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1 Introduction
Nonlinearm-term approximation with respect to a ba-
sis or a dictionary is important in applications, such
as signal and information processing, PDE solver and
the design of the neural networks, cf. [1]-[7]. Fur-
thermore, it also can be used in two hot topic areas
in numerical mathematics: learning theory and com-
pressed sensing, cf. [1]-[3],[7], [20]-[22]. The funda-
mental problem of nonlinearm-term approximation is
how to construct good algorithms of this approxima-
tion scheme. It turns out that greedy type algorithms
are suitable methods for nonlinear m-term approxi-
mation with respect to bases or redundant systems. In
this paper we study the efficiency of greedy type al-
gorithms for m-term approximation with respect to a
basis. We formulate this problem in a Banach space
setting.

Let X be an infinite-dimensional separable Ba-
nach space with a norm ∥ · ∥ := ∥ · ∥X and let
Ψ := {ψk}∞k=1 be a normalized basis for X (∥ψk∥ =
1, k ∈ N). All bases considered in our paper are as-
sumed to be normalized. For a given x ∈ X we define
the best m-term approximation with regard to Ψ as
follows:

σm(x) := σm(x,Ψ)X := inf
bk,Λ
∥x−

∑
k∈Λ

bkψk∥X ,

where the infimum is taken over coefficients bk and
sets Λ of indices with cardinality |Λ| = m. There is a

natural algorithm of constructing an m-term approx-
imant. For a given element x ∈ X we consider the
expansion

x =

∞∑
k=1

ck(x)ψk.

We call a permutation ρ, ρ(j) = kj , j = 1, 2, ..., of
the positive integers decreasing and write ρ ∈ D(x)
if

|ck1(x)| ≥ |ck2(x)| ≥ ... .
In the case of strict inequalities D(x) consists of only
one permutation. We define the m-th greedy approxi-
mant of x with regard to the basis Ψ corresponding to
a permutation ρ ∈ D(x) by formula

Gm(x) := Gm(x,Ψ)

:= Gm(x,Ψ, ρ) :=

m∑
j=1

ckj (x)ψkj .

It is a simple algorithm which describes a theoreti-
cal scheme for m-term approximation of an element
x. This algorithm is known in the theory of non-
linear approximation under the name of Threshold-
ing Greedy Algorithm (TGA). The beset error we can
achieve with the algorithm Gm is

∥x−Gm(x)∥X = σm(x,Ψ)X ,

or a little weaker

∥x−Gm(x)∥X ≤ Cσm(x,Ψ)X
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for all x ∈ X with a constant C independent of x and
m. The following concept of a greedy basis has been
introduced in [14].

Definition 1 We call a basis Ψ a greedy basis if for
every x ∈ X there exists a permutation ρ ∈ D(x)
such that

∥x−Gm(x,Ψ, ρ)∥X ≤ Cσm(x,Ψ)X

with a constant C independent of x and m.

The examples of greedy basis can be found from
[23],[32]. Then we recall the definitions of uncondi-
tional and democratic bases.

Definition 2 A basis {ψn}∞n=1 of a Banach space X
is said to be unconditional if for every choice of sign
θ = {θn}∞n=1, θn = 1 or −1, n = 1, 2, · · · the linear
operator Mθ, defined by

Mθ

( ∞∑
n=1

anψn

)
=

∞∑
n=1

anθnψn,

is a bounded operator from X to X .

Definition 3 We recall that a basis {ψn}∞n=1 in a Ba-
nach space X is called democratic if for any two fi-
nite sets of indices P and Q with the same cardinality
|P | = |Q|, we have

∥
∑
n∈P

ψn∥ ≤ D∥
∑
n∈Q

ψn∥

with a constant D independent of P and Q.

The following characterization of greedy bases
was proved in [14].

Theorem 4 A basis {ψn}∞n=1 is greedy if and only if
it is unconditional and democratic.

We refer the reader to [26] and [14] for further
discussion of greedy type bases. By Definition 1,
greedy bases are those for which we have ideal (up
to a multiplicative constant) Lebesgue-type inequali-
ties for greedy approximation. By the Lebesgue-type
inequalities we mean an inequality that provides an
upper estimate for the error of a particular method of
approximation of x by elements of a special form, say
formA in terms of the best possible approximation of
x by elements of form A.

In this paper we concentrate on a wider class of
bases than greedy bases – quasi-greedy bases. The
concept of quasi-greedy basis was introduced in [14].

Definition 5 The basis Ψ is called quasi-greedy if for
every x ∈ X and every permutation ρ ∈ D(x) there
exists some constant C such that

sup
m
∥Gm(x,Ψ)∥ ≤ C∥x∥.

Subsequently, Wojtaszczyk [11] proved that these
are precisely the bases for which the TGA merely con-
verges, i.e.,

lim
n→∞

Gn(x) = x.

Some examples of quasi-greedy bases in Banach
spaces can be found from [8].

The greedy approximant Gm(x) considered
above was defined as the sum

m∑
j=1

ckj (x)ψkj

of the expansion terms with them biggest (in absolute
value) coefficients.

Now we consider a more flexible way of construc-
tion of a greedy approximant. The rule of choosing
the expansion terms for approximation will be weaker
than in the greedy algorithm Gm(·). Instead of taking
m terms with the biggest coefficients we now take m
terms with near biggest coefficients. We proceed to a
formal definition of the Weak Greedy Algorithm with
regard to a basis Ψ (see [15] ).

Let t ∈ (0, 1] be a fixed parameter. For a given
basis Ψ and a given x ∈ X denote Λm(t) any set of
m indices such that

min
k∈Λm(t)

|ck(x)| ≥ t max
k/∈Λm(t)

|ck(x)| (1)

and define

Gtm(x) := Gtm(x,Ψ) :=
∑

k∈Λm(t)

ck(x)ψk.

We call it the Weak Greedy Algorithm with the
weakness parameter t. It is clear G1

m(x,Ψ) =
Gm(x,Ψ).

The motivation of our paper is the following
Lebesgue-type inequality for greedy approximation
with respect to a quasi-greedy basis in the Lp space,
1 < p < ∞, cf. [30]. Here Lp is the space of all p-th
power Lebesgue-integrable functions, endowed with
the usual norm.

Theorem 6 Let 1 < p < ∞, p ̸= 2, and let Ψ be
a quasi-greedy basis of the Lp space. Then for each
f ∈ Lp we have

∥f −Gtm(f)∥p
≤ C(Ψ, p, t)m|1/2−1/p|σm(f)p. (2)
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Theorem 6 does not cover the case p = 2. Note
that L2 is a Hilbert space. On the other hand, in [31],
the author announced without detailed proof the fol-
lowing result. For any quasi-greedy basis in a Hilbert
space,

∥x−Gm(x)∥ ≤ C(lnm)σm(x). (3)

In this paper, we first show in section 2 that (3)
still holds for the weak greedy approximant Gtm(x).
Note that it can be inferred from Theorem 4 the fac-
tor lnm cannot be replaced by a constant, otherwise
it implies Ψ is an unconditional basis and this is in
contrast with the existence of the conditional quasi-
greedy basis. It is known that the above inequality
can be improved in the sense that an extra factor lnm
can be replaced by a slower growing factor. In fact
for uniformly bounded quasi-greedy bases in a Hilbert
space the factor can be improved to (lnm)1/2. On the
other hand, we discover the optimality of Gtm(·,Ψ) in
the following two cases. One is Gtm(·,Ψ) realizes the
expansional best m-term approximation up to a con-
stant. We will prove this fact in section 3. The other
is Gtm(·,Ψ) provide the optimal convergence rate of
best m-term approximation on some sparse classes.
We will prove this result in section 4.

2 Efficiency of Weak Greedy Algo-
rithms for m-term approximation

To compare the error of weak greedy algorithm with
best possible m-term approximation, we define the
following quantity

rtm(Ψ) = sup
x∈X

∥x−Gtm(x,Ψ)∥
σm(Ψ)

.

The upper estimates of rm is called Lebesgue-
type inequality. The main result of this section is the
following Lebesgue-type inequality. In what follows,
for two nonnegative sequences an and bn the order in-
equality an ≪ bn means that there is a numberC such
that an ≤ C · bn.

Theorem 7 Let Ψ be a quasi-greedy basis of a
Hilbert space H . Then

rtm(Ψ)≪ lnm.

In the proof of Theorem 7 we will use the notation

an(x) := |ckn(x)|

for the decreasing rearrangement of the coefficients of
x. For a set of indices Λ we define the corresponding

projection operator as follows

PΛ(x) :=
∑
k∈Λ

ck(x)ψk.

The next theorem was proved in [11].

Theorem 8 Let Ψ = {ψk}∞k=1 be a quasi-greedy ba-
sis of a Hilbert space H . Then for each x ∈ H we
have

C1 sup
n
n1/2an(x) ≤ ∥x∥ ≤ C2

∞∑
n=1

n−1/2an(x).

The following theorem is a corollary of the above
Theorem 8.

Theorem 9 Let Ψ be a quasi-greedy basis of a
Hilbert space H . Then for any set of indices Λ, one
has the following inequality

∥PΛ(x)∥ ≤ C ln |Λ|∥x∥.

Proof of Theorem 9: Let m := |Λ|. Using Theorem
8 we get

∥PΛ(x)∥ ≤ C4

m∑
n=1

n−1/2an(PΛ(x))

= C4

m∑
n=1

n−1(n1/2an(PΛ(x)))

≤ C4

m∑
n=1

n−1(n1/2an(x))

≤ C5 sup
n
n1/2an(x)

m∑
n=1

n−1

≤ (C5C
−1
3 lnm)∥x∥

where in the second inequality we use an(PΛ(x)) ≤
an(x). So the proof of Theorem 9 is complete.

We know from the above definitions that a quasi-
greedy basis is not necessarily an unconditional ba-
sis. However, quasi-greedy bases have some proper-
ties that are close to those of unconditional bases. We
formulate one of them which will be used in our study
of quasi-greedy bases. We cite the following known
Lemma 10 from [9]. It will be convenient to define
the quasi-greedy constant K to be the least constant
such that

∥Gm(x)∥ ≤ K∥x∥

and
∥x−Gm(x)∥ ≤ K∥x∥, x ∈ X.
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Lemma 10 Suppose Ψ is a quasi-greedy basis with a
quasi-greedy constant K. Then, for any numbers aj
and any finite set of indices P , we have

(2K)−2min
j∈P
|aj |∥

∑
j∈P

ψj∥ ≤ ∥
∑
j∈P

ajψj∥

≤ 2Kmax
j∈P
|aj |∥

∑
j∈P

ψj∥.

Proof of Theorem 7: It is known from the definition
of σm that for a given ϵ > 0, there is a polynomial

pm(x) =
∑
k∈P

bkψk, |P | = m,

satisfying the inequality

∥x− pm(x)∥ ≤ σm(x) + ϵ. (4)

Denote by Q the set of indices picked by the greedy
algorithm after m iterations

Gtm(x) =
∑
k∈Q

ck(x)ψk.

We use the representation

x−Gtm(x) = x− SQ(x)
= x− SP (x) + SP (x)− SQ(x). (5)

First, we bound

∥x− SP (x)∥
= ∥x− pm(x)− SP (x− pm(x))∥
≤ (1 + ln(m))∥x− pm(x)∥. (6)

Second, we write

∥SP (x)− SQ(x)∥ = ∥SP\Q(x)− SQ\P (x)∥
≤ ∥SP\Q(x)∥+ ∥SQ\P (x)∥. (7)

We begin with estimating the second term in the
right side of (7)

∥SQ\P (x)∥ = ∥SQ\P (x− pm(x))∥
≤ ln(m)∥x− pm(x)∥. (8)

For the first term we have by Lemma 10

∥SP\Q(x)∥ ≤ 2K max
k∈P\Q

|ck(x)|∥
∑

k∈P\Q

ψk∥

≤ 2Kt−1 min
k∈Q\P

|ck(x)|∥
∑

k∈Q\P

ψk∥

≤ t−1(2K)3∥SQ\P (x)∥, (9)

where in the first inequality we use the fact any quasi-
greedy basis in a Hilbert space is democratic, cf. [31].

Combining (4) – (9) we obtain

∥x−Gtm(x)∥ ≤ (1+2 ln(m)+t−1(2K)3 ln(m))σm(x)

which completes the proof of Theorem 7.

3 Efficiency of Weak Greedy Algo-
rithms for expansional m-term ap-
proximation

The conclusion of Theorem 7 seems a little discour-
aging. However if one replace the best m-term ap-
proximation by expansional best m-term approxima-
tion then the factor lnm can be removed. To prove
this, we first recall the definition of σ̃m expansional
best m-term approximation error of x with regard to
Ψ from [26].

σ̃m(x) := σ̃m(x,Ψ) := inf
|Λ|=m

∥x−
∑
k∈Λ

ck(x)ψk∥.

In this section we show for any quasi-greedy basis in
a Hilbert space H the inequality

∥x−Gtmx∥ ≤ C(t)σ̃m(x,Ψ) (10)

holds for every x ∈ H.
In fact the inequality (10) can be derived from a

more general result for a Banach space X . Similarly,
to compare the error of weak greedy algorithm with
the best possible expansional m-term approximation,
we define the following quantity

r̃tm(Ψ) = sup
x∈X

∥x−Gtmx∥
σ̃m(Ψ)

.

We will show that this quantity is equivalent to the
quantity

µm(Ψ) := sup
k≤m

( sup
|Λ|=k

∥
∑
i∈Λ

ψi∥/ inf
|Λ|=k

∥
∑
i∈Λ

ψi∥)

which measures the democratic properties of the basis
Ψ. To state our results we introduce the notation ≍.
For two nonnegative sequences an and bn the relation
an ≍ bn means an ≪ bn and bn ≪ an.

Theorem 11 Let Ψ be a quasi-greedy basis of a Ba-
nach space X with a quasi-greedy constant K. Then
for a fixed t ∈ (0, 1], we have

r̃tm(Ψ) ≍ µm(Ψ).

Theorem 12 Let Ψ be an unconditional basis of a
Banach space X . Then for a fixed t ∈ (0, 1], we have

rtm(Ψ) ≍ µm(Ψ).

Proof of Theorem 11: We first prove the upper
bound. Note that µm(Ψ) is an increasing function of
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m and for any two sets of indices A and B, |A| =
|B| = m we have

∥
∑
k∈A

ψk∥ ≤ µm(Ψ)∥
∑
k∈B

ψk∥.

Therefore the upper bound follows from Theorem 8
in [30]. Then we turn to the proof of the lower bound.
To this end we need the following lemma.

Lemma 13 If Ψ is a quasi-greedy basis with a quasi-
greedy constantK of a Banach spaceX , then for each
m there exist disjoint sets A and B with |A| = |B| ≤
m such that

∥
∑
i∈A

ψi∥∥
∑
i∈B

ψi∥−1 ≥ (2K)−1µm.

Proof of Lemma 13: If µm ≤ 2K then the conclu-
sion is obvious. Otherwise for a given ε > 0 take sets
A1 and A2 with |A1| = |A2| ≤ m such that

∥
∑
i∈A1

ψi∥∥
∑
i∈A2

ψi∥−1 > max{2K,µm − ε}.

We write

a = ∥
∑
i∈A1

ψi∥ b = ∥
∑
i∈A2

ψi∥

and

a1 = ∥
∑

i∈A1∩A2

ψi∥ a2 = ∥
∑

i∈A1\A2

ψi∥.

Note that since Ψ is a quasi-greedy basis, we have
a1 ≤ Kb, thus

2K < a/b ≤ Ka/a1

and hence a1 < a/2. This implies

a/b ≤ (a1 + a2)/b < a/2b+ a2/b

so a2/b > (1/2)(a/b). Let A3 be any set of cardinal-
ity m which contains A1 \A2 and is disjoint with A2.
Define a3 = ∥

∑
i∈A3

ψi∥. Again we have a2 ≤ Ka3,
and hence

a3/b > (1/2K)(a/b) > (1/2K)(µm − ε).

Since ε was arbitrary we get a3/b ≥ (1/2K)µm. Set
A = A3, B = A2, we complete the proof.

Now we return to the proof of the lower bound
of Theorem 11. Let us take sets as in Lemma 13 and
denote |A| = |B| = k ≤ m. Let C ⊃ A be a set of
cardinality m disjoint with B. Consider

x = (1 + ε)(
∑
i∈B

ψi +
∑
i∈C\A

ψi) + t
∑
i∈A

ψi,

where ε > 0. It is clear that

x−Gtmx =
∑
i∈A

tψi

and

σ̃m(x) ≤ ∥PBx∥ = (1 + ε)∥
∑
i∈B

ψi∥.

This inequality and Lemma 11 give

r̃tm ≥ ∥x−G
t
mx∥

σ̃m(x)
≥

∥
∑

i∈A tψi∥
(1 + ε)∥

∑
i∈B ψi∥

≥ t

(1 + ε)2K
µm.

Since ε was arbitrary we get the desired result.
Proof of Theorem 12: It is well known that an uncon-
ditional basis is a quasi-greedy basis. It also clear that
for an unconditional basis

σ̃m(x) ≍ σm(x).

Therefore the conclusion of Theorem 12 follows di-
rectly from Theorem 11.

Note that the case of t = 1 the result of Theorem
12 was obtained in [31]. As mentioned before Ψ is
democratic. Therefore µm(Ψ) ≍ 1. Thus the inequal-
ity (10) follows from Theorem 11.

4 Optimality of weak greedy ap-
proximation on some sparse classes

In this section we prove that for some sparse classes
the weak greedy algorithm Gtm realizes the best m-
term approximation. In what follows, we recall the
definition of the class.

For r > 0, we define

F r(Ψ) := F r∞(Ψ) := {x : |cnk
(x,Ψ)|

≤ k−r, k = 1, 2, . . .}

where the number r describes the sparsity of the class.
This class plays an important role in the study of
the nonlinear m-term approximation with respect to
bases, cf. [29].

To study the worst case of the best m-term ap-
proximation error on F r, we define the following
quantities

σm(F
r) := sup

x∈F r
σm(x)

and
σ̃m(F

r) := sup
x∈F r

σ̃m(x).
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We will also introduce the m-th greedy remainder

Ht
m(x) := x−Gtm(x)

and define

Ht
m(F

r) := sup
x∈F r

Ht
m(x).

For simplicity we write Hm(x) for H1
m(x).

The main result of this section is the following
theorem.

Theorem 14 If Ψ is a quasi-greedy basis of a Hilbert
space H , then for r > 1/2

σm(F
r) ≍ Ht

m(F
r) ≍ m1/2−r.

In fact the upper bound of Theorem 14 can be es-
tablished for a wider class of bases which are defined
as follows.

Definition 15 A basis Ψ is called unconditional for
constant coefficients (UCC) if there exist constants C1

and C2 such that for each finite subset A ⊂ N and for
each choice of signs εi = ±1 we have

C1

∥∥∥∥∥∑
i∈A

ψi

∥∥∥∥∥ ≤
∥∥∥∥∥∑
i∈A

εiψi

∥∥∥∥∥ ≤ C2

∥∥∥∥∥∑
i∈A

ψi

∥∥∥∥∥ .
To prove Theorem 14 we need some known re-

sults which were proved in [9],[29]. To formulate
these results we need some of the basic concepts of
the Banach space theory from [16]. First, let us re-
call the definition of type and co-type of a Banach
space. Let (εi = ri(ω)) be a sequence of indepen-
dent Rademacher variables, we write(

Aveεk=±1

∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥
p)

:=

∫ 1

0

n∑
k=1

∥rk(ω)fk∥p dω.

We say that a Banach spaceX has type p if there exists
a universal constant C3 such that for xk ∈ X(
Aveεk=±1

∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥
p)1/p

≤ C3

(
n∑
k=1

∥xk∥p
)1/p

,

and X is of co-type q if there exists a universal con-
stant C4 such that for xk ∈ X(
Aveεk=±1

∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥
q)1/q

≥ C4

(
n∑
k=1

∥xk∥q
)1/q

.

The following two theorems were proved in [29].

Theorem 16 Let X be a Banach space with type
p, 1 < p ≤ 2. If a basis Ψ of X is UCC, then for
r > 1/p

Hm(F
r)≪ m1/p−r.

Theorem 17 Let Ψ be a quasi-greedy basis of a Ba-
nach space X . Then for a > 0 the following two
statements are equivalent.

i) For any finite set Λ of indices∥∥∥∥∥∑
k∈Λ

ψk

∥∥∥∥∥ ≥ c|Λ|a.
ii) For any two positive integers N < M we have

aM (f)≪ ∥HN (f)∥(M −N)−a.

The next theorem was obtained in [9].

Theorem 18 Let Ψ be a normalized quasi-greedy ba-
sis of a Hilbert space H . Then, for any x ∈ H and
λ > 1

∥x−Gλm(x,Ψ)∥ ≤ C(λ)σm(x,Ψ).

Proof of Theorem 14: Upper bound: It is well-known
that any Hilbert space H is of type 2, see [16], [31].
It is also known that a quasi-greedy base is uncondi-
tional for constant, cf. [16],[31]. Thus by Theorem
16

Hm(F
r)≪ m1/2−r. (11)

By (10) we have

Ht
m(F

r)≪ σ̃m(F
r). (12)

Note that
σ̃m(F

r)≪ Hm(F
r).

Thus combining (11) and (12) we complete the proof
of the upper bound. Lower bound: Consider the ele-
ment

xm = m−r
2m∑
k=1

ψk.

It is known from [29] for a UCC basis Ψ of a Hilbert
space H ∥∥∥∥∥∑

k∈Λ
ψk

∥∥∥∥∥ ≍ |Λ|1/2. (13)

Therefore applying Theorem 17 by setting M =
2N = 2m, we have

Hm( xm) ≥ c ·m1/2−r.
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Further by Theorem 18 where we take λ = 2, we have

σm(x2m) ≥ C ·H2m(x2m) ≥ C ·m1/2−r.

It is clear x2m ∈ F r. Thus we complete the proof of
the lower bound.

For UCC bases in Hilbert spaces we have the fol-
lowing theorem.

Theorem 19 If Ψ is a basis of UCC of a Hilbert space
H , then for r > 1/2

σ̃m(F
r) ≍ Hm(F

r) ≍ m1/2−r.

Proof of Theorem 19: The upper bound is known
from the proof of Theorem 14. The lower bound can
be derived from the following theorem.

Theorem 20 Let X be a Banach space with co-type
q, q ≥ 2. If a basis Ψ of X is UCC, then there exists
a fm ∈ F r such that

σ̃m(fm) ≥ c ·m1/q−r.

Proof of Theorem 20: Let Λ be a set of indices satis-
fying Λ ⊂ {1, 2, ..., 2m} and |Λ| = m. Since X has
co-type q, we have(

Aveε=±1

∥∥∥∥∥∑
k∈Λ

εkψk

∥∥∥∥∥
q)1/q

≥ C

(∑
k∈Λ
∥ψk∥q

)1/q

≥ c ·m1/q.

Since Ψ is UCC, we get

∥∥∥∥∥∑
k∈Λ

ψk

∥∥∥∥∥ ≍

(
Aveε=±1

∥∥∥∥∥∑
k∈Λ

εkψk

∥∥∥∥∥
q)1/q

≥ c ·m1/q. (14)

Consider the element

fm = m−r
2m∑
k=1

ψk.

It follows from (14) that

σ̃m(fm) ≥ c ·m1/q−r.

It is clear fm ∈ F r, thus we complete the proof of
Theorem 20.

Now we return to the proof of Theorem 19. It is
well-known that a Hilbert space H is of co-type 2, cf.
[16]. Thus the lower bound of Theorem 19 follows
from Theorem 20. So we complete the proof of The-
orem 19.

5 Scheme of constructing quasi-
greedy bases

In this section we describe a scheme of constructing
quasi-greedy bases in Banach spaces from [10]. This
would help the reader have a better understand of the
structure of this type of bases.

Let X be a separable Banach space and Φ be a
Besselian basis of X . Assume that Φ can be split
into two systems F = {fs}∞s=1, fs = ϕm(s) and
E = {ej}∞j=1, ej = ϕn(j) with increasing sequences
m(s) and n(j) in such a way that E has the following
property. For any sequence {cj} we have

∥
∞∑
j=1

∥cjej∥ ≤ C(
∞∑
j=1

|cj |2)1/2.

In our construction of quasi-greedy bases we will use
special matrices. Let A = {A(n)}∞n=1 be a collection
of matrices which satisfies the following properties.

S1. Singular numbers of matrix A(n) and their
inverse are uniformly bounded.

S2. For the elements of the first column of matrix
A(n) = [aij(n)] we have

|ai1(n)| ≤ Cn−1/2.

Let nk be an increasing sequence of integers such that

nk+1 ≥ n2k.

For a fixed natural number k we pick the basis ele-
ments

gk1 = fk, g
k
i := eSk−1+i−1,

i = 2, ..., nk, where Sj is defined recursively as

Sj = Sj−1 + nj − 1, j = 1, 2, ..., S0 = 0.

We build a new system of elements {ψki }
nk
i=1 using a

matrix A(nk) in the following way:

(ψk1 , ..., ψ
k
nk
)T = A(nk)(g

k
1 , ..., g

k
nk
)T .

That is, for i ∈ [1, nk] we have

ψki =

nk∑
j=1

aij(nk)g
k
j .

We define the system Ψ = {ψki }
nk,∞
i=1,k=1 ordered in the

lexicographical way:j(k′, i′) > j(k, i) if either k′ > k
or k′ = k and i′ > i. The following theorem was
proved in [10].

Theorem 21 The basis Ψ is a quasi-greedy basis of
X .
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6 Some remarks

In this section we first survey some recent results re-
lated to greedy approximation with respect to quasi-
greedy bases. Then we present some open problems
which seem to be good candidates for future research
on this topic.

The first one is the optimal bound of rtm(Ψ) for
quasi-greedy bases in a general Banach space (real or
complex), see [12],[13].

To state this result we consider the sequence

km := sup
|Λ|≤m

∥PΛ∥

where PΛ is the project operator defined as before.
Note that the sequence km quantifies the condition-
ality of the basis Ψ.

Theorem 22 Let Ψ be a quasi-greedy basis of a Ba-
nach space (real or complex) X . Then

rtm(Ψ) ≍ max{km, µm}.

This theorem plays an important role in the study of
the efficiency of TGA with quasi-greedy bases. Note
that Theorem 22 is a generalization of Theorem 4.
The case of t = 1 was proved in [12]. It is not diffi-
cult to generalize it to the case of Weak Greedy Algo-
rithm. Here we omit the details. Then we cite a result
from [11] which provides a lower bound of km(Ψ) for
quasi-greedy bases in Hilbert spaces.

Theorem 23 For any 0 < α < 1 there exists a condi-
tional quasi-greedy basis Ψ of a Hilbert spaceH such
that

km(Ψ) ≥ c(lnm)α.

Note that a quasi-greedy of a Hilbert space is demo-
cratic. Then µm ≍ 1. Thus combining Theorem 23
with Theorem 22 we immediately yield the following
theorem.

Theorem 24 For any 0 < α < 1 there exists a condi-
tional quasi-greedy basis Ψ of a Hilbert spaceH such
that

rtm(Ψ) ≥ c(lnm)α.

Using Theorem 22 one can reprove the Lebesgue-
type inequality (1.2). Now a problem arise: is the
factor m|1/2−1/p| sharp? That is, can we find a con-
ditional quasi-greedy basis Ψ which satisfies the in-
equality

rtm(Ψ) ≍ m|1/2−1/p|.

Note that for some unconditional quasi-greedy basis
Ψ in Lp, P. Wojtaszczyk proved

r1m(Ψ) ≍ m|1/2−1/p|,

see [31]. By the way we point out using the method
one can study the sparse class induced by democratic
quasi-greedy bases in Banach spaces.

One more important problem in the study of
greedy approximation with respect to non-greedy
bases (including quasi-greedy bases) is how to con-
struct greedy-type algorithm which realizes the best
m-term approximation. Recent results of some
authors show the Weak Chebyshev Greedy Algo-
rithm (WCGA) seems to be a good candidate, see
[17],[24],[28]. This algorithm is a generalization
of the Weak Orthogonal Matching Pursuit which is
widely used in compressed sensing, cf. [18],[19],[33].
Lebesgue-type inequalities for WCGA have been es-
tablished in [17],[28]. In particular, applying the gen-
eral results in [28] to the case of some quasi-greedy
bases one can see that WCGA significantly improved
the error bound. Now we recall this result.

Let X be a Banach space. A set of elements D
from X is a dictionary if each g ∈ D has norm one,
and the closure of spanD isX . For a nonzero element
g ∈ X we let Fg denote a norming functional for g

∥Fg∥X∗ = 1, Fg(g) = ∥g∥X

The existence of such a functional is guaranteed by
the Hahn-Banach theorem.

Let f0 be given. Then for each m ≥ 1 we have
the following inductive definition.

(1) ψm ∈ D is any element satisfying

|Ffm−1(ψm)| ≥ t sup
g∈D
|Ffm−1(g)|.

(2) Define

Ψm = span {ψj}mj=1

and define Gm to be the best approximant to f0 from
Ψm.

(3) Let
fm = f0 −Gm.

Theorem 25 If Ψ is a uniformly bounded quasi-
greedy basis of Lp, 2 ≤ p <∞, then for f0 ∈ Lp

∥fm ln ln(m+3)∥ ≤ σm(f0).

The existence of uniformly bounded quasi-greedy
bases was proved in [10]. In [28] the author also
proved WCGA provides almost optimal sparse ap-
proximation for the trigonometric system which is not
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a quasi-greedy basis. However in many other impor-
tant cases whether WCGA can be better than TGA is
still unknown. It is interesting to study the Lebesgue-
type inequalities for WCGA with quasi-greedy bases
in a optimal way.

7 Conclusion

Our results show the weak greedy algorithm (WGA) is
suitable for m-term approximation with quasi-greedy
bases. In the case of Hilbert spaces the error of the m-
th weak greedy approximation is bounded by the er-
ror of bestm-term approximation multiplied by an ex-
tra factor of order lnm. For some quasi-greedy bases
lnm can be replaced by a slow growing factor. More-
over WGA realizes the best expansional m-term ap-
proximation for individual element. If we make some
mild assumptions on the sparsity of the element, then
WGA realizes best m-term approximation for some
sparse classes. It is clear that in the case of t < 1, we
have more flexibility in building a weak greedy ap-
proximant Gtm(x) than in building Gm(x). Moreover
the effect of the efficiency of the algorithm is minimal:
it is only reflected in a multiplicative constant. This is
the main advantage of the weak greedy approximant.

Finally we would like to say that although the
theory of greedy approximation is developing rapidly,
and results are spread over hundreds of papers by dif-
ferent authors, the field is still very active and many
important problems remain open, see [25]-[27].
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