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PORTUGAL
asimoes@ubi.pt

Abstract: In this paper, a Fredholm characterization for operators related to a wave diffraction problem with higher
order impedance boundary conditions is developed. We consider an impedance boundary transmission problem
for the Helmholtz equation. The problem will be analysed in an operator theory viewpoint and is considered within
a framework of Bessel potential spaces. Relations between operators and extension methods are built to deal with
the problem and, as consequence, a transparent interpretation of the problem in an operator theory framework are
associated to the problem. Different types of operator relations are exhibited for different types of operators acting
between Lebesgue and Bessel potential spaces on a finite interval and on the positive half-line. At the end, we
describe when the operators associated with the problem enjoy the Fredholm property with Fredholm index equal
to zero in terms of the initial space order parameters. In addition, an operator normalization method is applied.
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1 Introduction
The boundary value problems, related with wave
propagation and wave diffraction, are studied in dif-
ferential and integral equations theory on several areas
of mathematics, physics, mechanics and engineering
with many methods, in different contexts and taking
into account various points of view [1, 19, 21, 27, 38].
By using methods from operator theory, in this pa-
per, inspired by the work [15], we will consider
a boundary-transmission problem for the Helmholtz
equation which arises within the context of wave
diffraction theory [3], [5, 6], [9]–[18], [20], [23, 24]
and [28]–[35] on a finite strip with impedance bound-
ary conditions [9, 15].

Was A. Sommerfeld the first one to con-
sider canonical boundary value problems for time-
harmonic waves governed by the Helmholtz equation
in the famous work entitled Mathematische Theorie
der Diffraction, [36]. Since then, a great number of
researchers have made such a study their priority and
a great number of different approaches have been pre-
sented and developed in the applied mathematics liter-
ature for studying canonical problems of plane wave
diffraction. The most known and efficient methods
and procedures to study such kind of problems are
based on the classical Wiener-Hopf technique and the
Maliushinets method [24, 35].

In the present work we will consider a Sommer-
feld type problem where the geometry comprises a
strip facing higher order imperfect boundary condi-
tions. We want to understand better what are the op-
erators behind such a problem. Thus, one of the main
goals of the present work is the use of an operator the-
oretical machinery that will translate the problem into
the study of properties of certain known types of op-
erators associated to the problem.

To be more concrete, we will consider Wiener-
Hopf operators and convolution type operators on fi-
nite intervals with semi-almost periodic Fourier sym-
bol matrices. Convolution type operatorsW on finite
intervals I,

Wϕ(x) = cϕ(x) +

∫
I
K(x− y)ϕ(y) dy, x ∈ I.

are one-dimensional linear integral operators where
the integration kernels K depend on the difference of
the arguments and the domain of integration as well as
the range of the independent variable are given by the
same interval. In a constructive way, we will obtain
this type of operators in Bessel potential and Lebesgue
spaces. This is because we will consider the problem
formulated between Bessel potential spaces and de-
fined with a complex wave number k which also al-
lows a certain freedom in the corresponding smooth-
ness orders.
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2 Notations and Formulation of the
Problem

In this section we establish the notation and some pre-
liminary concepts in view of presenting the mathemat-
ical formulation of the problem.

We denote by S (Rn) the Schwartz space of all
rapidly decreasing functions and by S ′ (Rn) the dual
space of tempered distributions on Rn. As mentioned
in the previous section, we will develop our study in
a framework of Bessel potential spacesHs defined by
the elements ϕ ∈ S ′ (Rn) such that

‖ϕ‖Hs(Rn) :=
∥∥∥F−1(1+|ξ|2)s/2 · Fϕ

∥∥∥
L2(Rn)

<+∞,

with s ∈ R and where F = Fx7→ξ is the Fourier trans-
formation in Rn defined by

(Fφ) (ξ) =

∫
Rn

eiξ·xφ(x)dx, ξ ∈ Rn.

For a given Lipschitz domain D, on Rn, by
H̃s(D) we mean the closed subspace of Hs(Rn)
whose elements have supports in D, and by Hs(D)
the space of distributions on D which have exten-
sions into Rn belonging to Hs(Rn). The space
H̃s(D) is endowed with the subspace topology, and
onHs(D) we introduce the norm of the quotient space
Hs(Rn)/H̃s(Rn\D). Throughout the paper we will
use the notation

Rn± := {x = (x1, . . . , xn−1, xn) ∈ Rn : ±xn > 0}.

Adopting cartesian axes Oxyz with the y-axis
vertically upwards, we will consider a perpendicular
time-harmonic electromagnetic plane wave incident
on a strip Σ in R3 where the material is considered
to be invariant under the z-axis direction. Thus, the
geometry of the problem is two dimensional and the
strip will be therefore represented by

Σ :=]0, a[ for 0 < a <∞.

We are now in position to formulate our
impedance boundary conditions problem.

For Ω := R2\Σ and given n ∈ N0, we are
interested in studying the properties of an element
u ∈ H1+ε(Ω), for some ε ≥ 0, which satisfies the
Helmholtz equation(

∂2

∂x2
+

∂2

∂y2
+ k2

)
u = 0 in Ω,

together with the impedance boundary condition{
p+u+

n+1 + q+u+
n = h+

p−u−n+1 + q−u−n = h−
on Σ, (1)

where k is a given complex wave number with
<e(k) > 0 and =m(k) > 0 due to a dissipative
medium, as well as the impedance parameters p± ∈
C \ {0} and q± ∈ C,

u±n :=

(
∂nu

∂yn

)
|y=±0

denote the traces of u on the upper and lower banks
of Σ, respectively, and h± ∈ H−1/2−n+ε (Σ) are ar-
bitrarily given elements. For instance, is well known
that for n = 0 and n = 1 we have u±n as the traditional
Dirichlet and Neumann traces, respectively.

3 Reduction of the Problem to a Sys-
tem of Convolution type Operators

In this section we will use operator techniques in view
of a characterization of the problem by means of fi-
nite interval convolution type operators. In the next
section, such characterization of the problem, will be
used to present certain extension methods in view to
obtain corresponding operator relations, between the
operator related to the problem and new Wiener-Hopf
operators.

We will consider the densities ϑ and ϕ defined by[
ϑ
ϕ

]
=

[
u+

1 − u
−
1

u+
0 − u

−
0

]
∈ H̃−1/2+ε (Σ)× H̃1/2+ε (Σ) .

For an integer j, it follows

u+
j = (−1)jF−1tj · Fu+

0

and
u−j = F−1tj · Fu−0 ,

where

t(ξ) = (ξ2 − k2)
1/2 = t+(ξ)t−(ξ)

with t± the squareroot functions

t±(ξ) = (ξ ± k)
1/2 = |ξ ± k|1/2 e1/2i arg(ξ±k),

ξ ∈ R, with branch cuts Γ∓ = {±k ± it, t ≥ 0}, re-
spectively,

arg(ξ − k) ∈
]
−3π

2
,
π

2

[
and

arg(ξ + k) ∈
]
−π

2
,
3π

2

[
.
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Using these formulas, we can define an invertible
convolution operator

BΦB ,Σ := F−1ΦB · F

which maps H̃−1/2+ε (Σ) × H̃1/2+ε (Σ) into
H̃−1/2−n+ε (Σ)× H̃1/2−n+ε (Σ) as

BΦB ,Σ

[
ϑ
ϕ

]
=

[
u+
n+1 − u

−
n+1

u+
n − u−n

]
, (2)

with Fourier symbol

ΦB =
1

2

[
(1 + (−1)n)tn (1− (−1)n)tn+1

(1− (−1)n)tn−1 (1 + (−1)n)tn

]
.

Now, by the use of (2), it is possible to rewrite the
boundary condition (1) as

CΦC ,Σ

[
u+
n+1 − u

−
n+1

u+
n − u−n

]
=

[
h+

h−

]
(3)

where we define a convolution type operator

CΦC ,Σ := rΣF−1ΦC · F

which maps the spaces H̃−1/2−n+ε (Σ) ×
H̃1/2−n+ε (Σ) into the spaces H−1/2−n+ε (Σ) ×
H−1/2−n+ε (Σ) with Fourier symbol

ΦC =
1

2

[
p+ − q+t−1 −p+t+ q+

−p− − q−t−1 −p−t− q−
]
. (4)

Throughout the paper, we are using rΣ to denote
the restriction operator to Σ ⊂ R and in the particular
case of rR+ we will simply write r+ for this restric-
tion.

From (2) and (3), we obtain

CΦC ,ΣBΦB ,Σ

[
ϑ
ϕ

]
=

[
h+

h−

]
.

Our immediate goal will be to extend this last
convolution type operator on a finite interval into a
convolution type operator on the half-line. In view of
this, we will need to consider some extension operator
relations.

4 Extension Methods and Relations
Between Operators

We will now perform some operator extension proce-
dures in view of obtaining corresponding operator re-
lations between the operators presented in the last sec-
tion and new Wiener- Hopf operators. These operator
relations will be used in the next section to study the
Fredholm property of the operators associated with
the problem.

Definition 1 [16] Let us consider two operators

A : X1 → Y1

and
B : X2 → Y2,

acting between Banach spaces.

(i) The operators A and B are said to be alge-
braically equivalent after extension if there exist
additional Banach spaces Z1 and Z2 and invert-
ible linear operators

E : Y2 × Z2 → Y1 × Z1

and
F : X1 × Z1 → X2 × Z2

such that[
A 0
0 IZ1

]
= E

[
B 0
0 IZ2

]
F. (5)

(ii) If, in addition to (i), the invertible and linear op-
erators E and F in (5) are bounded, then we will
say thatA andB are topologically equivalent af-
ter extension operators, or simply say that A and
B are equivalent after extension operators, [2].

(iii) A and B are said to be equivalent operators in
the particular case when

A = EB F,

for some bounded invertible linear operators

E : Y2 → Y1

and
F : X1 → X2.

The above notion of topological equivalence af-
ter extension relation is equivalente to the concept of
matricial coupling [2]. We refer to [6], [7] and [16]
for a discussion on the differences between algebraic
and topological equivalence after extension relations
between convolution type operators.

We will now apply some results of [7] to our con-
volution type operator CΦC ,Σ.

Theorem 2 The convolution type operator CΦC ,Σ

with Fourier symbol (4) is algebraically equiv-
alent after extension to the Wiener-Hopf op-
erator CΦC ,R+ which maps H̃−1/2−n+ε (R+) ×
H̃1/2−n+ε (R+)×H̃−1/2−n+ε (R+)×H̃−1/2−n+ε (R+)
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into H−1/2−n+ε (R+) × H1/2−n+ε (R+) ×
H−1/2−n+ε (R+)×H−1/2−n+ε (R+) given by

CΦC ,R+ := r+F−1ΦC · F ,

and with ΦC being the Fourier symbol defined by

ΦC(ξ)=


e−iξa 0

0 e−iξa
0 0
0 0

1
2C22(ξ)

eiξa 0
0 eiξa

 .
with

C22(ξ) =

[
p+ − q+t−1(ξ) −p+t(ξ) + q+

−p− − q−t−1(ξ) −p−t(ξ)− q−
]
.

Proof: We present only a sketch of the proof because
it is a hard procedure well-known and discussed in
[25].

In order to simplify the notation we will consider
Hαβ (·) instead ofHα (·)×Hβ (·).

The equivalence is consequence of Kuijper’s ex-
tension methods and, for more details, we advise to
see [7] and [26]. In abridged form and without many
details, the equivalence after extension relation can be
directly obtained by computing the following operator
composition
CΦC ,Σ 0 0

0 I
H−

1/2−n+ε
1/2−n+ε

(R+)
0

0 0 I
[H̃−1/2−n+ε(R+)]

2

=ETF,

where T is defined between KerA × N ×[
H̃−1/2−n+ε (R+)

]2
and H−1/2−n+ε (R+) ×

H1/2−n+ε (R+)× ImB ×M by

T =

 A|Ker A
A|N 0

C1 C2 BImB

C3 C4 0

 ,
E and F are invertible operators defined
between the spaces H−1/2−n+ε (R+) ×
H1/2−n+ε (R+)×ImB×M and

[
H−1/2−n+ε (Σ)

]2×
H−1/2−n+ε (R+) × H1/2−n+ε (R+) ×[
H̃−1/2−n+ε (R+)

]2
for E and between

H̃−1/2−n+ε (Σ)×H̃1/2−n+ε (Σ)×H−1/2−n+ε (R+)×
H1/2−n+ε (R+) ×

[
H̃1/2−n+ε (R+)

]2
and

KerA × N ×
[
H̃−1/2−n+ε (R+)

]2
for F and

defined by

E=


−qMC4

(
A|N

)−1
0 qM

I
H−

1/2−n+ε
1/2−n+ε

(R+)
0 0

− (BImB)−1C2

(
A|N

)−1
(BImB)−1 0


and

F =


R−1 0 0

0
(
A|N

)−1
0

−(BImB)−1C1R 0 I
[H̃−1/2−n+ε(R+)]

2

 ,
for some algebraic decompositions (see [22])

H̃−1/2−n+ε (R+)× H̃1/2−n+ε (R+) = KerA×N

with N = N
−1/2−n+ε
1 ×N 1/2−n+ε

2 and

H−1/2−n+ε (R+)×H−1/2−n+ε (R+) = ImB ×M

with M = M
−1/2−n+ε
1 ×M−1/2−n+ε

2 for convenient
subspaces

N
−1/2−n+ε
1 ⊂ H̃−1/2−n+ε (R+) ,

N
1/2−n+ε
2 ⊂ H̃1/2−n+ε (R+) ,

M
−1/2−n+ε
1 ⊂ H−1/2−n+ε (R+) ,

M
−1/2−n+ε
2 ⊂ H−1/2−n+ε (R+) ,

and where q is the quotient map from[
H−1/2−n+ε (R+)

]2
to
[
H−1/2−n+ε (R+)

]2
/ImB,

A := r+F−1e−iξaI · F defined between
H̃−1/2−n+ε (R+) × H̃1/2−n+ε (R+) and
H−1/2−n+ε (R+) × H1/2−n+ε (R+), BImB is the

isomorphism defined between
[
H̃−1/2−n+ε (R+)

]2

and ImB where B := r+F−1eiξaI · F is defined be-

tween
[
H̃−1/2−n+ε (R+)

]2
and

[
H−1/2−n+ε (R+)

]2
,

C : KerA × N −→ ImB × M is defined by

C =

[
C1 C2

C3 C4

]
:= r+F−1ΦC · F where ΦC is

the Fourier symbol of the operator CΦC ,Σ and R,
taking into account the geometry of our problem,
is the identity operator defined between KerA and
H̃−1/2−n+ε (Σ)× H̃1/2−n+ε (Σ). ut

Due to the use of the lifting procedure, and choos-
ing convenient auxiliary bounded invertible operators,
we now obtain a new operator relation for an operator
acting between Lebesgue spaces – which is presented
in the next result.

We will use the notation L2
+ (R) := H̃0 (R+).
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Theorem 3 The Wiener-Hopf operator CΦC ,R+ de-
fined above between Bessel potential spaces is equiv-
alent to the Wiener-Hopf operator

ĈΦĈ ,R+ := r+F−1ΦĈ · F :
[
L2

+ (R)
]4 → [

L2 (R+)
]4
,

where ΦĈ has the block matricial representation

ΦĈ(ξ) =

[
A(ξ) 02

1
2C(ξ) B(ξ)

]
(6)

where

A(ξ)=

[
ζ−1/2−n+ε(ξ)e−iξa 0

0 ζ1/2−n+ε(ξ)e−iξa

]
,

B(ξ)=

[
ζ−1/2−n+ε(ξ)eiξa 0

0 ζ−1/2−n+ε(ξ)eiξa

]
,

C(ξ)=

[
C11(ξ) C12(ξ)
C21(ξ) C22(ξ)

]
,

with

C11(ξ)=p+ζ−
1/2−n+ε(ξ)−q+ζ−n+ε(ξ)(ξ − k)−1,

C12(ξ)=−p+ζ−n+ε(ξ)+q+ζ−
1/2−n+ε(ξ)(ξ + k)−1,

C21(ξ)=−p−ζ−1/2−n+ε(ξ)−q−ζ−n+ε(ξ)(ξ − k)−1,

C22(ξ)=−p−ζ−n+ε(ξ)−q−ζ−1/2−n+ε(ξ)(ξ + k)−1,

ζ(ξ) = ξ−k
ξ+k = λ−

λ+
, ξ ∈ R and 02 denotes the 2 × 2

zero matrix.

Proof: The equivalence relation can be directly ob-
tained by computing the following operator composi-
tion

CΦC ,R+ = WΦE ,R+ l0 ĈΦĈ ,R+ l0WΦF ,R+ ,

where
l0 :
[
L2 (R+)

]4 → [
L2

+ (R)
]4

denotes de zero extension operator and where
WΦE ,R+ l0 is defined between the spaces

[
L2 (R+)

]4
and H−1/2−n+ε (R+) × H1/2−n+ε (R+) ×
H−1/2−n+ε (R+)×H−1/2−n+ε (R+) by

WΦE ,R+ l0 := r+F−1ΦE · F l0

with

ΦE(ξ)=


λ

1/2+n−ε
− 0 0 0

0 λ
−1/2+n−ε
− 0 0

0 0 λ
1/2+n−ε
− 0

0 0 0 λ
1/2+n−ε
−



and l0WΦF ,R+ is defined between H̃−1/2−n+ε (R+)×
H̃1/2−n+ε (R+)×H̃−1/2−n+ε (R+)×H̃−1/2−n+ε (R+)

and
[
L2

+ (R)
]4 by

l0WΦF ,R+ := l0r+F−1ΦF · F

with

ΦF (ξ)=


λ
−1/2−n+ε
+ 0 0 0

0 λ
1/2−n+ε
+ 0 0

0 0 λ
−1/2−n+ε
+ 0

0 0 0 λ
−1/2−n+ε
+

 .
Notice that the bounded operators WΦE ,R+ l0 and
l0WΦF ,R+ are invertible as pointed out in [37,
§2.10.3]. ut

5 Fredholm Analysis
Our main goal is to study and characterize the Fred-
holm property of the finite interval convolution type
operator CΦC ,Σ for general ε. We will use different
factorization procedures applied to the operators in-
troduced in the last section. We start by recalling the
definition of Fredholm operator.

Definition 4 Let X , Y be two Banach spaces and A :
X → Y a bounded linear operator with closed image.
The operator A is called a Fredholm operator if

n(A) := dim KerA <∞

and
d(A) := dim Y/ImA <∞.

If A is a Fredholm operator, then the Fredholm
index of A is the integer defined by

IndA = n(A)− d(A).

Theorem 5 Let ΦĈ be defined by (6) and

detC(±∞) 6= 0.

The operator ĈΦĈ ,R+ presented in the last theorem ad-
mits the factorization

ĈΦĈ,R+
= Ŵ

Φ̂−,R+
C̃ΦC̃,R+

Ŵ
Φ̂+,R+

where Ŵ
Φ̂−,R+

and Ŵ
Φ̂+,R+

are invertible operators
having Fourier symbols

Φ̂−(ξ) =


−1 0
0 −1

−e−iaξτ−(ξ)

0 0
0 0

−1 0
0 −1
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and

Φ̂+(ξ) =


0 0
0 0

1 0
0 1

1 0
0 1

eiaξτ+(ξ)

 ,
which admit bounded analytic extensions in =mξ <
0 and =mξ > 0, respectively, and with

τ−(ξ)=S−(ξ)C−1(−∞) +

S+(ξ)

[
eiπ(−1−2n+2ε) 0

0 eiπ(1−2n+2ε)

]
C−1(+∞)

and

τ+(ξ)=S−(ξ)C−1(−∞) +

S+(ξ)

[
eiπ(−1−2n+2ε) 0

0 eiπ(−1−2n+2ε)

]
C−1(+∞)

with

S±(ξ) =
1± S(ξ)

2

where S : C → C is the normalized sine-integral
function given by

S(ξ) =
2

π

∫ ξ

0

sinx

x
dx

and where C−1(−∞) and C−1(+∞) are defined by

C−1(−∞) =

[
1
p+

− 1
p−

− 1
p+
− 1
p−

]
and

C−1(+∞)=

[
1
p+
eiπ(1+2n−2ε) − 1

p− e
iπ(1+2n−2ε)

− 1
p+
eiπ(2n−2ε) − 1

p− e
iπ(2n−2ε)

]
if

detC(−∞) = −p
+p−

2
6= 0

and

detC(+∞) = −p
+p−

2
eiπ(−1−4n+4ε) 6= 0,

respectively.
The Fourier symbol ΦC̃ belongs to PC4×4(

•
R),

the space of four by four matrix-valued functions with
piecewise continuous entries on

•
R= R ∪ {∞}, and is

given by

ΦC̃(ξ) =

[
A(ξ) B(ξ)

D(ξ) −C(ξ)

]
(7)

where

A(ξ) =

[
ζ−1/2−n+ε(ξ) 0

0 ζ1/2−n+ε(ξ)

]
τ+(ξ)−

τ−(ξ)C(ξ)τ+(ξ) +

τ−(ξ)

[
ζ−1/2−n+ε(ξ) 0

0 ζ−1/2−n+ε(ξ)

]
,

B(ξ) = e−iaξτ−(ξ)C(ξ)−

e−iaξ
[
ζ−1/2−n+ε(ξ) 0

0 ζ1/2−n+ε(ξ)

]
,

D(ξ) = eiaξC(ξ)τ+(ξ)−

eiaξ
[
ζ−1/2−n+ε(ξ) 0

0 ζ−1/2−n+ε(ξ)

]
.

The proof of the last result can be done by direct
computation and therefore is here omitted. Anyway,
we have,

lim
ξ→±∞

(
τ−(ξ)C(ξ)−

[
ζ−1/2−n+ε(ξ) 0

0 ζ1/2−n+ε(ξ)

])
=0,

(8)

lim
ξ→±∞

(
C(ξ)τ+(ξ)−

[
ζ−1/2−n+ε(ξ) 0

0 ζ−1/2−n+ε(ξ)

])
=0.

(9)

These last two results are a consequence of the fact
that we agree that

lim
ξ→−∞

ζσ(ξ) = 1

and
lim

ξ→+∞
ζσ(ξ) = ei2πσ,

for σ ∈ R.
In order to continue, let us consider, for Φ ∈

PCn×n(
•
R), the function

Φ :
•
R ×[0, 1]→ Cn×n

defined by

Φ(ξ, µ) := (1− µ)Φ(ξ − 0) + µΦ(ξ + 0),

(ξ, µ) ∈
•
R ×[0, 1], where

Φ(∞− 0) := Φ(+∞)

and
Φ(∞+ 0) := Φ(−∞).

The following result [4, Theorem 5.9] helps us to
study the Fredholm property for the operator CΦC ,Σ.
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Theorem 6 For Φ ∈ PCn×n(
•
R), it follows that

det Φ(ξ, µ) 6= 0

for all (ξ, µ) ∈
•
R ×[0, 1] if and only if

WΦ,R+ := r+F−1Φ · F :
[
L2

+ (R)
]n → [

L2 (R+)
]n

is a Fredholm operator.
In case of having the Fredholm property, the Fred-

holm index ofWΦ,R+ is given by

IndWΦ,R+ = −wind(det Φ),

where wind denotes the winding number.

Finally, we are able to present the Fredholm char-
acterization to our operator CΦC ,Σ and, consequently,
to our initial problem.

Theorem 7 The finite interval convolution type oper-
ator CΦC ,Σ is a Fredholm operator with zero Fred-
holm index if and only if

ε 6= q

2
for q ∈ Z. (10)

Proof: First of all, we notice that from Theorems 2–5
we conclude that the operator CΦC ,Σ is algebraically
equivalent after extension to the operator

C̃ΦC̃ ,R+ := r+F−1ΦC̃ · F :
[
L2

+ (R)
]4 → [

L2 (R+)
]4

where ΦC̃ is given by (7). Therefore, in view to ob-
tain the desired conclusion, that CΦC ,Σ is a Fredholm
operator, we start by deducing the conditions which
characterize the Fredholm property of C̃ΦC̃ ,R+ .

Letting

ΦC̃(ξ, µ) = (1− µ)ΦC̃(ξ − 0) + µΦC̃(ξ + 0)

and
ΦC̃(∞± 0) := ΦC̃(∓∞),

by Theorem 6, we have that

det ΦC̃(ξ, µ) 6= 0

for (ξ, µ) ∈
•
R ×[0, 1] if and only if the operator

C̃ΦC̃ ,R+ has the Fredholm property. Additionally, from
Theorem 5, we already know that the Fourier symbol
ΦC̃ can be written as

ΦC̃(ξ) = Φ̂−1
− (ξ)ΦĈ(ξ)Φ̂

−1
+ (ξ).

Thus, for any ξ ∈ R we have

det ΦC̃(ξ ± 0) = det ΦĈ(ξ)

because ΦĈ(ξ) has no discontinuities on the real line,
det Φ̂−1

± also have no discontinuities on the real line
and, moreover, det Φ̂−1

± ≡ 1. Therefore,

det ΦC̃(ξ, µ) = det
[
(1− µ)ΦĈ(ξ) + µΦĈ(ξ)

]
= det ΦĈ(ξ)

= ζ−1−4n+4ε(ξ)

6= 0,

in the case of ξ ∈ R.
For ξ =∞, we have,

det ΦC̃(∞, µ)=det
[
(1− µ)ΦC̃(+∞)+µΦC̃(−∞)

]
.

Appealing to the limits (8) and (9), we obtain

ΦC̃(−∞) =

[
C−1(−∞) 02

02 −C(−∞)

]

and

ΦC̃(+∞) =

[
AC−1(+∞)B 02

02 −C(+∞)

]
,

with

A =

[
eiπ(−1−2n+2ε) 0

0 eiπ(1−2n+2ε)

]
,

and

B =

[
eiπ(−1−2n+2ε) 0

0 eiπ(−1−2n+2ε)

]
.

Thus, by direct computation, we have

ΦC̃(−∞) =


1
p+

− 1
p− 0 0

− 1
p+
− 1
p− 0 0

0 0 −1
2p

+ 1
2p

+

0 0 1
2p
− 1

2p
−


and

ΦC̃(+∞) =


a11 a12 0 0
a21 a22 0 0
0 0 a33 a34

0 0 a43 a44

 ,
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with

a11 =
1

p+
eiπ(−1−2n+2ε),

a12 = − 1

p−
eiπ(−1−2n+2ε),

a21 = − 1

p+
eiπ(−2n+2ε),

a22 = − 1

p−
eiπ(−2n+2ε),

a33 = −p
+

2
eiπ(−1−2n+2ε),

a34 =
p+

2
eiπ(−2n+2ε),

a43 =
p−

2
eiπ(−1−2n+2ε),

a44 =
p−

2
eiπ(−2n+2ε).

Finally, the last results, tell us that

det ΦC̃(∞, µ) =

∣∣∣∣∣∣∣∣
b11 b12 0 0
b21 b22 0 0
0 0 b33 b34

0 0 b43 b44

∣∣∣∣∣∣∣∣ ,
where

b11 =
1−µ
p+

eiπ(−1−2n+2ε)+
µ

p+
,

b12 = −1−µ
p−

eiπ(−1−2n+2ε)− µ

p−
,

b21 = −1−µ
p+

eiπ(−2n+2ε)− µ

p+
,

b22 = −1−µ
p−

eiπ(−2n+2ε)− µ

p−
,

b33 = −(1−µ)p+

2
eiπ(−1−2n+2ε)−µp

+

2
,

b34 =
(1−µ)p+

2
eiπ(−2n+2ε)+

µp+

2
,

b43 =
(1−µ)p−

2
eiπ(−1−2n+2ε)+

µp−

2
,

b44 =
(1−µ)p−

2
eiπ(−2n+2ε)+

µp−

2
.

So,

det ΦC̃(∞, µ) =
[
(1− µ)eiπ(−1−2n+2ε) + µ

]2
×[

(1− µ)eiπ(−2n+2ε) + µ
]2
.

As a consequence, C̃ΦC̃ ,R+ is a Fredholm operator
if and only if

(1− µ)eiπ(−1−2n+2ε) + µ 6= 0 (11)

and

(1− µ)eiπ(−2n+2ε) + µ 6= 0, (12)

µ ∈ [0, 1].
Since the sets

S1 =
{

(1− µ)eiπ(−1−2n+2ε) + µ : µ ∈ [0, 1]
}

and

S2 =
{

(1− µ)eiπ(−2n+2ε) + µ : µ ∈ [0, 1]
}

define the line segments joining 1 to eiπ(−1−2n+2ε)

and 1 to eiπ(−2n+2ε), respectively, for holding the in-
equalities in (11) and (12), we need that

eiπ(−1−2n+2ε) /∈ R−

and
eiπ(−2n+2ε) /∈ R−.

Thus
π(−1− 2n+ 2ε) 6= π + 2πq

and
π(−2n+ 2ε) 6= π + 2πq,

q ∈ Z, i.e.,
ε 6= 1 + n+ q

and

ε 6= 1

2
+ n+ q,

q ∈ Z. So, we have ε 6= q
2 , q ∈ Z.

Therefore, from the operator identities provided
by both the above mentioned algebraic and topologi-
cal equivalence relations, given in Theorems 2–5, we
conclude that C̃ΦC̃ ,R+ and CΦC ,Σ are Fredholm oper-
ators if and only if condition (10) holds, and that the
corresponding defect spaces of these operators have
the same dimensions. From this, and since by [2,
Theorem 3] Fredholm operators in Banach spaces are
equivalent after extension if and only if their corre-
sponding defect spaces have equal dimensions, we
even arrive at the conclusion that C̃ΦC̃ ,R+ and CΦC ,Σ

are not only algebraically equivalent after extension
but also topologically equivalent after extension.
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Finally, jointing the last conclusion with Theo-
rem 6, we obtain the following result for the Fredholm
index of CΦC ,Σ,

IndCΦC ,Σ = Ind C̃ΦC̃ ,R+

= −wind
(
det ΦC̃(ξ, µ)

)
= − 1

2π

([
arg det ΦC̃(ξ, µ)

]
R +[

arg det ΦC̃(∞, µ)
]
[0,1]

)
= − 1

2π

([
arg det ΦC̃(ξ)

]
R +[

arg det ΦC̃(∞, µ)
]
[0,1]

)
,

where [f(ξ)]R denotes the increment of f(ξ) when ξ
varies through R from −∞ to +∞ and [f(∞, µ)][0,1]

is the increment of f(∞, µ) when µ varies through R
from 0 to 1. Directly, we obtain[

arg det ΦC̃(ξ)
]
R = π(−2− 8n+ 8ε)

and [
arg det ΦC̃(∞, µ)

]
[0,1]

= π(2 + 8n− 8ε).

So, we have the desired result IndCΦC ,Σ = 0. ut

6 Image Normalization
In this last section, we will study the normalization
of our problem in the particular case where the lifted
operator Fourier symbol ΦC̃ belongs to

GCν([−∞,+∞])n×n with ν ∈]0, 1[,

the space of Hölder continuous matricial functions
with order n, invertible and with exponent ν and with
det ΦC̃(ξ) 6= 0, ξ ∈ [−∞,+∞]. The normalization
relies on the fact that if an operator is not Fredholm,
which is equivalent to say that is not normally solv-
able, [34], it is possible to make an extension of the
image space and/or a restriction of the domain such
that the resulting operator becomes Fredholm. By
physical reasons, we will choose to do the normal-
ization without changing simultaneously both spaces.
We will do the image normalization. For more details
see [8, 11, 31, 32, 34].

Theorem 8 The operator

C̃ΦC̃ ,R+ := r+F−1ΦC̃ · F :
[
L2

+ (R)
]4 → [

L2 (R+)
]4

with Fourier symbol ΦC̃ given by (7) is not normally
solvable if and only if ε = q

2 , q ∈ Z.
For ε = q

2 , q ∈ Z we have

(i) for |q| even or 0, the image normalizer operator

<

CΦC̃ ,R+,even= C̃ΦC̃ ,R+

:
[
L2

+ (R)
]4 → Y1 × Y2 ×

[
L2 (R+)

]2
with

Y1 = r+Λ
1
2

+n−ε
− Sl0{

<

H0 (R+)},

and

Y2 = r+Λ
− 1

2
+n−ε

− Sl0{
<

H0 (R+)},

(ii) for |q| odd, the image normalizer operator

<

CΦC̃ ,R+,odd= C̃ΦC̃ ,R+

:
[
L2

+ (R)
]4 → [

L2 (R+)
]2 × [Y3]2

with

Y3 = r+Λ
1
2

+n−ε
− Sl0{

<

H0 (R+)},

where
<

H0 (R+) = r+Λ
− 1

2
− Λ

1
2
+L

2
+(R),

S is a matriz from the normal Jordan form

Φ̃−1(+∞)Φ̃(−∞) = S−1JS

and Λα± = F−1(ξ ± k)α · F .

Proof: We have the jump at infinity defined by

Φ̃−1(+∞)Φ̃(−∞) =
1

2


c11 c12 0 0
c21 c22 0 0
0 0 c33 0
0 0 0 c44


with

c11 = eiπ(1+2n−2ε) + eiπ(2n−2ε),

c12 = −p+

p−
eiπ(1+2n−2ε) +

p+

p−
eiπ(2n−2ε),

c21 = −p−
p+
eiπ(1+2n−2ε) +

p−
p+
eiπ(2n−2ε),

c22 = eiπ(1+2n−2ε) + eiπ(2n−2ε),

c33 = 2eiπ(1+2n−2ε),

c44 = 2eiπ(2n−2ε).

The jump at infinity in the normal Jordan form is

Φ̃−1(+∞)Φ̃(−∞) = S−1JS
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with

S=


0 0 1 0
− p−

2p+
1
2 0 0

0 0 0 1
p−
2p+

1
2 0 0


and

J=


eiπ(1+2n−2ε) 0 0 0

0 eiπ(1+2n−2ε) 0 0

0 0 eiπ(2n−2ε) 0

0 0 0 eiπ(2n−2ε)

 .
For the critical parameters ε = q

2 we have

J=±


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


according to |q| being even (or 0) or odd, respectively.
For the even case, the eigenvalues of J are λ1 = −1
with multiplicity 2 and λ2 = 1 with multiplicity 2.
Introducing the notation λj = e2πiωj , we know that
the operator C̃ΦC̃ ,R+ is normally solvable if and only
if <e(ωj) 6= 1

2 , j = 1, 2. So, the operator is not nor-
mally solvable due to the eigenvalue λ1. The image
normalizer operator is a direct consequence of the re-
sults presented in [34, §6] and [11]. For the even case
we have a similar procedure. ut

7 Conclusion
In the present paper we were able to characterize
the Fredholm property of particular operators associ-
ated with an impedance boundary problem which are
a generalization of the results presented in [15] and
present the image normalization for a particular case.
For practical and theoretical reasons, with the Fred-
holm property we are able to answer further questions
about this kind of diffraction problems in particular
the invertibility and the image normalization in gen-
eral of the operators related with the problem. We plan
to do this in future works.
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