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1 Introduction

In the research of qualitative as well as quanti-
tative properties of solutions of differential equa-
tions, inequalities play important roles. Many au-
thors have paid much attention to establish vari-
ous inequalities including the Ostrowski type in-
equalities, Griiss type inequalities, opial type in-
equalities and so on. Among the investigation for
inequalities, the Gronwall-Bellman type inequali-
ties are of particular importance as such inequal-
ities provide explicit bounds for solutions of cer-
tain differential equations, and also have proved
to be very effective in the stability analysis of dy-
namic equations. In the last few decades, a lot
of generalized Gronwall-Bellman type inequalities
have been presented (see [1-30] for example). We
notice that most of the inequalities established so
far can only be used in the qualitative and quan-
titative analysis of solutions of differential, differ-
ence or integral equations of integer order, while
few results are concerned with fractional integral
and differential equations.

In [31], Ye et al. presented a new Gronwall-
Bellman type inequality as follows:

u(t) < a(t) +g(t) /Ot(t — )7 tu(s)ds, 0<t < T,

where u(t) is nonnegative and locally integrable
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on 0 <t < T (someT < ), >0, a(t) is
a nonnegative function locally integrable on 0 <
t < T and g(t) is a nonnegative, nondecreasing
continuous function defined on 0 <t < T, g(t) <
M (constant).

Based on the inequality above, the following
estimates for u(t) is established:

u(t) < a(t)+
+/ Z[(g(t)r(ﬂ))n(t—s)”’g_la(s)}ds,

On:l
0<t<T.

The result above has proved to be useful in
the research of boundedness and continuous de-
pendence on the order oo and the initial condition
for solutions to certain fractional differential equa-
tions with the fractional derivative defined in the
sense of Riemann-Liouville fractional derivative.

Motivated by the works in [31], in this pa-
per, we establish some new generalized Gronwall-
Bellman type inequalities in two independent
variables, which are 2D extension of the results in
[31], and can be used in the research of bounded-
ness, uniqueness, and continuous dependence on
the initial value and parameter for solutions to
certain fractional differential-integro equations.

The next of this paper is organized as follows.
In Section 2, we present the main results, in which
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new Gronwall-Bellman type inequalities in two in-
dependent variables are established. In Section 3,
we apply the inequalities established to research
qualitative as well as quantitative properties for
the solution to a certain fractional differential-
integro equation. In Section 4, some conclusions
are presented.

2 Main results

Theorem 1 Assume o, § > 0, a(z,y), u(z,y)
are nonnegative functions locally integrable on
D :={(z,y)0 <z < X, 0<y <Y}, blz,y)
is a mondecreasing nonnegative continuous func-
tion defined on D with b(x,y) < M, where M
is a positive constant. If the following inequality
satisfies:

u(z,y) < ayx, I)
+b(z,y) (z — 5)* "ty — t)PLu(s, t)dsdt,
V(x,y) € ?D, ’
(1)
then for (x,y) € D,
o (C(@)T(8)"
u(@,y) < a(z,y) + ; T ne) T ()
Yy rx
/0 i [0 (, y) (x—s)" " (y—t)"P L a(s, t)]dsdt.
(2)

Proof: Define the operator A by

Av(eg) =) [ s

where v is locally integrable on D. Then we have

By (s, t)dsdt

u(z,y) < a(z,y) + Au(z, y).

Furthermore,

n—1
u(w,y) <Y Aa(z,y) + A"u(z,y).
k=0

Now we prove the following inequality by use
of the mathematical induction method.

()T ()"
Y S Ta)r ()
//b” z,y)(x—8)" " (y—t)" a(s, t)dsdt.

3)
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When n = 1, (3) holds obviously. Now assume
that (3) holds for n = k. Then for n =k + 1, we
have

A a(z,y) = A(A*a(z,y))

(C()T(B))*
< Wl)(m . Y)

//xsﬂ
//<

(r DF i
<k6)b

//H
(Lo

)T (8))*
kaﬂ( T,y)

I'(k
//// ="
(s — 7)Y g)’“ﬁ La(r, &)drdédsdt

_ (T (a)F(ﬁ))
= Tha)T(55) r,y)

//// z—s)*H(y—1)" " (s=m)h

— &)= Ya(r, €)dsdtdrde
_ (F(a)F(ﬁ))’“ka(m,y)

[ oo

/T —8)* (s —
(4)

For the integral [*(z — s)*"!(s — 7)**~1ds, if we
let s =7+ p(x — 7), then we obtain that

—t)P Y dsdt

—r)Fe (=M a(r, §)drd¢

/\

(z,y)

—t)PLdsdt

— &M Ya(r, €)drdE

k—i—l(

— &) dt]

ke Lds|a(r, €)drde.

s (s -

T)ka_lds

1

_ (.CC _ 7_)(chrl) - / (1 p)aflpkafldp

_ (.CU )(kJrl)a 1B(]€Oé a)
_1 D(@)'(ka)
_ A\ (k+Da—1 =& AT
(z—7) T((k+1)a) (5)
Similarly, for the integral ffy(y — )A1(t —

g)kﬂ—ldt, if we let t = £+ ((y—¢&), then we obtain
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that Theorem 5 Under the conditions of Theorem 1,
y furthermore, suppose p, q are constants with p >
/ (y — t)ﬁ_l(t — §)k*8_1dt q > 0. If the following inequality satisfies:
3
! Poy) < aley) +ba,y) 2 IS — 5!
. (k+1)8—  B—1,kB—1 uf (z,y) < Y »Y) Jo Jo
== 9h [ (v — 0Tl Dydsdr, ()
_ (k+1)8—1
=W-9 B(kp, ) then for (x,y) € D, we have
= (y — 5)(k+1 )B— 1 P(BL(k5) (6)
L'((k+1)8) u(z,y) <{axy)
Combining (4)-(6) we deduce that (3) holds / / K P b( )" n{LOT(B)"
for n = k+ 1. So (3) is proved. On the other ['(na)l'(nf)
1
hand, as (x — 8)"*™ 1(y— )P~ 1a(s, t)]dsdt} 7,
n 9)
(D(@)T(8)) (
AMu(z,y) < M ——+—"— X
(@.9) I'(na)l'(nB) where K > 0 is a constant, and
na nB— _ a, B
/ / Ly — )"~ Yu(s, t)dsdt. a(z,y) = a(z,y) + %K%b(w’y)xaz
The'n one c‘an See r}l—>noloA a(z,y) = 0. Therefore, Proof. Denote the right-hand side of (8) by
the inequality (2) is proved. v(z,y). Then we have
Remark 2 Theorem 1 is the 2D extension of the uP(z,y) < v(z,y), (z,y) €D, (10)

results in [31, Theorem 1].

and by use of Lemma 4 we obtain
Corollary 3 Under the conditions of Theorem

1, furthermore, suppose a(x,y) is nondecreasing. v(z,y) < a(z,y) + bz, y) /y /x(x o S)afl
Then we have the following estimate: T ' ’

(y —t)P~ vp(s t)dsdt

o (D()L(B)zy")"
ww,y) < a(x,y)ngob (@.y T(na+1)I'(nB+1) < a(z,y) + b(z,y / / z— )2y —1)P!
(7)

[*KTU(S, )+ 7K5}dsdt
Proof. From (2) we obtain p p

Yy x =al(x, uK%b x, Y N T — 3 a—1
U(l‘,y) Sa(x,y)+/ / [an(l‘,y) ( y)+ p ( y)/O /0 ( ) )
P = (y — )" dsdt + LK 5 b(z,y) /y/
p o Jo

(F(O&)F(ﬁ)) na—1 nB—1
ﬁ(l‘_s) (y_t) a(s’t)]det (:C—S)a_l(y—t)ﬁ_l’l)(s,t)dsdt
_ q a, B P
oenir [ [ Zlb%,y) — aa )+ LK ’yfﬂa% 1K b )
B-1
(Fr(ff;f;(f ))) (& — 8"y — 1) dsde) [} [} oottt e
Yy prx
(o) QL)) — )+ 2K by [ [
”Z na+1) (nB+1) 51 v
(y — )" (s, t)dsdt,
So the proof is complete. O (z,y) € D.
Lemma 4 [32] Assume that a > 0,p > q > 0, (11)
and p # 0, then for any K >0, Using Theorem 1 in (11) we get that for (z,y) €
D,
ar < L 'ern a+ P gy,
p p v(z,y) < a(z,y)
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e (D(@)T(B)"
# W ) D ()

t)]dsdt.

//M

ey — a-tags,
(12)

Combining (10) and (12) we deduce the inequality
(9)-

Remark 6 If we apply Corollary 8 instead of
Theorem 1 to (11), then we can obtain the fol-
lowing inequality:

o0

u(z,y) < {a(z,y) Z[]%K%”]Wx,y)

n=0
C@rE)y)" )
IF(na+1)I(nB+1)"

Theorem 7 Under the conditions of Theorem 1,
furthermore, suppose p > 1 is a constant, L €
C(R3,R+) is mondecreasing in every variable,
and satisfies 0 < L(s,t,u) — L(s,t,v) < A(u —v)
forYu > v, s, t >0, where A > 0 is a constant.
If the following inequality satisfies:

o) <ot + ) [ [ o
(y— t)ﬁ_lL(Sat,U(S,t))dsdt, (z,y) € D, (13)

then for (z,y) € D, we have

u(e,y) < (@le,y) // Fba, )"
;f(ggf;fg;j@—swuy W (5, ))dsd}
(14)
where K > 0 is a constant, and
L1 g8
e.9) = alay)+blas) L, (oK)

Proof. Denote the right-hand side of (13) by
v(z,y). Then we have

uP(z,y) <wv(z,y), (z,y)e D, (15)

and by use of Lemma 4 we obtain

v(z,y) < a(x,y) + b(z,y) /y /w(m gt

(y —t)P1L(s,t, UP s, t) )dsdt

< a(z,y) —H)xy//
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1_1-»p —1_1
L(s,t, (- K 7 v(s,t) + 2" Kv))dsdt
b b

=a(x T ! xac—so‘_l —1)81
@) +be) [ [ e
1 1-» p—1 .1

[L(Sata(;jK U(Sat)—i_TK ))

b

-1 1
~L(s ,t,*xmu £

-1 1
s, t, —Kﬁ)]dsdt

(xy—l—bxy//xs“l —t)P

1

[lep (s, t) A+ L(s,t, —K »)|dsdt
(:L'y—}—bz:y//xsa_l — )P

L(s tiKp)d dt + K P b(m Y)

)B Yu(s, t)dsdt.

IS

Since by the assumption L is nondecreasing
in every variable, then furthermore we have

//

+— K”b(:vy)

/0 /0 (@ — 5)* Ly
L1 goyf

=a(z,y) + b(z,y)L(z,y, pTK ) af

A 1-p
+fK1Ppb(x,y)

/5/x (2 — )71 (y — £)5~Lu(s, t)dsdt

—a(a:y)—i-AKPbxy// x—8)

< ala, ) + b y) Ly, K

— )P Ydsdt

— )% Yu(s, t)dsdt

(y — )% Tu(s, t)dsdt, (x,y) (16)
where
e,) = al,p) + b )Ly, (P )Y
a(z,y) = alz,y) + bz, y)Llz,y, (& —K7) =3
Using Theorem 1 in (11) we get that for
(x,y) € D
v(z,y) < a(x,y) / /x K5 b, y)]"
( ( ) (5) _ g)no— 1), _ p\nB—1~ S
o = sy -

(17)
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Combining (15) and (17) we deduce the desired
inequality (14).

b(xz,y) are
. Then

Lemma 8 Suppose u(z,y), a(x,y),
continuous functions with b(z,y) >0

u(z,y) < alz,y) + /3/ /x b(s,t)u(s,t)dsdt

implies
Yy rx
u(z,y) < alz,y) + / / a(s,t)b(s.t)
Yo Y To

exp(/ty /I b(T,&)drd€)dsdt

Furthermore, if a(x,y) is nondecreasing, then we
have

(a:y)<aa:yexp// (s,t)dsdt).

Theorem 9 Under the conditions of Theorem
1, furthermore, suppose a(x,y) is nondecreasing,
h(z,y) is a nonnegative function locally integrable
on D, p > 1 is a constant. If for (x,y) € D, the
following inequality satisfies:

y T
uP(z,y) < Z(w,my) —|—/0 /0 h(s,t)uP(s,t)dsdt
b(:c,y)/o /0 (x—35)"(y—1t)"Fu(s, t)dsdt,
(18)

then
1/y /,,,h (s,t)dsdt){Hi(z,y)

[ [l

(y — "ﬁ 1Hl(s t)]dsdt}P (z,y) €

(1, S)na—l
(19)

provided Ho(z,y) < M, where M > 0 is a con-
stant, and

Hy(x, )+7Kpcc°‘yﬁb(x Y)
exp(— / / (s,t)dsdt),

1 1-p 1 /Yy [*
Hy(a,y) = LK bla,y) expl /0 /0 h(s,wzz;j;).

(20)
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Proof. Denote a(z,y) + b(z,y) [y [y (x —
5)* Ny — t)8~Lu(s,t)dsdt by v(x,y). Then for
(z,y) € D, we have
Yy rx
uP(z,y) < v(z,y) +/ / h(s,t)uP(s,t)dsdt.
0 JO
(22)

Treating uP(z,y) as one whole function, a suitable
application of Lemma 8 to (22) yields:

uP(z,y) < v(z,y) + // (s,t)h(s,t)

exp(/t /0 h(r,&)drd§)dsdt, (x,y) € D.

Since a(z,y), b(x,y) are both nondecreasing, then
v(z,y) is nondecreasing, and furthermore we ob-
tain
y xr
W) < oeesp( [ [ s tdsd). (23
o Jo

So a combination with Lemma 4 we get that

v(z,y) < a(x,y) + b(z,y)

AR R

[v(s,t) exp(/o /0 h(r, fl)dT;lf)];dsdt
<a(z,y) + b(z,y exp(/ / h(s,t)dsdt)

IS

< a(z,y) + b(z,y) exp(— // (s,t)dsdt)

[fer

K P v(s t)+ 7Kp]dsdt
p

— )P~ Ly (s,t)dsdt

£

- a(m,y) + %Kgb(l‘a y)
yﬂ

1 (¥ [* e
exf(pfo/o h(,)1 iag
+€pr b(z,y) exp(p/o /0 h(s,t)dsdt)
/o /0 (= )y — )" (s, t)dsdt

= Hi(z,y) + Hy(2,y)

/ / (x — )Ly — )" Lu(s, t)dsdt,
0o Jo
(z,y) € D.

(24)
Applying Theorem 1 to (24) we get that

e <@+ [ [ S H ()
n=1
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[N CINC) P
F(na)r(ng)( ) (y—1t)""""Hi(s,t)]dsdt,

Combining (23) and (25) we obtain the desired
result.

Remark 10 If we apply Corollary 3 instead of

Theorem 1 to (24), then we can obtain the follow-
g nequality:

u(z,y) < exp(1 /y /Off h(s,t)dsdt){Hi(x,y)

()T (B)zyh)" |1
Z H; (@ F'(na+1)I'(nB+1) .
( z,y) € D.

Theorem 11 Under the conditions of Theorem
1, furthermore, suppose a(x,y) is nondecreasing,
h(zx,y) is a nonnegative function locally integrable
on D, p > 1 is a constant, L € C(R3,Ry) is
nondecreasing in every variable, and satisfies 0 <
L(s,t,u)—L(s,t,v) < A(u—v) forVu>wv, s, t >
0, where A > 0 is a constant. If the following
inequality satisfies:

wP(z,y) < a(z,y) // (s, t)uP (s, t)dsdt
st [ M@t - 0P

L(s,t,u(s,t))dsdt, (z,y) € D, (26)

then

u(z,y) < exp( 1/y /xh S,t)dsdt){fll(ac,y)

T n _
) ZH2 G ))W .
(- 0 s Dldsat), (ry) €D, (27

provided Ho(z,y) < M, where M > 0 is a con-
stant,

B
Hy(2,y) = a(z,y) + bz, y)$§
L(z,y,exp(— // (1,&)drd§) 7KP)

(28)
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Proof. Let v(x,y) = a(z,y) + b(x,y) [; [; (z -
$)*L(y — t)P~LL(s, t,u(s, t))dsdt. Then

uP(z,y) <wv(z,y) + /Oy /030 h(s,t)uP(s,t)dsdt,
(z,y) € D. (30)

Similar to the process of (22)-(23) we obtain that

uP(z,y) < v(z,y) exp(/oy /Dx h(s,t)dsdt). (31)

Furthermore, by Lemma 4 we get that

L(s,t, [o(s, 1) exp/ / 7, €)drde )] )dsdt
(z,y) + bz, y)
— ) My —1)

exp(~ //thdeg

(s t) + TKP))dsdt
a(e,p) +b(z,y)

/(w—s>—<y—t>6—

L(s,t,exp(~ // (1, €)drde)

( K v(st +7Kp))

L(s,t,exp(— / / T,&)drd¢) 7KP)

h(r, f)de&)TKp)]dsdt

| |
/\

+L(s,t, exp(

D JoJo
< g(x,my) +b(z,y)
AR R

0 JO

L[t 1 1-p
[Aexp(p/O /0 h(T,f)deﬁ)];K P (s, t)

1 [t p—1 1
+L(s tem( /0 /0 hr,drde) P K7 dscs
Sa(m,y)+l{(w,3) i ,
Lol | / b, drde) 2 I3)

/ / z— ) Yy —t)P dsdt+
—Kpbxyexp // (s,t)dsdt)

/O /O (2 — 5)° Ly — 1)%Lu(s, £)dsdt
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a, B8
X
= a(x,y) + b(:l:a y)iy

1 (Y [* p—1__1
L(x>yaexp(p/0' /0 h(Tag)deg)TK )

+AK%”b(x y) exp( = /y /wh(s,t)dsdt)

// (z — )2 Ly — )P Lu(s, t)dsdt
—Hl(xy —I—ngy// x—S)
y) €

(y—t)’g 1 v(s,t)dsdt, (z,

(32)

where Hy, Hy are defined as in (28)-(29
ing Theorem 1 to (32) we get that

). Apply-

U(.I‘,y) < Hl(xay) +/[) / g 2 33' y
(F(O‘)F(ﬁ))n (LU o S)nafl

I'(na)l'(nj)

(y— )"V Hy (s, D)t

(z,y) € D. (33)

Combining (31) and (33
result.

) we obtain the desired

3 Applications

In this section, we apply the inequalities estab-
lished above to research boundedness, uniqueness,
and continuous dependence on the initial value
and parameter for the solution to a fractional
differential-integro equation. Let us consider the
following fractional differential-integro equation:

Du(w,y) = ala) + Jou(z,y).  (34)

with the initial condition
D5_1U($7y)|y=0 =K, (35)
where 0 < «, B < 1, u D — R,

and D is defined as in Theorem 1, JSu de-
notes the Riemann-Liouville fractional partial in-
tegral with respect to the variable x defined

by Jou(x,y) = ﬁfo‘r(x — 5)2 Lu(s, y)ds, Dgu
denotes the Riemann-Liouville fractional partial
derlvatlve with respect to the Variable y defined

by D yu(z,y) = fO Y Bu(x, t)dt.

E-ISSN: 2224-2880
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Theorem 12 For the IVP (34)-(35), we have the
following estimate:

u(z,y) < H(z,y) + //woo T{na)l nﬂ)

(x —s)" Ly — )" TH(s t)]dsdt

(z,y) € D, (36)

where H(x,y) = |%yﬂ*1 + %yﬁa(wﬂ.

Proof. The equivalent integral form of the IVP
(34)-(35) can be denoted as follows:

1

K
U(%Z/) = Z/ﬁ L+ W v a(x)+
/ / 2—35)(y—1)" (s, t)dsdt.
So
)] < 1™ + e
1 vorr Tr—sg a—1
T / ( )
(v — t)ﬁ_l\u(s 75
= H(z,y) a) / / x—s)*
(y—t)ﬁ_l\u(sa t)ld Sdtv (37)

Then a suitable application of Theorem 1 to (37)
yields the desired result. O

Theorem 13 The IVP (34)-(35) has at most
one solution.

Proof. Suppose the IVP (34)-(35) has two solu-
tions wy(x,y), ua(z,y). Then we have

- 1
uy(z,y) = T yPa(z)+

- r—s a1/, &1u s s
F@rE Jy J, e 0 ,t>d( ;z;

u2(£7y> = /B_l—i_
1

INCHING)

K 1
e

/ / (=) (y— ) Vs (s, t)dsl,
0J0
(30)

Furthermore,

ui(z,y) —uz(z,y)
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1 y e "
= i ) e
(ui(s,t) — ua(s,t))dsdt, (40)
which implies
!ul(x,yl) — (2, y)|
T—38 a—1 ot
= D) Jo Jp 0
lui(s,t)—ua(s,t)|dsdt,
(41)

By Theorem 1 we obtain |uj (x, y)—us(z,y)| <
0. So ui(z,y) = ue(x,y), and the proof is com-
plete. a

Now we research the continuous dependence
on the initial value and parameter for the solution
of the IVP (34)-(35).

Theorem 14 Let u(x,y) be the solution of the
IVP (34)-(35), and u(x,y) be the solution of the
following IVP:

{ Dgﬁ(x, y) = a(z) + Jdu(z,y),

1 — (42)
Dy, y)ly—0 = K.

If la(z) —a(x)| < e, |K — K| < &, where € is
arbitrarily small, then we have
_ y*! y”

lu(z, y) —u(z, y)| < E{r(?) Jr)ﬁr(ﬂ Y
2" y"PB(B +1,np)

+Z{ na) (nB) na rB+1)

(n+1)ﬁ 1B

B2y, @yen,  (@3)

I'(5)

where B(a, 8) denotes the beta function with
B(a, ) = fol(l — )P~y du.

Proof. Similar to Theorem 12, we can obtain
the equivalent integral form of the IVP (42) as
follows:

mxy> J;yﬁ1+ EE O
y rx
/0/0 z—3)* " (y—1) T u(s, t)dsdt,
(44)
So we have
KT
u(x,y) —u(z, y) () Y+ F(ﬂlJr N
1 xr
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(y — )P Y(u(s, t) — u(s, t))dsdt. (45)
Furthermore,
[u(z,y) —u(x,y)| < |KF(_,8)K’ p-1
L Blais) — ale 1
oy 1 T O )
0 /0 (lU—s)@—l(y—t)ﬁ—l‘u( 1) —T(s, t)|dsdt,
yﬁ*l y[g 1

) ) (W” RRCESVIROING)

; /0 (x s)aﬂ( )&Hu(s t)—u(s,t)|dsdt.

(46)

Applying Theorem 1 to (46), after some basic
computation we can deduce the desired result
(43).

4 Conclusions

In this paper, some new Gronwall-Bellman type
inequalities in two independent variables have
been established. As for applications, we apply
the results to research boundedness, uniqueness,
and continuous dependence on the initial value
and parameter for the solution to a certain frac-
tional differential-integro equation. In fact, the
motive to establish new Gronwall-Bellman type
inequalities with such forms mostly comes from
research for various fractional differential and in-
tegro equations. In particular, in order to ful-
fill analysis for the properties of solutions to frac-
tional differential equations with nonlinear func-
tions terms, it is necessary investigate how to es-
tablish new Gronwall-Bellman type inequalities,
which are supposed to further research.
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