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Abstract: The current paper deals with the problem of the perfect cuboid, in particular with cuboids having only two
of its edges even numbers. It is shown that in this particular class, a discussion can be made and some conclusions
can be drawn to limit the existence of the perfect cuboid. In this paper Euclids formalism is used to generate
Pythagorean triangles that define the faces of the cuboid. Because the pairs, (a; b), (c; d), (u; v), used to generate
the triangles were not assumed to be relative primes, the triangles are not necessarily primitives. A computerized
algebraic solver is used to solve the equations which were then compared with the numerical solutions obtained
independently. Further generalization is required in order to extend the conclusions of this paper to a broader class
of possible cuboids.
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1 Introduction

The problem of proving or disproving the existence of
a perfect cuboid is one of the oldest open problems in
mathematics. Both numerical and analytical methods
have been used, during the years with good indica-
tion that such a cuboid cannot exist [1]. Reference [2]
refers to semi-perfect cuboids i.e. cuboids with one
of the sides or diagonals non-integers. As remarked in
[2], it is known that an infinite number of semi-perfect
cuboids can exist [3]. Reference [2] provides a gen-
eralization of a solution given by Bromhead [4] and
disproves the existence of a perfect cuboid within the
respective class.

Shapirov (2011) [5] argues that the perfect cuboid
problem is linked to a class of univariate polynomials
with three integers. Shapirov further argues that due to
the restrictions imposed; the polynomials should be ir-
reducible, disproving the existence of perfect cuboids.
However, his study only provides numerical valida-
tion for 10000 combinations of the three integers. As
indicated by [6], numerical search for perfect cuboids
with all odd sides came up empty in spite of the large
number of examples tested (i.e. up to 1010).

Our case refers to perfect cuboids that have their
faces described by Pythagorean triangles generated
through Euclids formalism. While other methods for
generating such triplets exist [7]-[8], this method is
simple and easier to use. Furthermore, the perfect
cuboid considered in this paper must have at two even
sides and the other side odd.

Further observations regarding the relations be-
tween the Pythagorean triangles formed by the sides
and diagonals of the cuboid lead to properties that are
proven to be inconsistent unless one of the sides (or
diagonal) is equal to zero.

Since the pairs of numbers used for the rea-
soning are not relative primes, the proof applies to
all Pythagorean triangles obtained through Euclids
method.

2 Problem Formulation
One of the known properties of primitive perfect
cuboids, should they exist, is that they must have two
even edges and precisely one odd edge. It is there-
fore sufficient and also convenient to study the case
of a primitive cuboid - since it provides us with more
particular conditions to begin the argument. The next
subsection offers proof of the above mentioned prop-
erty of a perfect cuboid and also introduces the nota-
tions which will be used later on.

2.1 Preliminary discussion
If a perfect cuboid with all three sides even numbers
exists, then by repeated divisions by 2, the resulting
cuboids would also have to be perfect. This is be-
cause the faces diagonals would be hypotenuses of
Pythagorean triangles with two even catheti and are
therefore even themselves. Furthermore, the space di-
agonal is also the hypotenuse of a Pythagorean trian-
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Figure 1: If all three sides (L1, L2, L3)of the
cuboid are even numbers, then all diagonals
(Df1 , Df2 , Df3 , Ds) are even as well

gle (e.g. VDB) which has both the catheti even num-
bers hence the space diagonal is also even.

Therefore, it is possible to reach, after enough di-
visions by 2, a perfect cuboid with at least one odd
side. Hence, if a perfect cuboid with all even sides
exists, there exists also a perfect cuboid with at least
one odd side. This is because the expression under the
square roots must be natural or irrational (but from the
hypothesis we know that it cannot be irrational).

The problem is therefore reduced to proving that
a perfect cuboid with two even sides and one odd side
cannot exist.

All faces of a perfect cuboid are defined by
Pythagorean triangles. From Euclids set of equations,
each of the triangles defining the faces of the cuboid
must contain at least one even side. Since two faces
may have a common side which can be the even one
and because the third even side is perpendicular to
them and therefore cannot coincide with the other two
- we conclude that: a perfect cuboid must have at least
two even sides. Furthermore, if a perfect cuboid ex-
ists, one of its faces will be defined by two even sides
and, as a consequence, have the respective face diag-
onal also an even number.

Assuming a perfect cuboid exists, having all its
edges even numbers, the following will apply:

Let E1 = 2nL1, E2 = 2nL2 and E3 = 2nL3 be
the edges of the perfect cuboid, where n,L1, L2, L3.
are natural numbers. The face diagonals of the cuboid
will then be of the form

Df =
√
(2nL1)

2 + (2nL2)
2 = 2n

√
L2
1 + L2

2 (1)

and the space (volume) diagonal will be

Dv =
√
(2nL1)

2 + (2nL2)
2 + (2nL3)

2

= 2n
√
L2
1 + L2

2 + L2
3. (2)

Since all diagonals are natural numbers by defini-

Figure 2: The assigned values of the sides and diago-
nals for the demonstrational

tion, it is implied that√
L2
1 + L2

2 ∈ N (3)

and √
L2
1 + L2

2 + L2
3 ∈ N. (4)

This is because the square root of a natural number
which is not a perfect square cannot be a rational num-
ber, √

k = w2
√
j1 · j2 · . . . · ji (5)

where k is natural and is not a perfect prime,w is natu-
ral and j1 · · · ji are distinct prime numbers. Therefore,
if the above expressions are not irrational, they must
be natural numbers.

Knowing this we deduce that for any perfect
cuboid which has all its edges even numbers of
the form E=2nL, there exists another perfect cuboid
which has at least one of its edges odd.

2.2 Demonstration for a primitive cuboid
In Fig. 2, a rectangular pyramid is presented, compris-
ing of all the sides and diagonals of a cuboid, this is
done for an easier observation and has no bearing on
the demonstration itself. Note that the triangles VAB,
VBD and VBC are Pythagorean and have the same
hypotenuse, [VB].

Let the side [VD] be odd. Using the following
notations:

[CD] = [AB] = 2ab (6)

[AV ] = a2 − b2 (7)

[V B] = a2 + b2 = c2 + d2 = u2 + v2 (8)
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Figure 3: The ABD and A’B’D’ Pythagorean triangles

[BD] = 2uv (9)

[V D] = u2 − v2 (10)

[BC] = [AD] = 2cd (11)

[V C] = c2 − d2 (12)

we convene that: a > b; c > d;u > v, in order for the
sides to remain natural numbers.

Note that, regardless of the side chosen to be odd,
the same general arrangement is reached, only with
different notations (the fact remains that either b or
a; c or d; u or v; must be odd and the other one even).

We observe that, because [VD] is odd and [AD]
is even, [AV] will also have to be odd; a similar argu-
ment can be made for [VC] and [VB] which are also
odd.

Figure 3 presents the DAB triangle, the one which
contains the three even sides of the three above men-
tioned Pythagorean triangles. Triangle DAB is itself
a Pythagorean triangle since all its three sides are nat-
ural numbers as well as a right angle. It is also clear
that all its sides are divisible by 2, therefore another
triangle, D’A’B’, exists such that[

A′B′] = 2xy (13)[
A′D′] = x2 − y2 (14)[
D′B′] = x2 + y2 (15)

where x > y. But, since [AB]=2[A’B’], we know that

2xy = ab (16)

Because [VA] is odd, we know that exactly one of a
or b can be even, and if, for simplification, x and y are
co-primes, we are faced with two possibilities:

a = 2x; b = y (17)

or

a = x; b = 2y. (17′)

We also know that the following equalities must ap-
ply:

2cd = 2
(
x2 − y2

)
(18)

2uv = 2
(
x2 + y2

)
(19)

If the first variation, Ec.17, applies, let p and q be nat-
ural numbers with the property that:

[V D]2 = [AV ]2 − [AD]2 (20)

[V D]2 = (a2 − b2)2 − (2cd)2 (21)

[V D]2 =
(
4x2 − y2

)2
−
[
2
(
x2 − y2

)]2
= p2 (22)

Rearranging,

12x4 − 3y4 = p2. (23)

And hence,

y =
4

√
12x4 − p2

3
(24)

[CV ]2 = [V D]2 + [CD]2 = q2 (25)

p2 + (4xy)2 = q2 (26)

Substituting,

q2 = 12x4 − 3

(
12x4 − p2

3

)
+ 16x2

√
12x4 − p2

3
(27)

which reduces to

16x2

√
12x4 − p2

3
+ p2 − q2 = 0. (28)

Note that if the second variation, Ec. (17’), is ap-
plied, with the right notations, we reach an equation
which has the exact shape. In this latter case, the sub-
stituted term should be y as a function of p and x, lead-
ing to (28’):

16y2

√
12y4 − p2

3
+ p2 − q2 = 0, (28′)

Since the shape of Ecs.28 and (28’) are virtually
identical – apart from the notations – it is enough to
provide proof for one of the two variations. From this
point forward, only the first variation will be used.

Using an algebraic solver [10] or a numerical
solver [11], it is possible to solve Ec.28 for p. Other
examples where such solvers were used in complex
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mathematical and engineering problems can be found
in [12-13] also, other methods exist that use simulated
annealing [14] for the same purposes. The following
four solutions verify Ec.28:

p = −
√
q2 − 16

3
x2
√
100x4 − 3q2 − 128

3
x4 (29)

p =

√
q2 − 16

3
x2
√
100x4 − 3q2 − 128

3
x4 (30)

p = −
√
q2 +

16

3
x2
√
100x4 − 3q2 − 128

3
x4 (31)

p =

√
q2 +

1

6
3x2

√
100x4 − 3q2 − 128

3
x4 (32)

Since the expression (29) and (31) are negative,
the only two remaining possibilities for p are (32) and
(30). Because q2 must be a natural number, the fol-
lowing discussions are required in order to insure that
the quantity under the square root is natural.

3 Problem Solution
3.1 Discussion on Ec.(32)
If we consider Ec.32 as the value for p, we arrive at
the conclusion that, in order for p to remain natural,
the following condition must be satisfied

16x4

3

√100− 3
q2

x4
− 8

 ∈ Z (33)

If, for simplification we consider that x is not di-
visible by 3, because 16x4 is clearly a natural number,
the following expression must also be an integer√

100− 3 q2

x4 − 8

3
(34)

This leads to the condition that there exist an integer,
k ∈ Z, such that

100− 3
q2

x4
= (8 + 3k)2 (35)

or, equivalently(
q

x2

)2

=
100− (8 + 3k)2

3
. (35′)

Solving this equation for q yields the two solutions
that verify equation (35’):

q = x2
√
− (k + 6) (3k − 2) (36)

Table 1. The results for the values of k that satisfy
condition (35’)

k (3k+8)2 q2/x4=[100-
(3k+8)2]/3

-1 25 25
-2 4 32
-3 1 33
-4 16 28
-5 49 17

q = −x2
√
− (k + 6) (3k − 2). (36′)

Because both q and x are natural numbers, the expres-
sion under the square root must be positive. Thus, we
arrive at the conclusion that:

3k<2, if k>0 (37)

or,

if k < 0, k > −6. (37′)

From Ec.37, it is obvious that no integer can sat-
isfy the condition imposed. However, Ec. (37’) re-
quires the following discussion. Because of the condi-
tion imposed through Ec.35, the equivalent expression
(35’) must be a square rational number.

From Table 1, the only value of k that leads to a
rational square number is k=-1. This is because the
other possible values are either prime numbers or can
only be factored in odd powers of primes.

Therefore, the following relation is deduced

q = 5x2 (38)

or, more conveniently,

q2 = 25x4 (38′)

Also,

16x2

3

√100− 3
q2

x4
− 8

 = −16x2 (39)

Calculating p2 from Ec.32

p2 = 25x4 − 16x2 (40)

But, since by definition, from Ec.26,

p2 + (4xy)2 = q2 (41)

or
p2 = q2 − 16x2y2 (42)
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Or, further
p2 = 25x4 − 16x2y2 (43)

Equalizing Ec.40 with Ec.43, and baring in mind that
both y and x are positive integers, we conclude that

y = 1 (44)

Equalizing Ec.23 with Ec.43, knowing that y=1, we
arrive at the following

12x4 − 3 = 25x4 − 16x2 (45)

or
13x4 − 16x2 + 3 = 0 (46)

which has the following solutions

x = ±1 (47)

x = ±
√
39

13
(48)

The only natural value of x is x=1, which implies

x=y=1. (49)

Since the pair (x; y) must generate the Pythagorean
triangle D’A’B’, this means that one of its sides will
have to be zero (i.e. the pair x=y cannot be used to
generate a proper triangle). Thus, one of the sides of
the cuboid will have to be zero in order for it to exist.

3.2 Discussion on Ec (30)
Moving on to expression in Ec.(30), we observe the
similar condition to the one in paragraph 2.1. is re-
quired in order for p to be natural, again considering
that x is not divisible by 3.

−16x2

3

√100− 3
q2

x4
+ 8

 ∈ Z (50)

The same reasoning as before can be made that an in-
teger, m exists such that√

100− 3 q2

x4 + 8

3
= m (51)

Rearranging, we obtain

100− 3
q2

x4
− (3m− 8)2 = 0 (52)

The only solutions for q, that satisfy this equation are
listed below

q = −x2
√
− (m− 6) (3m+ 2) (53)

Table 2. The results for the values of m that satisfy
condition (55)

m (3m-8)2 q2/x4=[100-(3m-
8)2]/3

1 25 25
2 4 32
3 1 33
4 16 28
5 49 17

q = x2
√
− (m− 6) (3m+ 2) (54)

Because, by definition, q and x natural numbers
and m is an integer,

if m > 0, then m < 6 (55)

or,

if m < 0, then |m| < 2/3, (55′)

in order to keep the quantity under the squared root
positive.

Since for Ec. (55’) there are no integer numbers
that are satisfactory, we will focus on Ec.(55). The
only positive matches for m in this case are listed be-
low:

Because(
q

x2

)2

=
100− (3m− 8)2

3
(56)

is a square rational number, the only value for m
which is satisfactory is

m=1, (57)

since the other values do not produce squared ratio-
nal numbers – because their factors are odd powers of
primes. Therefore

q

x2
= 5 (58)

hence
q = 5x2 (59)

and also

−16x2

3

√100− 3
q2

x4
+ 8

 = −16x2 13
3

(60)

Introducing this into Ec.30, we deduce that

p2 = q2 − 16x2
13

3
(61)
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But, from Eq.(26) we know that

p2 = q2 − 16x2y2. (62)

Because x, y, p and q are - by definition - positive, it is
obvious that the only real solution for y is

y =
√
13/3 (63)

which cannot be a natural number. This denies the ini-
tial hypothesis that both x and y are natural numbers,
therefore invalidating Ec.30 as a possible solution for
p.

It can therefore be stated that neither of the four
possible variations of p, i.e. Eqs.(29-32) is consistent
with the hypotheses of the problem –which, in this
particular case, does not have a solution.

4 Further work
The current section refers to a possible generaliza-
tion of the previous demonstration in which we as-
sumed that x and y are co-primes. For the generalized
demonstration this assumption must be eliminated and
a new parameter, n, must be introduced. There are
eight possible combinations for the a and b pair, as
seen below:

a = 2nx; b = y/n (64)

a = nx; b = 2y/n (65)

a = x/n; b = 2ny (66)

a = 2x/n; b = ny (67)

a = 2ny; b = x/n (68)

a = ny; b = 2x/n (69)

a = y/n; b = 2nx (70)

a = 2y/n; b = nx (71)

Knowing that, by definition a > b and x > y, we
can observe that variation (69) cannot exist whereas
variation (70) can only exist if n = 1 and x < 2y,
hence reducing the problem to the one previously
studied. Moreover, the cases (63)-(66) can be paired
with (67)-(70) which lead to similar equation shapes
for the final equation.

Looking at the pair described by (66) we can write
the following

[V D]2 = x4
(

1

n4
− 4

)
+y4

(
16n4 − 4

)
= p2 (72)

therefore,

p2 − q2 + 16x2

√√√√p2 + x4
(
4− 1

n4

)
16n4 − 4

= 0 (73)

y4 =
p2 + x4

(
4− 1

n4

)
16n4 − 4

(74)

Since a>b let k>1 be a rational number such that
a = kb. Hence the expression for y becomes

y4 =

(
x

2kn2

)4

(75)

Merging the two above equations we write the follow-
ing:

p2/x4 =

(
1

2kn2

)4

(16n4 − 4) +
1

n4
− 4 (76)

which can be re-arranged as:

p2/x4 = −(4k4n4 − 1)(4n4 − 1)

4k4n8
(77)

which is a negative number.
This invalidates the pair described by Ec. (66).

Consider now the pair described by Ec.(67). The fol-
lowing expression can be written:

p2 − q2 + 16x2

√√√√p2 + x4
(
4− 1

n4

)
n4 − 4

= 0 (78)

where

y4 =
p2 + x4

(
4− 1

n4

)
n4 − 4

(79)

Let k > 1 be a rational number such that a = kb,
we write

y4 =

(
2x

kn2

)4

, (80)

therefore

p2

x4
=

(
2

kn2

)4

(n4 − 4) +
16

n4
− 4 (81)

which can be re-arranged

p2

x4
= −4(k4n4 − 4)(n4 − 4)

k4n8
(82)

Note that in order for this expression to be correct,
n = 1 - which reduces to the problem of x and y being
co-primes. It must be said that one of the fundamental
properties of primitive Pythagorean triangles is that
exactly one of its cathetes is a multiple of 4 [15]. This
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means that since we know that the even cathetes of
triangles VAB, VBD and VBC are all contained by
a single face of the cuboid, they form a Pythagorean
triangle which is itself divisible by 4, or in the above
formalism, the minimum value for n is n = 2.

A comment must be made, that the variations de-
scribed by Ec.(68) and (69) which lead to virtual iden-
tical relations as Ec.(66) and (67) respectively. Hence
the findings for Ec.(66) also apply to Ec.(68) and the
findings regarding Ec. (67) apply to (69). However,
not the same can be stated for Ecs (69) and (70) which
although identical in form with Ecs. (63) and (64) re-
spectively, were dismissed for different reasons.

Finally, observe the variation (64), by re-
expressing the rational number k as a fraction,

k = g/t (83)

thus

y =
2n2

g/t
(84)

one can write the equation giving q2

q2 − p2 − 16x2
(
2n2x

g/t

)2

= 0 (85)

which reduces to

q2 − p2 − 64x4
n4

(g/t)2
= 0 (86)

since p is known to be an odd number-from the hy-
pothesis, let p = 2P − 1.

q2 − (2P − 1)2 − 64x4
n4

(g/t)2
= 0 (87)

solving this equation for n leads to the following four
solutions

n =

(
1
4 + i

4

)√
g 4
√
4P 2 − 4P − q2 + 1

x
√
t

(88)

n = −

(
1
4 + i

4

)√
g 4
√
4P 2 − 4P − q2 + 1

x
√
t

(89)

n =

(
1
4 −

i
4

)√
g 4
√
4P 2 − 4P − q2 + 1

x
√
t

(90)

n = −

(
1
4 −

i
4

)√
g 4
√
4P 2 − 4P − q2 + 1

x
√
t

(91)

Figure 4: The ABD and A’B’D’ Pythagorean triangles

Note that, also from the hypothesis, 4P 2−4P−q2+1
is negative so the positive expressions above must be
re-expressed as

n =

(
1
4 + i

4

)√
i
√
g 4
√
q2 − 4P 2 + 4P − 1

x
√
t

(92)

and

n =

(
1
4 −

i
4

)√
i
√
g 4
√
q2 − 4P 2 + 4P − 1

x
√
t

(93)

respectively.
It must be said, however, that the expression(

1

4
− i

4

)√
i =

1

2
√
2

(94)

is still a real number.
Another approach might be dwelling on the prop-

erty described by Ref.[15], the segment lengths from
figure 3 must be re-expressed as seen in figure 4.

xy =
ab

4
(95)

Again, by simplifying the case and imposing the
condition that a and b are coprimes, we can start iden-
tifying the terms in the following variations:

a = 2x; b = 2y (96)

ta = x; b = 4y (97)

a = 4x; b = y (98)

a = 4y; b = x (99)
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Note that the last two variations,

a = 2y; b = 2x (100)

a = y; b = 4x (101)

are impossible since x > y and a > b, by definition.
Analyzing expression(96) we write

[AV ] = a2 − b2 = 4(x2 − y2) (102)

however, from the geometric conditions,

[BC] = [AD] = 4(x2 − y2) (103)

Hence, the height of the cuboid, [VD] is expressed

[V D] =
√
[AV ]2 − [BC]2 (104)

we observe that the height must be zero.
Expression (97) leads to

[AV ] = x2 − 16y2 (105)

from which we deduce that

x > 4y (106)

Also, we observe that the expression for [VD] can be
written

[V D]2 = −x4 (16− 1) + 16y4(16− 1) (107)

or
[V D]2 = 15(16y4 − x4) (108)

which implies that

x < 2y (109)

which is a contradiction.
Therefore expression (97) must be excluded.

Variation (98) may be reduced to

p2 = [V D]
2
= 15(16x4 − y4) (110)

and

[V C]2 = p2 + 64x2

√
16x4 − p2

15
(111)

In the last case, corresponding to variation (99), the
equations also reduce to

p2 = [V D]2 = 15(16y4 − x4) (112)

and

[V C]2 = p2 + 64x2

√
p2

240
− x4

16
(113)

or

[V C]2 = p2 + 16x2

√
p2

15
− x4 (114)

An observation which is applicable to both (97) and
(98), is that p must be divisible by 15 in order for the
expression to remain integer.

More study is required for the generalized demon-
stration, however, this approach may prove useful due
to the fact that it inserts more mathematical relations
between the terms.

5 Conclusions
The paper provides a demonstration referring to a par-
ticular class of cuboids, proving that under certain
limits no perfect cuboid can be constructed. In the
initial discussion an argument is made that, if a per-
fect cuboid with all even edges exists, then even af-
ter successive divisions by 2 of its edges it will re-
tain its properties (i.e. it will still remain perfect).
It is further argued that, by using Euclid’s model for
Pythagorean triangles, a perfect cuboid cannot have
less than two even sides. This leads to the particular
case of a cuboid having two even edges and one odd
edge as the only possibility under the Euclid formal-
ism.

The second section establishes the only config-
uration for a perfect cuboid which has an odd side
and two even sides. Through certain observations all
the sides and diagonals of the cuboid are expressed as
functions of two variables, x and y, which are natural
numbers. The [VD] face diagonal is expressed in two
possible non-negative solutions, Eqs.(3) and (32), that
verify the conditions that arise from the setup.

Having disproved the only two possible solutions
for q, expressions (32) and (30), we conclude that
no rectangular parallelepiped can be constructed such
that all its sides and all its diagonals are positive inte-
gers.

Since for the pairs (a, b), (c, d) and (u, v) there
was no condition that stated they have to be relative
primes, the Pythagorean triangles that could have been
constructed with them are not restricted to primitive
triangles. Some restrictions are however implied by
the fact that the cuboid must have an odd side. This
is not a serious restriction since the initial discussion
establishes that if a perfect cuboid with all its sides
even numbers exists, it can always be reduced to a
perfect cuboid having one odd side, by successively
dividing the sides by 2.

Because one of the premises is that x and y are
coprimes and that x (or, y) is not divisible by 3, the
demonstration is limited. In order for it to be com-
plete, a generalization will need to be provided.
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In the Further work section, a generalization at-
tempt is made, consisting in introducing a term n,
which is a natural number. Another property of the
number n is that - in turns - x and y are divisible by it,
depending on the variation. The number of possible
combinations leads to eight variations, however those
can be reduced to only four, as follows:

Variation 1, a = 2nx and b = y/n

q2 = p2 + 16x2

√√√√4x4 (4n4 − 1)− p2

4− 1
n4

(115)

Variation 2, a = nx and b = 2y/n

q2 = p2 + 16x2
√
x4 (4n4 − 1)− p2

4− 16
n4

(116)

Variation 3, a = x/n and b = 2ny

q2 = p2 + 16x2

√√√√x4
(
4− 1

n4

)
+ p2

4 (4n4 − 1)
(117)

Variation 4, a = 2x/n and b = ny

q2 = p2 + 16x2

√√√√x4
(
4− 16

n4

)
+ p2

n4 − 4
(118)

Variation 3 is invalidated due to the fact that the
expression p2/x4 is a negative number. Also, varia-
tion 4 requires that the factor n = 1, hence falling
under the discussions in the previous sections of the
paper.

Although not a complete answer to the problem of
the perfect cuboid, the present article provides some
indication that such a mathematical construction may
be impossible.
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