of functions (here it is 
“sumobj” for the sum of an array components). 

 
 

5 Experience for Coal Quarry 
“Neriungrinskii” 
In complex study of prospects of “Neriungrinskii” 
coal quarry production the use of our software 
package played a very important role. Main aim of 
the study consisted in the choice of transportation 
fleet for the next four-year period, but this choice 
demanded elaboration and comparison of mining 
work development variants. These variants were 
generated with the package as successions of 
optimum year plans with respect to given criteria 
and restrictions sets. 

Characteristic feature of this quarry is the 
presence of resources of two types of coal, coking 
coal K9 and coal for power generation CC. 
Production of both types plays important role and is 
run simultaneously. Quarry is very deep; the number 
of benches for the period in question was 15. To 
represent mining work development a non-linear 
model was elaborated and prepared for processing 
by our software package. 

Mining work modelling was effected in the 
following way: first, four-year plan was calculated 
by optimization with respect to indices for the entire 
four-year period P, then step-wise optimization was 
run for succession of years within a period with 
posing restrictions that guarantee achievement of the 
optimum values of indices for the entire period. 
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Table 1. Results of solution of some optimization 
problems in complex investigation of 
“Neriungrinskii” coal quarry 

Problem 
objective 

Total 
coal, 
106 
ton 

Including 
output of 
coal sorts 

Over-
burden, 

1000 
m3 

Ash 
con-
tent, 
% 

Strip-
ping 
ratio, 

m3/ton 
СС К9 

Maximi-
zation of 
coking 

coal 
output for 
period P 

41.8 21.2 20.6 36.4 17.38 8.71 

Minimi-
zation of 
stripping 
ratio for 
period P 

35.8  18.2 17.5 17.0 17.2 4.74 

Minimi-
zation of 

over-
burden 
volume 
for fixed 

coal 
output 

38.7 19.6 19.1 23.7 17.29 6.13 

 
 

Table 2. Minimization of year stripping ratio 
deviation from its mean value in the contours of the 
four-year period P 

Total 
coal, 
1000 
ton 

Including Overburden, 
1000 m3 

Ash 
content, 

% 

Mining 
operation 
advance, 

m 
СС К9 

7730 3511 4218 43288 17.16 97 

7708 3421 4286 43167 17.51 87 

7817 3507 4309 43779 17.60 98 

7496 3257 4239 41983 17.50 98 
 
In the second cycle of research modelling was 

effected under condition that stripping ratio for each 
year is equal to the fixed value (its variants were 5.6 
and 5.8 m3 per ton) that gave the chance of 
maximum possible achievement of demands for 
quarry production of both types. Possible proportion 

between K9 and CC production were established by 
maximization of production of any of these types. It 
was shown that stable production of CC coal in the 
range from 4.0 to 4.2 million ton from year to year 
and minimization of deflection of stripping ratio for 
a year from its average value yields stabilization of 
total coal production as well. This variant demands, 
however, purchase of all new trucks in the 
beginning of the period. In comparison, another 
variant was calculated with step-wise minimization 
of overburden extraction and given range of coal 
production. Some general results of the above 
mentioned computations are presented in tables 1–2, 
the first presenting results of optimization for period 
P and the second for subsequent years. 
 
 
6 Conclusion 
In the  paper the author tried to show practical 
significance of the problem in question, some 
particular achievements and still existing problems. 
In particular, author’s approach based on domain-
oriented modifications of direct optimization 
methods yielded some practical results. 
Nevertheless, use of optimization methods, outside a 
very narrow  domain of ultimate pit limits 
determination, stays occasional. One of the reasons 
is that they are not integrated in practically used 
software packages. On the other hand, to perform 
this integration it is necessary to persuade software 
developers in reliability of these methods. It must be 
emphasized that  reliable methods are required for 
solution of complicated problems, nonconvex and as 
a rule nonsmooth.. 
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