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Abstract: In this paper, we deal with the Lebowitz-Rubinow model of an age structured proliferating cell population
in Lp-space (1 ≤ p < +∞). It is to prove that the C0 semigroups generated by the transport operator is compact
for the boundary operator is compact, and it is to obtain that the spectrum of the transport operators is countable
and consists of, at most, isolate eigenvalues with finite algebraic multiplicity with −∞ as the only possible limit
point, we are to obtain that the spectrum of the transport operators only consists of finitely isolate eigenvalues with
finite algebraic multiplicities in the right half plane trip for the boundary operator is not compact, also we show
that the asymptotic behavior of the transport equation’s solution.
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1 Introduction
In this paper, we deals with the mathematical model of
an age structured proliferating cell population intro-
duced by Leibowitz and Rubinow [1]. The transport
equation of the model is following:

∂φ

∂t
(a, l, t) = −∂φ

∂a
(a, l, t)− µ(a, l)φ(a, l, t)

= AKφ =MKφ+Bφ (1)

where the variables t and a represent respectively
time and age, while l is the cycle length of cells and
represents the time between cell birth and cell divi-
sion, here, l ∈ (l1, l2), 0 ≤ l1 < l2 ≤ +∞ , and
a ∈ [0, l], the constant l1(l2) denotes the minimum
cycle length (the maximum cycle length). The func-
tion µ = µ(a, l) is the rate of cell mortality or cell
loss due to causes other than division. The function
φ(a, l, t) is the density of the population with respect
to age a, and cell cycle length l at time t.

Transport equation (1) is complemented by the
following boundary condition

φ(0, l, t) = Kφ(l, l, t) =

∫ l2

l1
k(l, l′)φ(l′, l′, t)dl′

(2)
where the position kernel k(l, l′) describes the corre-
lation between the cycle length of a mother cell l′ and
that of its daughter cell l satisfying the following con-

dition of normalization∫ l2

l1
k(l, l′)dl = 1 (3)

The model (1)-(3) was introduced for the first
time by Leibowitz and Rubinow in [1], which is called
L–R model. It has been studied on the continuous
function space by G. F. Webb in [2,3], M. Rotenberg
in [4] introduced the model that each cell is character-
ized by its degree of maturity and its maturation veloc-
ity, the model is called Rotenberg model. Since then it
has been rarely studied. Recently, the model (1)− (3)
has been studied by B. Lods [5, 6], M. Boulanouar [7-
17], K. Latrach [18-23], A. Jeribi [24, 25], S, H. Wang
[26-28], respectively. When 0 = l1 < l2 < +∞, B.
Lods in [5, 6] investigated the spectrum of the trans-
port operator and the asymptotic behavior of the cor-
responding C0 semigroup, under crucial hypothesis
l1 > 0, M. Boulanouar proved in [9] that the existence
of a strongly continuous semigroup and the solution
of transport equation is well-posed, M. Boulanouar
proved in [10] that the C0 semigroup is irreducibility
and that the asymptotic behavior of solution for the
model was discussed. M. Boulanouar studied in [11-
13] for Rotenberg’s model, considered in [14] a gen-
eral biological rule corresponding to a non-compact
boundary condition that it is to give the asymptotic
behavior of the generated semigroup in the uniform
topology. In addition, M. Boulanouar mathemati-
cally analyzed an age-cycle structured population en-
dowed with a general biological rule in [15-17]. It has

WSEAS TRANSACTIONS on MATHEMATICS Senghua Wang, Guofei Cheng, Dengbin Yuan

E-ISSN: 2224-2880 324 Volume 13, 2014



been proven that the existence of a strongly continu-
ous semigroup and the solution of transport equation
is well-posed and the C0 semigroup is irreducibility
and it is to describe the asymptotic behavior of the
generated semigroup in the uniform topology, when
0 = l1 < l2 < +∞. K. Latrach in [18] showed
that the spectral decomposition of the solutions into
an asymptotic term and a transient one which will be
estimated for smooth initial data. K. Latrach studied
for a boundary value problem of Rotenberg’s model
in [19-23]. A. Jeribi has studied in [24-27] that the
spectral decomposition of the solutions into an asymp-
totic term and a transient one which will be estimated
for Rotenberg’s model, when l1 = 0, l2 = +∞. S.
H. Wang in [29, 30] proved that the spectral analy-
sis of the transport operator AK and investigate the
asymptotic behavior of the corresponding C0 semi-
group VK(t) to the transport equation (1) in a compact
boundary condition and a non-compact boundary con-
dition corresponding. We have noted that the models
studied in [33] and [34] have similar form as equation
(1) but the boundary conditions used in here is more
complicated than that in there.

In this paper, when l1 = 0, l2 = +∞, we will
prove that the C0 semigroups by the transport oper-
ator generated is compact for l > 2a in the bound-
ary operator is compact and obtain that the spectrum
of the transport operators is countable and consists
of, at most, isolate eigenvalues with finite algebraic
multiplicity with −∞ as the only possible limit point.
Furthermore we will prove that the spectrum of the
transport operators only consists of finitely isolate
eigenvalues with finite algebraic multiplicities in the
right half plane trip for the boundary operator is not
compact. Also we will show that the asymptotic be-
havior of the transport equation solution in Lp space
(1 ≤ p < +∞).

The paper is organized as follows. In Second 2,
we give some preliminary results. In Section 3, we
study the compactness of generated semigroup by the
transport operator. In section 4, we study the spectrum
of transport operator. In Section 5, we describe the
cellular profile of the model (1)-(3) by discussing the
asymptotic behavior of the generated semigroup.

2 Preliminary results
In this section, we introduce some notions and nota-
tions. Let

∆ = {(a, l); 0 < a < l, 0 < l < +∞}.

and the weighted space

Xp
ω = Lp(∆, fpω), (ω ≥ 0 and p ≥ 0)

with the norm

∥ψ∥ω,p = [

∫
∆
|(ψfω)(a, l)|pdadl]

1
p

= [

∫ +∞

0

∫ l

0
|(ψfω)(a, l)|pdadl]

1
p .

where fω is defined as

fω(a, l) = e−ω(l−a).

Note that Lp(∆) ⊂ Xp
0 ⊂ Xp

ω(ω ≥ 0, p ≥ 1) and if
ω > 0, it has the form

∥ψ∥ω,p ≤ [

∫
∆
|ψ(a, l)|pdadl]

1
p = ∥ψ∥p.

We also consider the partial derivative space

W p
ω = {ψ ∈ Xp

ω :
1

l
ψ ∈ Xp

ω;
∂ψ

∂a
∈ Xp

ω}

with the norm

∥ψ∥W p
ω
= [∥ψ∥pω,p + ∥1

l
ψ∥pω,p + ∥∂ψ

∂a
∥pω,p]

1
p .

We define trace applications as follow

Γ1 = {(0, l), l ∈ (l1, l2)},

Γ2 = {(l, l), l ∈ (l1, l2)}.

We also consider the trace space

Yp = Lp(0,∞), (p ≥ 1)

with its natural norm

∥ψ∥Yp = [

∫ ∞

0
|ψ(l)|pdl]

1
p .

We define the following unbounded operator
MKψ = −∂ψ

∂a on the domain,
D(MK) = {ψ ∈W p

ω ,
ψ(0, l) = Kψ(l, l)}.

If K = 0, then it is easy to see that the operator M0

defined by{
M0ψ = −∂ψ

∂a on the domain,
D(M0) = {ψ ∈W p

ω ; satisfying ψ(0, l) = 0.}

In this section, we recall the some results as lem-
mas, which will be used in next section.
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Lemma 1 The operator M0 generates, on Xp
ω(ω ≥

0, p ≥ 1), a strongly continuous semigroup
(S0(t))t≥0 given by

S0(t)ψ(a, l) = χ(a, l, t)ψ(a− t, l). (4)

where

χ(a, l, t) =

{
1 if 0 ≤ t ≤ a,
0 otherwise.

Let boundary operator K satisfies
(O1)K bounded and ∥K∥ℓ(Yp) ≤ 1.

(O2)K compact and ∥K∥ℓ(Yp) > 1.
and define

ω0 =

{
0 if(O1) holds;
λ0 if(O2) holds.

We characterize its type w(T (t)) and its essential
type wess(T (t)) by

w(T (t)) = lim
t→∞

ln ∥T (t)∥ess
t

.

and

wess(T (t)) = lim
t→∞

ln ∥T (t)∥ess
t

.

Note that ∥C∥ess = 0 if and only if C is a compact
operator.

Lemma 2 Suppose that (O1) or (O2) holds, then, the
operator MK generates, on Xp

ω(ω ≥ ω0, p ≥ 1), a
strongly continuous C0 semigroup (SK(t))t≥0 given
by

SK(t) =
∞∑
m=0

Um(t), (t ≥ 0). (5)

where the operator Um(t) is defined, on Lp(∆)(p ≥
1), by

Um(t)ψ(a, l)

= ξ(a, l, t)h(l)

∫ +∞

0
· · ·
∫ +∞

0

m=1∏
j=1

h(vj)

×
m∏
j=1

k(vj)× ξ(vm−1, vm−1, t− a−
m−2∑
i=1

vi)

×χ(vm, vm, t− a−
m−1∑
i=1

vi)

×ψ(a+
m∑
i=1

vi − t, vm)dv1 · · · dvm.

Proof; ∀φ ≥ 0 and consequently for φ ∈ Xp, since

X+
p −X−

p = Xp.

For φ ∈ Xp
ω, λ ∈ C,ψ ∈ D(AK), we consider the

resolvent equation for AK

(λ−AK)ψ = φ. (6)

The solution of (6) is formally given by

ψ(a, l) = ψ(0, l)e−
∫ a

0
(λ+µ(s,l)) ds

+

∫ a

0
e−
∫ a

s
(λ+µ(τ,l)) dτ .φ(s, l) ds. (7)

Accordingly, for a = l, we get

ψ(l, l) = ψ(0, l)e−
∫ l

0
(λ+µ(s,l)) ds

+

∫ l

0
e−
∫ l

s
(λ+µ(τ,l)) dτφ(s, l) ds. (8)

In the sequel we shall need the operators{
Bλ : X1

p → X2
p ;

Bλf)(l, l) = f(0, l)e−
∫ l

0
(λ+µ(s,l)) ds.{

Dλ : X1
p → Xp

ω;

(Dλf)(a, l) = f(0, l)e−
∫ a

0
(λ+µ(s,l)) ds.{

Eλ : Xp
ω → X2

p ;

(Eλφ)(l, l) =
∫ a
0 e

−
∫ l

s
(λ+µ(τ,l)) dτφ(s, l) ds.{

Fλ : Xp
ω → Xp

ω;

(Fλφ)(a, l) =
∫ a
0 e

−
∫ a

s
(λ+µ(τ,l)) dτφ(s, l) ds.

Let
µ = essinf{µ(., .)}.

Then ∀λ with ℜλ > −µ, the Hölder inequality shows

∥Bλ∥ ≤ 1,

∥Dλ∥ ≤ 1

[p(Reλ+ µ)]
1
p

,

∥Eλ∥ ≤ 1

(Reλ+ µ)
1
q

,

∥Fλ∥ ≤ 1

Reλ+ µ
.

By above the operators definite and the fact that ψ
must satisfy the boundary conditions, then equations
(8) and (7) become

ψ|Γ2
= BλKψ|Γ2

+ Eλφ. (9)
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ψ = DλKψ|Γ2
+ Fλφ. (10)

We first show that

(λ−AK)
−1φ− (λ−A0)

−1φ

=

∫ ∞

0
e−λt

∑
n≥0

Vn(t)φdt (11)

for φ ∈ Xp, φ ≥ 0, and λ large enough. According to
[27], there exists λ0 > 0 such that

(λ−AK)−1 =
∑
n≥0

DλK(BλK)nEλ

+(λ−A0)
−1, ∀ℜλ > λ0.

Thus, it suffices to show that, for any n ≥ 0,

DλK(BλK)nEλφ =∫ ∞

0
e−λtVn(t)φdt, ℜλ > λ0.

For n = 0,

Eλφ(l, l) =

∫ a

0
e−
∫ l

s
(µ(τ,l)+λ)dτφ(s, l)ds

=

∫ ∞

0
e−λtχ(l, l − t)φ(l − t, l)dt.

By Fubini’s theorem

KEλφ(0, l) =

∫ ∞

0
e−λtdt

∫ l2

l1
k(l, l′)

×χ(l′, l′ − t)φ(l′ − t, l′)dl′.

Then

DλKEλφ(a, l) = e−
∫ a

0
µ(s,l)ds

∫ ∞

0
e−λ(t+a)dt

×
∫ l2

l1
k(l, l′)χ(l′, l′ − t)φ(l′ − t, l′)dl′.

We make the change of variables s = t+ a and get

DλKEλφ(a, l)

= e−
∫ a

0
µ(τ,l)dτ ×

∫ ∞

0
e−λsds

∫ l2

l1
k(l, l′)

×χ(l′, l′ + a− s)φ(l′ + a− s, l′)dl′.

So,

DλKEλφ =

∞∫
0

e−λsV0(s)φds.

In the same way (for the details, see [5]) one can show
by induction that

(DλK)nEλφ(a, l)

= χ(l, 0)

∫ ∞

0
e−λtdt

×
∫ l2

l1
k(l, l′)χ(l′, 0)dl′ · · ·

∫ l2

l1
dl(n−1)

×k(ln−2, ln−1)× χ(ln−1, 0)

∫ l2

l1
k(ln−1, ln).

×χ(ln, l +
n∑
j=1

lj − t)φ(l +
n∑
j=1

lj − t, ln)dln.

Then, it holds that

DλK(BλK)nEλφ(a, l)

= e−
∫ a

0
µ(s,l)ds

∫ ∞

0
e−λ(t+a)dt

∫ l2

l1
k(l, l′)χ(l′, 0)dl′

· · ·
∫ l2

l1
k(l(n−1), ln)χ(ln, 0)dln

· · ·
∫ l2

l1
k(ln, l(n+1))χ(l(n+1),

n+1∑
j=1

lj − t)

×φ(l′ +
n+1∑
j=2

lj − t, l(n+1))dl(n+1).

Making the change of variables s = t+ a yields

DλK(BλK)nEφ =

∫ ∞

0
e−λtVn(t)φdt.

and this ends the proof of (11). Finally, since

(λ−AK)−1φ− (λ−A0)
−1φ

=

∫ ∞

0
e−λt(UK(t)φ− U0(t)φ)dt.

it follows that

UK(t)φ− U0(t)φ =
∞∑
n=0

Vn(t)φ, (t ≥ 0).

Therefore, equation (6) is hold and Lemma 2 is ob-
tained. ⊓⊔

Lemma 3 ([10, Lemma 2.2]) Let (Ω,Σ, µ) be a pos-
itive measure space and S, T be bounded linear op-
erators on L1(Ω, ). (a) The set of all weakly compact
operators is norm-closed subset. (b) If T is weakly
compact and 0 ≤ S ≤ T , then S is weakly compact.
(c) If S and T are weakly compact, then ST is com-
pact.
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Lemma 4 ([10, Lemma 2.3]) Let (Ω,Σ, µ) be a pos-
itive measure space and S, T be bounded linear oper-
ators on Lp(Ω, )(1 < p < ∞) such that 0 ≤ S ≤ T .
If T is compact then S is also compact.

Lemma 5 ([10, Lemma 1.1]) Let (T (t))t≥0 be a
positive and irreducible C0- semigroup on the Ba-
nach lattice X satisfying the inequality ess(T (t)) <

0(T (t)). Then there exist an ε > 0 and an one rank
projection P into X such that, for any η ∈ (0, ε),
there exists M(η) ≥ 1 such that

∥ e−s(A)tT (t)− P ∥L(X)≤M(η)eηt, t ≥ 0.

where s(A) denotes spectral bound of the generator
A with semigroup (T (t))t≥0.

3 Compactness of generated semi-
group

In this section, we will investigate the compactness of
strongly continues semigroup SK(t) and VK(t) gener-
ated by transport operatorAK . Firstly, we prove some
lemmas.

Lemma 6 Let K be the following operator

Kφ = h

∫ +∞

0
k(l′)φ(l′)dl′,

h ∈ Cc(0,+∞), k ∈ Cc(0,+∞).

Then, the operator SK(t) is weakly compact in
L1(∆), and compact in Lp(∆)(1 < p < +∞), t > a.

Proof: When m = 0, t > a, S0(t) = 0 is compact,
when m = 1, S1(t) = 0, when m ≥ 2, by (5), we
have

Um(t)ψ(a, l) = ξ(a, l, t)h(l)

∫ +∞

0
· · ·
∫ +∞

0

×
m−1∏
j=1

h(vj)×
m∏
j=1

k(vj)

×ξ(vm−1, vm−1, t−a−
m−2∑
i=1

vi)

×χ(vm, vm, t− a−
m−1∑
i=1

vi)

×ψ(a+
m∑
i=1

vi−t, vm)dv1 · · · dvm.

As h ∈ Cc(0,+∞) and k ∈ Cc(0,+∞), there exist
0 < l1 < l2 < +∞ such that supp h ⊂ (l1, l2) and

supp k ⊂ (l1, l2). Next, let t ≤ (m− 1)l1, then

t− a−
m−2∑
i=1

vi ≤ t− (m− 2)l1 ≤ l1

and

ξ(vm−1, vm−1, t− a−
m−2∑
i=1

vi) = 0.

Hence, Sm(t) = 0 for allm ≥ t
l1
+1 and (5) becomes

a finite sum, i.e.,

SK(t) = S0(t) + U1(t) +

[ t
l1
]+1∑

m=2

Um(t) (12)

Now, let  x = a+
m∑
i=1

vi − t

dx = dvm−1

then

|Um(t)ψ(a, l)| ≤ ξ(a, l, t)h(t)∥h∥Y∞
×∥k∥Y∞∥h∥m−2

Yq
∥h∥m−2

Yp

×
∫
∆
|k(vm)|ψ(x, vm)dxdvm

where p−1 + q−1 = 1 and therefore

|Um(t)ψ(a, l)|
≤ ξ(a, l, t)h(l)∥h∥Y∞

×∥k∥Y∞∥h∥m−2
Yq

∥h∥m−2
Yp

× eωl2

×
∫
∆
|k(vm)|ψ(x, vm)hω(x, vm)dxdvm

= Om(t)Tψ(a, l) (13)

where the operator T is given by

Tψ(a, l) = ξ(a, l, t)h(t)

∫
∆
|k(vm)|

×ψ(x, vm)hω(x, vm)dxdvm

and the constant Om(t) by

Om(t) = ∥h∥Y∞∥k∥Y∞∥h∥m−2
Yq

∥h∥m−2
Yp

eωl2 .

Since∫
∆
[ξ(a, l, t)|h(l)|p]dadl = t∥h∥pYp < +∞

for all p ≥ 1 and∫
∆
|k(vm)|ψ(x, vm)hω(x, vm)dxdvm

≤ ∥k∥∞∥ψ∥ω,1, if ψ ∈ X1
ω.
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or ∫
∆
|k(vm)|ψ(x, vm)hω(x, vm)dxdvm

≤ l
1
q

2 ∥k∥q∥ψ∥ω,p, if ψ ∈ Xp
ω, (p > 1).

Then, we get that the operator T is one rank in
Xp
ω(p ≥ 1), thus compact from (15), we have

0 ≤ Um(t) +Om(t)T ≤ 2Om(t)T

that implies Um(t) + Om(t)T is weakly compact in
L1(∆) and compact in Lp(∆)(p > 1). So, the oper-
ator

Um(t) = (Um(t) +Om(t)T )−Om(t)T

is weakly compact L1(∆) and compact in Lp(∆)(p >
1). therefore, the operator SK(t) is weakly compact
L1(∆) and compact in Lp(∆)(p > 1). ⊓⊔

Lemma 7 Let K be the following operator

Kφ = h

∫ +∞

0
k(l′)φ(l′)dl′, h ∈ Yp, k ∈ Yq.

where p−1 + q−1 = 1, then the operator SK(t) is
weakly compact in L1(∆) and compact in Lp(∆)(p >
1) for all t > a.

Proof: Let t > 0 and ω ≥ ω0, since h ∈
Yp and k ∈ Yq, then there exist two sequences
{hn} ⊂ Cc(l,∞) and {kn} ⊂ Cc(l,∞). converg-
ing to h and k in Yp and Yq. respectively by density.
Let

Knφ = hn

∫ +∞

0
kn(l

′)φ(l′)dl′.

Then

|(Kn −K)φ| ≤ |hn − h|
∫ +∞

0
|kn(l′)||φ(l′)|dl′

+|h|
∫ +∞

0
|kn(l′)− k(l′)||φ(l′)|dl′

and

∥(Kn −K)φ∥Yp ≤ [∥hn − h∥Yp∥kn∥Yq
+∥h∥Yp∥kn − k∥Yq ]∥φ∥Yp

Therefore

lim
n→+∞

∥Kn −K∥L(Yp) = 0

Now, Lemma 3.5 in [10] obviously implies that

lim
n→+∞

∥SKn(t)− SK(t)∥L(Lp(∆)) = 0

and by the lemma 6 we get that SK(t) is weakly com-
pact in L1(∆) and compact in Lp(∆)(p > 1). ⊓⊔

Lemma 8 LetK be the following finite rank operator

Kφ =
n∑
i=1

hi

∫ +∞

0
ki(l

′)φ(l′)dl′,

hi ∈ Yp, ki ∈ Yq, i = 1, 2, · · · , n

and p−1 + q−1 = 1, Then, the operator SK(t) is
weakly compact in L1(∆) and compact in Lp(∆)(p >
1) for all t > a.

Proof: Let t > 0, and ω > ω0, let

K1φ = h

∫ +∞

0
k(l′)φ(l′)dl′

where h =
n∑
i=1

|hi| ∈ Yp and k =
n∑
i=1

|ki| ∈ Yq.

It is easy to see that K1 is one rank operator, By
Lemma 7, we know the operator SK1(t) is a weakly
compact in L1(∆) and compact in Lp(∆)(p > 1).

On the other hand, for all φ ∈ (Yp)+, we have

|Kφ| ≤
n∑
i=1

|hi|
∫ +∞

0
|ki(l′)|φ(l′)dl′

≤ [
n∑
i=1

|hi|]
∫ +∞

0
[
n∑
i=1

|ki(l′)|]φ(l′)dl′

= h

∫ +∞

0
k(l′)φ(l′)dl′

and hence |Kφ| ≤ K1φ. By theorem 4.3 of [10], we
get that

|SK(t)φ| ≤ SK1(t)|φ|, t ≥ 0.

This implies

0 ≤ SK(t) + SK1(t) ≤ 2SK1(t)

and therefore, the operator SK(t) + SK1(t) is weakly
compact in L1(∆) and compact in Lp(∆)(p > 1). By
now, we get

SK(t) = SK(t) + SK1(t)− SK1(t)

is weakly compact in L1(∆) and compact in
Lp(∆)(p > 1). ⊓⊔

Theorem 9 Let K be a compact operator in Yp(p ≥
1). Then for all t > 2a, semigroup SK(t) is a compact
operator in Lp(∆)(p ≥ 1).

Proof: Let K be a compact operator in Yp(p ≥ 1),
so, by [11, corollary 5.3], there exists a sequence Kn

of finite rank operators satisfy:

lim
n→+∞

∥Kn −K∥L(Y1) = 0
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On the one hand, by Lemma 5, we know that the op-
erator SKn is compact in Lp(∆). and by Lemma 3.5
in [10]

lim
n→+∞

∥SKn(t)− SK(t)∥L(L(∆)) = 0

which leads to the weak compactness of the operator
SK(t). therefore, for all t > 2a, semigroup SK(t) is
a compact operator in Lp(∆). ⊓⊔

Let us define the following operator

Bφ(a, l) = −µ(a, l)φ(a, l).

where, we impose the following hypothesis
(O3) µ ∈ L∞(∆).
So, we can know that the operator B is a bounded

operator. let AK = MK + B, under the hypothesis
(O3), then it is to get that the operator AK can gener-
ate a C0- semigroup VK(t) (see [35]).

Theorem 10 LetK be a compact operator in Yp(p ≥
1), B is a bounded operator, then, for all t >
2a, semigroup VK(t) is a compact operator in
LP (∆)(p ≥ 1).

Proof: By Theorem 9, for all t > 2a, we have got
that the semigroup SK(t) generate by MK is compact
in LP (∆)(p ≥ 1), then for all t > 2a, the semigroup
SK(t) generate by MK is compact in LP (∆)(p ≥ 1).
on the other hand, the operatorB is bounded, we have
that the semigroup VK(t) is also a compact operator
in LP (∆)(p ≥ 1), thank to the perturbation theorem
(see, [35][37]).

4 Spectrum of transport operator

In this section, we are going to discuss the spectral
properties of transport operator AK , by the theorem
10 and spectral mapping principle [34, 35], we give
the following theorem:

Theorem 11 Assume that K is compact in Yp(p ≥
1), then

(1) The spectrum σ(AK) of the transport opera-
tor AK is countable and consist of, at most, isolated
eigenvalues with finite algebraic multiplicity, there-
fore σ(AK) = {λ1, λ2, · · ·} with ℜλn+1 ≤ ℜλn for
all integer n and ℜλn → −∞(n → ∞), if σ(AK) is
not finite.

(2) We denote by ki the order of the pole λi of
the resolvent of AK and by Pn the associated eigen-
projection, then, for any integer n

VK(t) =
n∑
i=1

eλit
ki−1∑
j=0

tj

j!
(AK − λi)

jPn

+Rn(t), (t > a).

and, for any ε > 0, there exist M > 0, such that

∥Rn(t)∥ ≤Me(ε+ℜλn+1), ∀t > a.

Note that the boundary operator K has been used
under the hypothesis: K is a compact operator, this
hypothesis is fulfilled, for instance, to see [17].

An open question is : what will happen when
K satisfy the non-local condition. i.e.,

Kφ(l) = αφ(l) + β

∫ l2

l1
k(l, l′)φ(l′)dl′

We can assume that
(O4) : K = K1 +K2,
with Ki ≥ 0, i = 1, 2; K2 is compact if 1 < p <∞;
K2 weakly compact if p = 1. then, we have obtained
results as follow:

Theorem 12 [30] Suppose that (O4) holds and that
there exists λ0 such that

rσ(BλK1) < 1 (14)

for all λ > λ0, where rσ(T ) denotes spectral radius
of operator T . Then:

(1) The spectrum σ(AK) of the transport opera-
tor AK consists of, at most, isolated eigenvalues with
finite algebraic multiplicities.

(2) If σ(AK) ̸= ϕ, then there exists a real leading
eigenvalue λ;

(3) If rσ(Bλ0K2) > 1, then σ(AK) ̸= ϕ.

Remark 13 Since K2 is compact transition opera-
tor, then there exists a sequence of finite rank opera-
tors which converges, in the operators norm, to K2.
Hence, it suffices to establish the result for a finite

rank operator, that is , K2 =
n∑
j=1

⟨·, αk⟩βk, where

n ∈ N, αk ∈ X2
q , βk ∈ X1

p , q = p/(p− 1). namely,
Ku := ⟨u, α⟩β, where α(·) ∈ X2

q , β(·) ∈ X1
p .

We denote by Γs the strip by

Γs = {λ ∈ C | −µ ≤ ℜλ ≤ s(AK)}.

Theorem 14 [30] Suppose that (O4) holds and that
there exists λ0 such that

rσ(BλK1) < 1. (15)

for all λ > λ0, then the operator (I − Hλ)
−1 exists

for all λ ∈ Γs with |Imλ| sufficiently large.

We assume that K satisfies (O5): K is positive
and some power of K is compact.
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Theorem 15 If the hypothesis (O5) holds, then:
(1) The spectrum σ(AK) of the transport opera-

tor AK consists of, at most, isolated eigenvalues with
finite algebraic multiplicities.

(2) If σ(AK) ̸= ϕ, then there exists a real leading
eigenvalue λ.

(3) σ(AK) ̸= ϕ if and only if rσ(K) > 0.

Proof: Let Nλ = KBλ, λ > −µ. for Bλ ≤ I, λ >
−µ, then

Nλ ≤ K, ∀λ > −µ. (16)

Next, from (O5) we infer that there exists an integer
N such that KN is compact, (18) implies

(Nλ)
N ≤ KN , forallλ > −µ.

Using Dodds-Fremlin [38], we getNN
λ is compact for

all λ > −µ. thus

(Nλ)
N ≤ BλK

N , ∀λ > −µ.

Since Bλ → 0 (λ → +∞) ,KN is compact, we ob-
tain

BλK
N → 0 (λ→ +∞),

this implies that

(Nλ)
N → 0, (λ→ +∞).

Consequently, using the estimate

rσ(Nλ) ≤ ∥(Nλ)
n∥

1
n , n = 1, 2, · · · .

Therefore

rσ(Nλ) → 0, (λ→ +∞). (17)

(19) together with the Gohberg-Shmul’yan theorem
implies that (I − (Nλ)

N ) is boundedly invertible for
all λ ∈ C except at a discrete set of point S = {λk :
k = 1, 2, · · ·}; each λk is a pole of (I − (Nλ)

N )−1.
Using the identity

I − (Nλ)
N = (I −Nλ)(I +Nλ +

· · ·+ (Nλ)
N−1), λ ∈ C, λ ̸∈ S

Hence,

(I −Nλ)
−1 = (I +Nλ + · · ·+ (Nλ)

N−1)

(I − (Nλ)
N )−1, λ ∈ C, λ ̸∈ S

Hence, if λ ∈ C, λ ̸∈ S, (9) becomes

ψ|Γ2
= (I −Nλ)

−1Eλφ.

Thus, (10) becomes

ψ = DλK(I −Nλ)
−1Eλφ+ Fλφ

Accordingly, the solution of the problem is given by
ψ = (λ−AK)−1φ. So,

(λ−AK)
−1 = DλK(I −Nλ)

−1Eλ + Fλ. (18)

Thus, each λ ∈ S is a pole of (λ − AK)−1 with
finite rank residues, i.e., eigenvalues with finite alge-
braic multiplicities. therefore, σ(AK) consists of, at
most, isolated eigenvalues with finite algebraic multi-
plicities.

(2) Using (20) we get

(λ−AK)
−1

= DλK(I −Nλ)
−1Eλ + Fλ

=
∑
n≥0

DλK(Nλ)
nEλ + Fλ

Clearly, by the positivity of the operators Bλ, Eλ,
Dλ and Fλ, we deduce that (λ − AK)

−1 is positive.
Hence, the proof of (2) is merely a consequence of a
well known result on positive resolvent operators.

(3) Let λ ∈ σ(AK) ∩ R, it follows from the
spectral mapping theorem that rσ(Nλ) is a continuous
strictly decreasing function. Next,

λ ∈ σp(A) ⇔ 1 ∈ σp(Nλ). (19)

According (19) we get

σ(AK) ̸= ϕ⇔ lim
λ→−∞

rσ(Nλ) > 1.

Let {
B∗
λ : X1

p → X2
p ;

(B∗
λf)(l, l) := f(0, l)e−

∫ l

0
(λ+µ(s,l)) ds.

where l ∈ [ε, 1ε ](ε > 0), let N∗
λ = B∗

λK, then

B∗
λ → Bλ, ε→ 0

N∗
λ → Nλ, ε→ 0.

Hence,

σ(AK) ̸= ϕ⇔ lim
λ→−∞

rσ(N
⋆
λ) > 1 (ε→ 0).

On the other hand, for λ < −µ, we have

B⋆
λ ≤ e−(λ+µ) 1

ε .

Hence

rσ(N
⋆
λ) = rσ(B

⋆
λK)

≤ e−(λ+µ) 1
ε rσ(K), ∀λ < −µ.
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Clearly, if rσ(K) = 0, then rσ(N⋆
λ) = 0; on the other

hand, if rσ(K) > 0, ∀λ < −µ, then

B⋆
λ ≥ de−(λ+µ)ε

where
0 < d = e−

∫ ε

0
(µ(s,l)−µ)ds ≤ 1,

andlim
ε→0

d = 1. Hence

N∗
λ ≥ de−(λ+µ)εK

and
rσ(N

∗
λ) ≥ de−(λ+µ)εrσ(K).

If rσ(K) > 0, then

lim
λ→−∞

rσ(N
∗
λ) = +∞.

so, σ(AK) ̸= ϕ if and only if rσ(K) > 0. on the other
hand, if the upper limit M = 1

l

∫ l
0 µ(s, l)ds is finite,

then operator Nλ is unbounded for λ < −M . This
completes the proof of the assertion (3). ⊓⊔

5 Asymptotic Behavior

In this section, by the mathematical description of the
cellular profiles of the model, we are to give that the
asymptotic behavior of the generated semigroup .

Theorem 16 Let K be a positive and compact oper-
ator, Then,

wess(VK(t)) ≤ −µ.

where µ denotes the mortality rate.

Proof: Let t > 0 be fixed and ω > ω0. Using previ-
ous Lemma we get that the semigroup (VK(t))t≥0 is
compact operator, then

wess(VK(t)) = wess(V0(t)) ≤ −µ.

thus the theorem is obtained. ⊓⊔
In the case ∥K∥L(Yp) > 1 means that the cell den-

sity is increasing during each mitotic. This case is the
most observed and biologically interesting for which
we give the cellular profile as follows by previous re-
sults and [10, Theorem 6.2]

Theorem 17 If K is a positive, irreducible and com-
pact operator with r(Kµ−µ) > 1, then there exist a
one rank projection P into Xp

w(w > w0, p ≥ 1) and
ε > 0 such that for every η ∈ (0, ε), there exists
M(η) ≥ 1 satisfying

∥ e−s(A)tT (t)− P ∥L(X)≤M(η)eηt, t ≥ 0.

where the spectral bound of s(AK) of the generator
A is given by

s(AK) =

{
sup{ℜλ, λ ∈ σ(A)}, ifσ(A) ̸= 0,
−∞, ifσ(A) = 0.

Proof: Since r(Kλ)(Kλ = (γ1ελ)K) is decreasing (
[10, Lemma 5.3]), then

∥K∥L(Yp) ≥ r(K) = r(K0) ≥ r(Kµ−µ) > 1.

where ελ = e−λa, µ = sup{µ(a, l)}. which implies
that the hypothesis (O)2 hold. By [10, Lemma 5.3],
there is a λ0 such that r(Kλ)(Kλ0 = 1, then

µ− µ < λ0 = w(UK(t)).

Hence, the compactness of K and [10, Theorem
5.1] and Theorem 15 imply

wess(VK(t)) ≤ −µ < w(UK(t))− µ ≤ w(VK(t)).

Therefore, by Lemma 5, The proof is achieved. ⊓⊔

Remark 18 According to the theorems 8-10, it suf-
fices to establish the result for a finite rank operator,

that ia is, K =
n∑
j=1

⟨·, αk⟩βk, where n ∈ N, αk ∈

X2
q , βk ∈ X1

p , q = p/(p − 1). namely, Ku :=

⟨u, α⟩β, where α(·) ∈ X2
q , β(·) ∈ X1

p .

We denote by Γs the strip by

Γs = {λ ∈ C | −µ ≤ ℜλ ≤ s(AK)}.

Remark 19 According to theorem (8–10), if the
boundary operator K is compact, then we have inves-
tigated the spectrum of transport operatorAK and the
solution’s asymptotic behavior of the transport equa-
tion; if the boundary operator K is not compact, then
we can only discuss the spectrum of the transport op-
erator AK in right half-plane Γs, but the solution’s
asymptotic behavior of the transport equation is still
open.
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