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1 Introduction

Let C be a nonempty subset of a Hilbert space x .
Recall that a mapping T:C—C is said to be k-
strictly pseudo-contractive if there exists a constant
k €[0,1) such that

||Tx—Ty||2 <|jx— y||2 +k[(H =T)x—=(1 —T)y||2

forall x,yeC.

A point xeC is called a fixed point of T if
x =Tx. We will denote the set of fixed points of T
by F(T). Note that the class of k -strictly pseudo-

contractions includes the class of nonexpansive
mappings T on C as a subclass. That is, T is
nonexpansive if and only if T is 0 -strictly pseudo-
contractive. The mapping T is also said to be
pseudo-contractive if k=1 and T is said to be
strongly pseudo-contractive if there exists a
constant 1e(0,1) such that T-Al is pseudo-

contractive. Clearly, the class of k -strictly pseudo-
contractive mappings is the one between classes of
nonexpansive mappings and pseudo-contractive
mappings. Also we remark that the class of strongly
pseudo-contractive mappings is independent from
the class of k -strictly pseudo-contractive mappings.
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Recently, many authors have been devoting the
studies on the problems of finding fixed points for
k -strictly pseudo-contractive mappings (see, e.g.,

[1]- [6]).

We define the concept of k-strictly pseudo-
contractive mapping in a CAT(0) space as follows.

Let C be a nonempty subset of a CAT(0) space

X . A mapping T:C —C is said to be k-strictly
pseudo-contractive if there exists a constant
k €[0,1) such that

ATy A0y +k(d(xTO+d(y.Ty)) @
forall x,yeC.

Acedo and Xu [7] introduced a cyclic algorithm in
a Hilbert space. We modify this algorithm in a
CAT(0) space.

Let x,eC and {a,} be a sequence in [a,b] for
some a,b e (0,1). The cyclic algorithm generates a
sequence {x,} in the following way:
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X; = agXo @ (1—aq)ToXo,
Xy = ayX; @ (L—ay)Tyxq,

XN =y Xy @(L—ay )Ty aXnoas
Xns1 = an Xy ©(L—ay)ToXy,

or, shortly,
Xn+l =y Xn G_)(:I-_an )T[n]Xn, vn = 01 (2)

where Ty, =T;, with i=n (modN), 0<i<N-1. By
taking Ty, =T for all n in (2), we obtain the Mann
iteration in [8].

In this paper, motivated by the above results, we
prove the demiclosedness principle for k -strictly
pseudo-contractive mappings in a CAT(0) space.

Also we present the A-convergence of the cyclic
algorithm and the strong convergence the modified
Halpern iteration which is introduced for Hilbert
space by Hu [9] for these mappings in a CAT(0)

space.

2 Preliminaries on CAT(0) space
A metric space X is a CAT(0) space if it is

geodesically connected and if every geodesic
triangle in X is at least as ‘thin’ as its comparison
triangle in the Euclidean plane. It is well known that
any complete, simply connected Riemannian
manifold having non-positive sectional curvature is
a CAT(0) space. Other examples include Pre-

Hilbert spaces (see [10]), Euclidean buildings (see
[11]), R -trees (see [12]), the complex Hilbert ball
with a hyperbolic metric (see [13]) and many others.
For a thorough discussion of these spaces and of the
fundamental role they play in geometry, we refer
the reader to Bridson and Haefliger [10].

Fixed point theory in a CAT(0) space has been

first studied by Kirk (see [14], [15]). He showed
that every nonexpansive mapping defined on a
bounded closed convex subset of a complete
CAT(0) space always has a fixed point. Since then
the fixed point theory in a CAT(0) space has been
rapidly developed and many papers have appeared
(see e.g., [16]-[19]). It is worth mentioning that
fixed point theorems in a CAT(0) space (specially
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in R -trees) can be applied to graph theory, biology
and computer science (see, e.g., [12], [20]- [23]).
Let (X,d) be a metric space. A geodesic path

joining xe X to ye X (or more briefly, a geodesic
from x to y) is a map c¢ from a closed interval
[0,]]cR to X such that c0)=x, c()=y and
d(c(t), ct)) =|t—t | for all t,t <[0,1]. In particular,
c is an isometry and d(x,y) =1. The image of c is

called a geodesic (or metric) segment joining x and
y . When it is unique, this geodesic is denoted by

[x,y]. The space (X,d) is said to be a geodesic

space if every two points of X are joined by a
geodesic and X is said to be a uniquely geodesic if
there is exactly one geodesic joining x to y for

each x,ye X.
A geodesic triangle A(x;,x,,X3) in a geodesic
metric space (X,d) consist of three points in X

(the vertices of A) and a geodesic segment between
each pair of vertices (the edges of A). A
comparison triangle for geodesic triangle
A(Xq, Xy, X3) in (X,d) is a triangle

A(X;, %5, X3) = A(X1,X2,%3) in the Euclidean plane

R?> such that d_,(xi,x;)=d(x,x; for
R J

i, je{1,2,3}. Such a triangle always exists (see

[10]).

A geodesic metric space is said to be a CAT(0)

space [10] if all geodesic triangles of appropriate
size satisfy the following comparison axiom:

Let A be a geodesic triangle in X and A be a
comparison triangle for A. Then, A is said to
satisfy the CAT(0) inequality if for all x,yeA and

all comparison points x,y e A,
d(xy)<d_, (x, y).

If x,y,,y, are points in a CAT(0) space and if y,
is the midpoint of the segment [y,,y,], then the
CAT(0) inequality implies that

1 1 1
d(xyo ) <2 d00yn)* + 2 d(xy2)* =4 A y2)*.

This is the (CN) inequality of Bruhat and Tits [24].
In fact (see [10, p.163]), a geodesic metric space is a
CAT(0) space if and only if it satisfies the (CN)

inequality. It is worth mentioning that the results in
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a CAT(0) space can be applied to any CAT(k)
space with k<0 since any CAT(k) space is a

CAT(k') space for every K >k (see [10, p.165]).

Let x,ye X and by Lemma 2.1 (iv) of [16] for
each te[0,1], there exists a unique point z €[x,y]
such that

d(x,2) =td(x,y), d(y,2) =(1-t)d(x,y).  (3)

From now on, we will use the notation (1—t)x®ty

for the unique point z satisfying (3). We now
collect some elementary facts about CAT(0) spaces

which will be used in sequel the proofs of our main
results.

Lemmal Let X bea CAT(0) space. Then
(i) (see [16, Lemma 2.4]) for each x,y,ze X and
t €[0,1], one has

d(A-t)xDty,z) < (1-t)d(x,2) +td(y, z),

(ii) (see [16, Lemma 2.5]) for each x,y,ze X and
t €[0,1], one has

d((1-t)x (Jaty,z)2
<(A-t)d(x,2)* +td(y,z)* —t(1-t)d(x, y)>

3 Demiclosedness principle for k -
strictly pseudo-contractive mappings

In 1976 Lim [25] introduced a concept of
convergence in a general metric space setting which
is called A-convergence. Later, Kirk and Panyanak
[26] used the concept of A -convergence introduced
by Lim [25] to prove on the CAT (0) space analogs

of some Banach space results which involve weak
convergence. Also, Dhompongsa and Panyanak [16]
obtained the A-convergence theorems for the
Picard, Mann and Ishikawa iterations in a CAT(0)
space for nonexpansive mappings under some
appropriate conditions.

We now give the definition and collect some basic
properties of the A -convergence.

Let X be a complete CAT(0) space and {x,} be a

bounded sequence in X . For x e X , we set
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r(x.{x,})=limsup_,, d(xx,).

The asymptotic radius r({x,}) of {x,} is given by

r({x,})=inf{r(x.{x}):xeX}.

The asymptotic center A({x,}) of {x,} is the set

Alx1) = [xe Xar(x{x ) =r({x,)))

It is known that in a complete CAT(0) space,
A({xn}) consists of exactly one point (see [27,
Proposition 7]).

Definition 1 ([25], [26]) A sequence {x,} in a
CAT(0) space X is said to be A-convergent to
x e X if x is the unique asymptotic center of {u,}
for every subsequence {u,} of {x,}. In this case, we
Write A -limnX, =x and x is called the A -limit

of {x,}
Lemma 2

(i) Every bounded sequence in a complete CAT(0)

space always has a A-convergent subsequence.
(see [26, p.3690])

(ii) Let C be a nonempty closed convex subset of a
complete CAT(0) space and let {x,} be a bounded

sequence in C. Then the asymptotic center of {x,}
isin C. (see [28, Proposition 2.1])

Lemma 3 ([16, Lemma 2.8]) If {x,} is a bounded
sequence in a complete CAT(0) space with
Ax, ) ={x}, {u,} is a subsequence of {x,} with
AQu.p)={u} and the sequence {d(x,u)} is
convergent then x =u.

Let C be a closed convex subset of a CAT(0)
space X and {x,} be a bounded sequence in C. We
denote the notation

o > w > (W) = inf D09

(4)
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where ®(x) = limsup,,_,  d(X,,X).
Nanjaras and Panyanak [29] gave a connection
between the "+ " convergence and A -convergence.

Proposition 1 ([29, Proposition 3.12]) Let C be a
closed convex subset of a CAT(0) space X and
{x,} be a bounded sequence in C. Then A-
limnoe X, = P implies that {x, i p.

The purpose of this section is to prove
demiclosedness principle for k-strictly pseudo-
contractive mappings in a CAT(0) space by using
the convergence defined in (4).

Theorem 1 Let C be a nonempty closed convex
subset of a complete CAT() space X and

T:C—>C be a k-strictly pseudo-contractive
mapping such that ke{O,%) and F(M)=g. Let

{x,} be a bounded sequence in C such that A-
liMseX, =W and  limnod(X,,TX,)=0. Then

Tw=w.

Proof By the hypothesis, A -limy_.X, =w. From
Proposition 1, we get {x,}+—>w. Then we obtain
A(x,}) ={w} by Lemma 2 (ii) (see [29]). Since
limn_e d(X,,TX,) =0, then we get

D(x) = limsupd (X, x) = limsupd (TX,,, X)

n—oo n—o

(5)

forall xeC. In (5) by taking x =Tw, we have

®(Tw)? = limsupd (Tx,,, Tw)?

N—o0

< limsupld (x,, )2 + k(d (X, Txy) + d (w, Tw)) |

N—o0

<limsupd (x,,,w)? +k limsup(d (x,,, T, ) +d (w, Tw) )*

n—o0 nN—o0
(6)

= d(W)? +kd (w, Tw)?

The (CN) inequality implies that

2
wodTw 1 1 1
d(xn,Tj szd(xn,w)z +§d(xn,TW)2 —Zd(W,TW)Z.

Letting n — oo and taking superior limit on the both
sides of the above inequality, we get
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(D(W@TW
2

2
1 2, 1 2 1 2
J SEQD(W) +Ed)(l'w) —Zd(W,TW).

Since A({x, }) = {w}, we have
weTw
2

21 1 1
o(w)? < cp( j s?p(w)2 +ECD(TW)2 —Zd(W,TW)Z.

which implies that

d(w, Tw)? < 2d(Tw)? — 2d(w)2. (7)

By (6) and (7), we get (1—2k)d(w,Tw)? <0. Since

k e {03 , then we have Tw=w as desired.

Now, we prove the A-convergence of the cyclic
algorithm  for  k-strictly  pseudo-contractive
mappings in a CAT(0) space.

Theorem 2 Let C be a nonempty closed convex
subset of a complete CAT(0) space X and N >1

be an integer. Let, for each 0<i<N-1, T;:C >C
be k;-strictly pseudo-contractive mappings for
some 0<k; < % Let k = max{k;;0<i <N -1}, {&,}

be a sequence in [a,b] for some a,be(0,1) and
k<a.let F=nNlF(T)=3. For x,eC, let {x,}

be a sequence defined by (2). Then the sequence
{x,} is A-convergent to a common fixed point of

the family {T; 5"

Proof Let peF. Using (1), (2) and Lemma 1, we
have

d(Xn,1, P)? = Ay Xy © (L= ) Tpp%ns P)?
<a,d(X,, p)? +(@—ct)d (T Xq )
—ay (1= 00)d (X Ty Xa)
<y (¥, P)? + (L= ) (%, P)2 K (%, Teng) |
—ap (1= 0)d (X, Ty Xn)?
=d(X,, p)? = (L= ety —K)A(Xq, T %)
<d(x,, p)>.

(8)
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This inequality guarentees that the sequence {x,} is
bounded and lim,_..d(x,, p) exists for all peF.
By (8), we also have

1
<

2 2
S e i 90 P ~d05 7]

d (Xn vT[n]Xn )2

1 2 2
ﬁm[d(xny P)* —d(Xns1, P) ]

Since  limd(x,, p)  exists, we obtain
liMn—s0 d (X, Tpy X, ) = 0. TO show that the sequence

{x,} is A-convergent to a common fixed point of
N-1

the family {T; }';', we prove that

\

{un};{xn}

a)W(Xn) =

and w,(x,) consists of exactly one point. Let
uea,(x,). Then, there exists a subsequence {u,}

of {x,} such that A({u,})={u}.By Lemma 2, there
exists a subsequence {v,} of {u,} such that A -
lim>Vy =vVeC. By Theorem 1, we have veF

and by Lemma 3, we have u=veF. This shows
that w,(x,)<F. Now we prove that w,(x,)

consists of exactly one point. Let {u,} be a
subsequence of {x,} with A({u,})={u} and let

A({x,})={x}. We have already seen that u=v

and veF. Finally, since {d(x,,v)} is convergent,

we have x =veF by Lemma 3. This completes the
proof.

4 The strong convergence theorem for
the modified Halpern iteration

In [9], Hu introduced a modified Halpern iteration.
We modify this iteration in CAT(0) spaces as

follows.
For an arbitary initial value x,eC and a fixed

anchor u e C, the sequence {x, } is defined by

Xpp1 = U@ (A—ap)Yn,

(9)

Yo = P xn®17“ TX,, Vn=0,

l-a, -a,
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where {a,} {8} {r,} are three real sequences in
(0,1) satisfying  «, + 3, +7,=1. Clearly, the
iterative sequence (9) is a natural generalization of
the well known iterations.

(i) If we take B,=0 for all n in (9), then the

sequence (9) reduces to the Halpern’s iteration in
[30].

(ii) If we take «,=0 for all n in (9), then the
sequence (9) reduces to the Mann iteration in [8].

In this section, we prove the strong convergence
of the modified Halpern’s iteration in a CAT (0)

space.
Recall that a continous linear functional . on

¢, , the Banach space of bounded real sequences, is
called a Banach limit if |u|=x(11,...)=1 and

w(@y) = uay,y) forall {a, ), <7,

Lemma 4 (see [31, Proposition 2]) Let
{a;,a,,..Je ¢, be such that u(a,)<0 for all

Banach limits » and limsup, , (a,;—a,)<0.
Then, limsup, . a, <0.

Lemma 5 Let C be a nonempty closed convex
subset of a complete CAT(0) space X, T:C—C

be a k-strictly pseudo-contractive mapping with
ke[0,1) and S:C —C be a mapping defined by

Sz=ke®(1-k)JTz, for zeC. Let ueC be fixed.
For each t<[0,1], the mapping S, :C —C defined
by

Sz=tu®(1-t)Sz=tud(1-t)(kz ®(1-k)Tz)
for z € C, has a unique fixed point z, € C, that is,
7, =S,(z,) =tu®(L-1)S(z,). (10)

Proof As it has been proven in [32], if T is a k-

strictly pseudo-contractive mapping with k [0,1),

S is a nonexpansive mapping such that
F(S)=F(T). Then, from Lemma 2.1 in [17], the

mapping S, has a unique fixed point z, C.

Lemma 6 Let X,C,T and S be as in Lemma 5.
Then, F(T)=@ if and only if {z} given by (10)

Volume 13, 2014



WSEAS TRANSACTIONS on MATHEMATICS

remains bounded as t—0. the

following statements hold:

In this case,

(1) {z,} converges to the unique fixed point z of T
which is nearest to u,

(2) d?(u,z)<d?(u,x,) for all Banach limits u
and all bounded sequences {x,}  with
liMn_ee d (Xy, TX,) =0.

Proof If F(T) =@, then we have F(S)=F(T) = @.
Also, if limy_.d(X,,TX,) =0, we obtain that

d(X,,5%,) = d(X,, kx, ®(L—k)Tx,)
<(1-k)d(x,,Tx,) >0as n—> .

Thus, from Lemma 2.2 in [17], the rest of the proof
of this lemma can be seen.

The following lemma can be found in [33].

Lemma 7 (see [33, Lemma 2.1]) Let {a,} be a

sequence of non-negative real numbers satisfying
the condition

n+1—(1 7/n)a +7no_nv VI’I>0

where {y,} and {o,} are sequences of real
numbers such that

(D) fndeodand Y =
(2) either limsup, o, <0 or Z::l|ynan| <o,

Then, limy_.a, =0.

We are now ready to prove our main result.

Theorem 3 Let C be a nonempty closed convex
subset of a complete CAT(@©) space X and

T:C—>C be a Kk-strictly pseudo-contractive

Pn <land FM=3.

n

mapping such that 0 <k < —"— =

Let {x,} be a sequence defined by (9). Suppose that

len)  {B,) and {y,} satisfy the following
conditions:
Cy lim, . a, =0,

(C2) 3 an =
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(C3) lim B, #k and lim __», #0.

Then the sequence {x,} converges strongly to a
fixed point of T.

Proof We divide the proof into three steps. In the
first step we show that {x,},{y,} and {Tx,} are

bounded sequences. In the second step we show that
limMnoe d(X,,TX,) =0. Finally, we show that {x,}

converges to a fixed point z € F(T) which is nearest

tou.
First step: Take any p e F(T), then, from Lemma 1

and (9), we have

d(Yy. p)°
B d(xn,p)2+ 7n d(l'xn,p)z ﬂn?/n

< _Fn
l—an l—an (1 an)

Pn
< d0, P e - 2 (d(xy, p)? +kd (X, T%y)? )
ﬂnyn 2
- d(x,,TX,
(1_an)2 (Xn X)
7n ﬁn 2
_d(xnvp) _l (1 a, _kjd(xn’TXn)
<d(x,, p)>.

Also, we obtain

d (X1 P)?
<a,d(u, p)? +Q-a, )d(y,, p)2 —a,1—a,)d(,y,)?
<a,d(u, p)?

+(l—an){d(xn, p)? —L(i—de(xn,Txn)z}
l-a,\1-«,

-, (1_an)d(uv yn)2

= a,d(u, p)? + 1 —a, (X, p)? _yn(lﬁ_k}j(xn:xn)z
—a,

—a(l- e (U, y,)? (11)

<and(u, p)? +(L-a, )d(X,, p)?
< max{d(u, p),d(x,, p)z}

By induction,

d(Xper, P)2 < maxid(u, p)2,d(xo, p)2 |

Volume 13, 2014

———d(x,,TX, )



WSEAS TRANSACTIONS on MATHEMATICS

This proves the boundedness of the sequence {x,},
which leads to the boundedness of {Tx,} and {y, }

Second step: In fact, we have from (11) (for some
appropriate constant M > 0) that

d (X, p)°
<a,d(u, p)’ +(1-a,)d(x, p)*
_yn[ B

l-«,

- de (X, TX,)?

= a, (d(u, p)* —d(x,, P)*)+d(x,, p)°
B
_7n(1_a

<a M +d(x,, p)? —7n(ﬁ—kjd(xn,Txn)2,
n

which implies that

7n(1_ﬂ; —de(xn,Txn)z—anM <d(x,, p)* —d(Xp,1, P)°.
n
(12)
If 7{ P —de(Xn,TXn)Z—anM <0, then
l-¢,
A% TX,)2 S —— M,

}/ IBH _k
n l-¢,

and hence the desired result is obtained by the
conditions (C1) and (C3).

I yn[l e

following (12), we have

Sl

n=0

—k]d(xn,Txn)z —a,M >0,  then

—kjd(xn,Txn)z—anM}

< d(X01 p)2 _d(xm+l! p)2
<d (%, p)*.

That is

—de(xn,Txn)z —anM}<OO.

ap

Thus
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. [ (ﬂn
lim| 7n
n—ow l—an

Then we get

—de(xn,Txn)z —anm}:o.

limd(x,,Tx,)=0.

N—o0

(13)

Third step: Using the condition (C1) and (13), we
obtain

d(xn+lv Xn) Sd(xn+l'-rxn) +d(TXn1Xn)

<o, dUu,Tx,) + (Q—a,)d(y,. TX,) +d(TX,, X,)

Pa

n

£and(u,Txn)+(1—an)[1 d(xn,Txn)j+d(Txn,xn)

= o, d (U, Txy ) + (8, +1d (X, TX,)
—0, asn—oo.

Also, from (13), we have

d(x,,TX,) =0, asn— . (14)

/4
d(%n, Yn) <7 .

n

Let z=lim_o2z;,, Where z, is given by (10) in
Lemma 5. Then, z is the point of F(T) which is
nearest to u. By Lemma 6 (2), we have
p(d(u,2)* =d(u,x,)*) <0 for all Banach limits 4 .

Moreover, Since limn_.d (X4, X,) =0,

Iimsup[(d(u,z)2 —d(u, Xn+1)2)— (d(U, z)? —d(UaXn)Z)J: 0.

n—o0

If we take a, =d(u,z)®> —d(u,x,)? in Lemma 4, then
we obtain

limsupld (u,2)? — d(u, x,)?)<0.

n—oo

(15)

It follows from the condition (C1) and (14) that

Iimsup(d(u, 7)? —(1—0!n)d(u! yn)z)

n—oo

= Iimsup(d(u, z)? —d(u, xn)z)

nN—oo

(16)

By (15) and (16), we have
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Iimsup(d(u, 2)? —(1-a, M, yn)z)s 0. (17

nN—o

We observe that

d (Xn+l! Z)Z

<a,d(u,z)? +@-a, )d(y,, 2)? —a, -, ), y,)?

< and(uvz)z +(1_an)d(xnlz)2 _an(l_an)d(u: yn)2

=(1-a,)d(x,2) +,[d(u2)’ - (1-a,)d(uy,) ]

It follows from the condition (C2) and (17), using
Lemma 7, that lim,_..d(X,,z)=0. This completes

the proof of Theorem 3.

We obtain the following corollary as a direct
consequence of Theorem 3.

Corollary 1 Let X,C and T be as Theorem 3. Let
{e,} be a real sequence in (0,1) satisfying the
conditions (C1) and (C2). For a constant s e (k,1),
an arbitary initial value x, eC and a fixed anchor
ueC, letthe sequence {x,} be defined by

Xns1 = U D (L—a, ), ® (L—5)Tx, ), ¥n>0.(18)

Then the sequence {x,} is strongly convergent to a
fixed point of T .

Proof If, in proof of Theorem 3, we take
B =0Q-a,)s and y, =(1-a,)2-5), then we get
the desired conclusion.

Remark 1 The results in this section contain the
strong convergence theorems of the iterative
sequences (9) and (18) for nonexpansive mappings
in a CAT(0) space. Also, our results contain the

corresponding theorems proved for these iterative
sequences in a Hilbert space.
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