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Abstract: A toxoplasmosis spread model between cat and oocyst populations with independent stochastic pertur-
bations is proposed, the existence of global positive solution is derived. By the method of stochastic Lyapunov
functions, we study their asymptotic behavior in terms of the intensity of the stochastic perturbations and the re-
productive number. When the perturbations about the susceptible and infective cats are sufficiently small, as well
as magnitude of the reproductive number is less than one, the infective cats, recovered cats and population oocysts
decay to zero whilst the susceptible components converge to a class of explicit stationary distributions regardless
of the perturbations on the recovered cats and population oocysts. When all the perturbations are small and the
reproductive number is larger than one, we construct a new class of stochastic Lyapunov functions to show the
positive recurrence, and our results reveal some cycling phenomena of recurrent diseases. These results mean that
stochastic system has the similar property with the corresponding deterministic system when the white noise is
small. Finally, numerical simulations are carried out to support our findings.
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1 Introduction
Toxoplasma gondii, often referred to as T.gondii, is a
parasite that is able to infect a wide range of hosts, in-
cluding all mammals and birds[1,2]. Up to one third
of the words human population are estimated to carry
a Toxoplasma infection[3]. The increasing prevalence
of infection in human population is probably due to
the increase in the number of cats[4]. Cats are the key
to control T. gondii due to the fact they shed, via fe-
ces[5], millions of oocysts, which after sporulation in
the environment might infect warm-blooded animals
including human beings.

Mathematical modeling is often used to study the
transmission dynamics of diseases in population from
an epidemiological point of view[6-12]. Abraham et
al.[9] presented an epidemiological model to study the
transmission dynamics of toxoplasmosis in a cat pop-
ulation under a continuous vaccination schedule.

Ṡ(t) = ιR(t)− βS(t)O(t)− γS(t),

İ(t) = βS(t)O(t)− αI(t),

Ṙ(t) = αI(t)− ιR(t) + γS(t),

Ȯ(t) = kI(t)− µ0O(t).

(1)

• The total population of cats is divided into three

disjoint subpopulations: cats who may become in-
fected (Susceptible S(t)), cats infected by T. Gondii
(Infected I(t)), and cats who have been vaccinated or
have immunity (Vaccinated(recovered) R(t)). O(t):
number of oocyst in the environment.

• β: the rate of a susceptible cat transits to the
infected subpopulation.

• µ: the cat natural death rate.

• γ: the rate of a susceptible cat transits to the
vaccinated subpopulation.

• α: the rate of an infected cat transits to the vac-
cinated subpopulation.

• µ0: the death rate of oocysts.

• k: the rate of appearance of new oocysts in the
environment per infected cat.

For model (1), authors assumed that the total cat
population remains constant. But for many cases,
taking into consideration that the size of population
varies is more reasonable. Furthermore, we assume
that the vaccination rate γ of a susceptible cat equals
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to zero. Then model (1) is revised as the follows

Ṡ(t) = Λ− βS(t)O(t)− µS(t),

İ(t) = βS(t)O(t)− (α+ µ)I(t),

Ṙ(t) = αI(t)− µR(t),

Ȯ(t) = kI(t)− µ0O(t).

(2)

The basic reproduction number

R0 = kβΛ/(µµ0(α+ µ1))

measures the average number of new infections gen-
erated by a single infected in a completely susceptible
population. After a simple calculation, we find that
the basic reproductive numberR0 controls completely
the dynamics of the infection. In detail, system (1) has
a disease-free equilibrium E0 = (Λµ , 0, 0, 0), which is
stable when R0 ≤ 1, whereas system (1) admits an
epidemic equilibrium E∗ = (S∗, I∗, R∗, O∗), which
is stable when R0 > 1, where

S∗ = (α+µ)µ0

βk , I∗ = µ0O∗

k

R∗ = αµ0O∗

kµ , O∗ = Λk
(α+µ)µ0

− µ
β .

(3)

Thus the basic reproduction number R0 is often
considered as the threshold quantity that determines
when an infection can invade and persist in a new host
population. The disease-free equilibrium corresponds
to maximal levels of susceptible, no infected and no
recovered cats or oocysts. The epidemic equilibrium
corresponds to positive levels of all four components
including susceptible, infected, recovered cats as well
as oocysts.

In fact, epidemic models are inevitably affected
by environmental white noise which is an important
component in realism, because it can provide an addi-
tional degree of realism in comparison to their deter-
ministic counterparts [13-20]. Many stochastic mod-
els for epidemic populations have been developed in
Refs. Dalal et al.[13] have previously used the tech-
nique of parameter perturbation to examine the effect
of environmental stochasticity in a model of AIDS and
condom use. Yu et al.[15] proved the endemic equilib-
rium of the two-group SIR model with random pertur-
bation is stochastic asymptotically stable. Meng [16]
presented the stability conditions of the disease-free
equilibrium of the SIR model without stochastic per-
turbation and with stochastic perturbation. Zhao et
al. [17] investigated the extinction and persistence of
the stochastic SIS epidemic model with vaccination.
These results reveal the significant effect of the envi-
ronmental noise on some epidemic models, because

the stochastic models can provide some additional de-
gree of realism compared to their deterministic coun-
terparts [21].

However, to the best of our knowledge, the dy-
namics of a toxoplasmosis spread model between
cat and oocyst populations with independent stochas-
tic perturbations seem rare. In this paper, tak-
ing into account the effect of randomly fluctuat-
ing environment, we assume that fluctuations in
the environment will manifest themselves mainly
as fluctuations in the parameter. The symbol
B(t) = (B1(t), B2(t), B3(t), B4(t)) denotes a 4-
dimensional Wiener process. The non-negative con-
stants σ1, σ2, σ3 and σ4 denote the intensities of the
stochastic perturbations. The stochastic version cor-
responding to the deterministic model (2) takes the
following form:



dS(t) = (Λ− βS(t)O(t)− µS(t))dt
+σ1S(t)dB1(t),

dI(t) = (βS(t)O(t)− (α+ µ)I(t))dt

+σ2I(t)dB2(t),

dR(t) = (αI(t)− µR(t))dt
+σ3R(t)dB3(t),

dO(t) = (kI(t)− µ0O(t))dt
+σ4O(t)dB4(t).

(4)

The paper is organized as follows. In section 2
we show the existence and uniqueness of a global pos-
itive solution of model (4). Since system (4) is con-
structed by adding stochastic perturbation in a deter-
ministic system (2), it seems reasonable to investigate
whether there are similar properties as in system (2).
But there is neither a disease-free equilibrium E0 nor
an endemic equilibrium E∗ for system (4). Hence in
order to show the stability to some extent, we discuss
the behavior around E0 and E∗ respectively, which
will be shown in Sections 3 and 4. In Section 3, we
will prove a stability result to the effect

lim sup
t→∞

1

t
E

∫ t

0
[(S(r)−Λ

µ
)2+I(r)2+R(r)+O(r)]dr

is small, provided the diffusion coefficients are suffi-
ciently small. While, in Section 4, we will show

lim supt→∞
1
tE

∫ t

0
{[(S(r)− 2µ

2µ− σ21
S∗)2

+[I(r)− 2µµ0(α+β)−µ0pα2−µqk20
2µµ0(α+β)−µ0pα2−µqk20−µµ0σ2

2
I∗]2

+[R(r)− µ
µ−σ2

3
R∗]2 + [O(r)− µ0

µ0−σ2
4
O∗]2}dr,
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is bounded by a constant which is relevant to the in-
tensity of white noise. Finally, numerical simulations
are present in Section 5 to illustrate our results.

The proof of the main theorems in this paper
uses Lyapunov functions, together with graph the-
ory. In this paper, unless otherwise specified, we let
(Ω,F , P ) with the filtration {F}t≥0 be a complete
probability space satisfying the usual satisfying the
usual conditions (i.e., it is right continuous and F0

contains all P -null sets). Let Bi(t) be the Brown-
ian motions defined on this probability space, i =
1, 2, 3, 4. Denote Rn

+ = {x ∈ Rn, xi > 0 for all 1 ≤
i ≤ n} and x(t) = (S(t), I(t), R(t), O(t))T . Here
we show the following auxiliary statements which are
introduced in Ref. [22].

In general, consider d-dimensional stochastic dif-
ferential equation

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), for t ≥ t0.

Denote by C2,1(Rd × [t0,∞];R+) the family of all
nonnegative functions V (x, t) defined onRd×[t0,∞]
such that they are continuously twice differentiable in
x and once in t. The differential operator L of Eq. (4)
is defined [22] by formula

L = ∂
∂t +

∑
fi(x, t)

∂
∂xi

+1
2

∑
[gT (x, t)g(x, t)]ij

∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Rd × [t0,∞];R+),
then

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t)

+1
2 trace[g

T (x, t)Vxx(x, t)g(x, t)].

2 Global positive solution
In order to investigate the dynamical behavior, the first
concerning thing is whether the solution is global ex-
istence. Moreover, for a model of population dynam-
ics, whether the value of the solution is nonnegative
is also considered. Hence in this section we show the
solution of system (4) is global and nonnegative. As
we have known, in order for a stochastic differential
equation to have a unique global (i.e. no explosion in
a finite time) solution for any given initial value, the
coefficients of the equation are generally required to
satisfy the linear growth condition and local Lipschitz
condition [22]. However, the coefficients of system.
(4) do not satisfy the linear growth condition, though
they are locally Lipschitz continuous, so the solution
of system (4) may explode at a finite time [22,23]. In
this section, using the Lyapunov analysis method[22],
we shall show the solution of system. (4) is positive
and global.

Theorem 1 For any given initial value
(S(0), I(0), R(0), O(0)) ∈ R4

+ there is a unique
positive solution (S(t), I(t), R(t),O(t)) of model (4)
on t ≥ 0 and the solution will remain in R+ with
probability 1, namely (S(t), I(t), R(t),O(t))∈ R+ for
all t ≥ 0 almost surely.

Proof. Since the coefficients of the equation is lo-
cally Lipschitz continuous, for any given initial value
(S(0), I(0), R(0), O(0)) ∈ R+ there is a unique local
solution (S(t), I(t), R(t), O(t)) ∈ R+ on t∈ [0, τe],
where τe is the explosion time [24]. To show this so-
lution is global, we need to shoe that τe = ∞ a.s. At
first, we prove S(t) and I(t) do not explode to infinity
in a finite time. Set k0 > 0 be sufficiently large for
S(0) ∈ [ 1

k0
, k0], I(0) ∈ [ 1

k0
, k0] and O(0) ∈ [ 1

k0
, k0].

For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe] : S(t) ∈ ( 1k , k), I(t) ∈ ( 1k , k)

or O(t) ∈ ( 1k , k)}.

where throughout this paper we set inf ∅ = ∞ (∅ de-
notes the empty set). Obviously, τk is increasing as
k → ∞. Set τ∞ = limk→∞ τk, therefore τ∞ ≤ τe
a.s. If τ∞ = ∞ a.s. is true, then τe = ∞ a.s. and
(S(t), I(t)), O(t) ∈ R3

+ a.s. for t ≥ 0. In other
words, to complete the proof it is required to show
that τ∞ = ∞ a.s. If this statement is false, then there
exist a pair of constants T > 0 and ε ∈ (0, 1) such
that P{τ∞ ≤ T} > ε.

Thus there is an integer k1 ≥ k0 such that
P{τ∞ ≤ T} > ε for all k ≥ k1.

Let us define a C2 function V : R2
+ → R+ as

follows
V (S, I) = S + I − log I,

the nonnegativity of this function can be seen from
I − log I ≥ 0 for I ≥ 0. Let k ≥ k0 and T > 0 be
arbitrary. Applying Itö formula, we obtain

dV (S, I) = VSdS + VIdI +
1
2(VSS(dS)

2 + VII(dI)
2

= (Λ− βS(t)O(t)− µS(t))dt
+ (1− 1

I )(βS(t)O(t)− (α+ µ)I(t))dt

+ (1− 1
I )σ2I(t)dB2(t)

+ σ1S(t)dB1(t) +
1
2σ

2
2dt

= [(Λ− βS(t)O(t)− µS(t))
+ (1− 1

I )(βS(t)O(t)− (α+ µ)I(t))

+ 1
2σ

2
2]dt+ σ1S(t)dB1(t)

+ (1− 1
I )σ2I(t)dB2(t)

= LV (S, I)dt+ σ1S(t)dB1(t)

+ (1− 1
I )σ2I(t)dB2(t).
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where LV : R2
+ → R+ is defined by

LV (S, I) = Λ− βS(t)O(t)− µS(t)
+ (1− 1

I )(βS(t)O(t)− (α+ µ)I(t))

+ 1
2σ2

≤ Λ + α+ µ+ 1
2σ

2
2

= K.

Therefore,

dV (S, I) ≤ Kdt+ σ1S(t)dB1(t)

+ (1− 1
I )σ2I(t)dB2(t).

(5)

We can now integrate both sides of (5) from 0 to τk∧T
and then take the expectations

EV (S(τk ∧ T ), I(τk ∧ T )) ≤ EV (S(0), I(0))

+KE(τk ∧ T ).
As a result

EV (S(τk∧T ), I(τk∧T )) ≤ EV (S(0), I(0))+KT.
(6)

Let Ωk = {τk ≤ T} for k ≥ k1 and, by (5),
P (Ωk) ≥ ε. Note that for every ω ∈ Ωk, there is
S(τk, ω) or I(τk, ω) equals either k or 1

k and there-
fore V (S(τk, I(τk)) is no less then either k or 1

k and
therefore V (S(τk, ω), I(τk, ω)) is no less than either
k − log k or 1

k − log 1
k = 1

k + log k. Hence

V (S(τk, ω), I(τk, ω)) ≥ [k − log k] ∧ [
1

k
+ log k].

It then follows from (6) that

V (S(0), I(0)) +KT ≥ E[1Ωk
(ω)V (S(τk, ω)I(τk, ω))]

≥ ε[k − log k] ∧ [ 1k + log k],

where 1Ωk
is the indicator function of Ωk. Letting k

→∞, we have that

V (S(0), I(0)) +KT ≥ ∞
which is impossible, then we must have τ∞ = ∞.
Therefore it implies S(t)and I(t) will not explode in a
finite time with probability one. On the other hand, by
the last two equations of model (4), we can represent
the solution R(t) and O(t) as follows

R(t) = e−(µ+ 1
2
σ2
3)t+σ3B3(t)[R(0)

+ α
∫ t
0 e

−(µ+ 1
2
σ2
3)s−σ3B3(t)I(s)ds]

= R(0)e−(µ+ 1
2
σ2
3)t+σ3B3(t)

+ α
∫ t
0 e

−(µ+ 1
2
σ2
3)(t−s)+σ3(B3(t)−B3(s))I(s)ds.

Since I(t) has been proved to be global and pos-
itive, R(t) is also global and positive. The proof is
complete. ⊓⊔

3 Asymptotic behavior around the
disease-free equilibrium of the de-
terministic model

As mentioned in the introduction, for the deterministic
system (2), there is a disease-free equilibrium E0 =
(Λµ , 0, 0) and it is globally stable if R0 ≤ 1. While
for the stochastic system (4), E0 = (Λµ , 0, 0) is no
longer the disease-free equilibrium, and the stochastic
solutions do not converge to E0. In this section, we
will study the asymptotic behavior around E0.

Theorem 2 If R0 < 1 and the following conditions
are satisfied

σ21 < 2µ, σ22 < 2(α+ µ) (7)

then for any given initial value
(S(0), I(0), R(0), O(0)) ∈ R+,the solution of
model (4) has the property

lim sup
t→∞

1
tE

∫ t

0
[(S(r)−Λ

µ
)2+I(r)2+R(r)+O(r)]dr

≤ σ2
1Λ

2

K1
,

where

K1 = min{2(µ− σ21), 2(α+ µ)− σ22, c2, c3}.

Proof. First, change the variables u = S− Λ
µ , v = I,

w = R, x = O, then system (4) can be written as

du(t) = (−µu− βµx− β Λ
µx)dt

+ σ1(u+ Λ
µ )dB1(t),

dv(t) = (βµx+ β Λ
µx− (α+ µ)v)dt

+ σ2vdB2(t),

dw(t) = (αv − µw)dt+ σ3wdB3(t),

dx(t) = (kv − µ0x)dt+ σ4xdB4(t).

and u ∈ R, v > 0, w > 0, x > 0. Define a function

V (u, v, w) = (u+ v)2 + c1(u+ v) + c2w + c3x,

where c1, c2, c3 are three positive constants to be de-
fined later. Applying Itô formula, we obtain

dV = LV dt+ [2(u+ v) + c1]σ1(u+ Λ
µ )dB1(t)

+ (2(u+ v) + c1)σ2vdB2(t)

+ c2σ3wdB3(t) + c3σ4xdB4(t).
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where

LV = 2(u+ v))[−µu− (α+ µ)v]

+c1(−µu− βµx− β Λ
µx) + c2(αv − µw)

+c3(kv − µ0x)σ21(u+ Λ
µ )

2 + σ22v
2,

= (−2µ− σ21)u2 − [2(α+ µ)− σ22]v2

+(2σ21
Λ
µ − c1)u+ σ21(

Λ
µ )

2 − c2µw

−c3µ0x+ [c2α+ c3k − c1(α+ µ)]v.

We choose c1 such that 2σ21
Λ
µ − c1 = 0, i.e c1 =

2σ21
Λ
µ . Besides, we can find appropriate c2, c3 such

that [c2α + c3k − c1(α + µ)]v ≤ 0. Hence we can
obtain

LV ≤ (−2µ− σ21)u2 − [2(α+ µ)− σ22]v2

+σ21(
Λ
µ )

2 − c2µw − c3µ0x.

Therefore

dV ≤ (−2µ− σ21)u2 − [2(α+ µ)− σ22]v2

+σ21(
Λ
µ )

2 − c2µw − c3µ0x

+[2(u+ v) + c1]σ1(u+ Λ
µ )dB1(t)

+(2(u+ v) + c1)σ2vdB2(t)

+c2σ3wdB3(t) + c3σ4xdB4(t).

(8)

Integrating both sides of (8)from 0 to t, and then
taking expectation, yields

0 ≤ E[V (u(t), v(t), w(t), x(t))]

≤ E[V (u(0), v(0), w(0), x(0))]

+ E
∫ t
0 [(−2µ− σ21)u(s)2

− (2(α+ µ)− σ22)v(s)2 − c2µw(s)

− c3µ0x(s) + σ21(
Λ
µ )

2]ds

which implies

E

∫ t

0
[(−2µ− σ21)u(s)2 − (2(α+ µ)− σ22)v(s)2

−c2µw(s)− c3µ0x(s)]ds

≤ E[V (u(0), v(0), w(0), x(0))] + σ21(
Λ

µ
)2t.

Therefore

lim sup
t→∞

1
tE

∫ t

0
[(−2µ− σ21)u(s)2 − (2(α+ µ)

−σ22)v(s)2 − c2µw(s)− c3µ0x(s)]ds

≤ σ21(Λµ )
2.

Let

K1 = min{2µ− σ21, 2(α+ µ)− σ22, c2, c3}.

Then

lim supt→∞
1
tE
∫ t
0 [(S(r)− Λ

µ )
2 + I(r)2

+R(r) +O(r)]dr ≤ σ2
1Λ

2

K1
.

This completes the proof. ⊓⊔

Remark 3 This theorem reveals the solution will os-
cillate around the disease-free equilibrium, and the
intensity is relevant to the values of σ1 and σ2. The
weaker the values are, the smaller the fluctuation is.
In other words, if the stochastic perturbations become
small, the solution of system (4) will be close to the
disease-free equilibrium of system (2). Besides, if
σ1 = 0, then E0 is also the disease-free equilibrium
of system (4). From the proof of Theorem 2, we can
obtain

LV ≤ (−2µ− σ21)u2 − [2(α+ µ)− σ22]v2

+σ21(
Λ
µ )

2 − c2µw − c3µ0x,

which is negative-definite, therefore E0 is stochasti-
cally asymptotically stable in the large.

4 Asymptotic behavior around the
endemic equilibrium of the deter-
ministic model

In this section, we assume R0 > 1. Then there is the
endemic equilibrium E∗ for system (2) but not the en-
demic equilibrium E∗ for system (4), because system
(4) does not have the endemic equilibrium. Similarly,
we also expect to find out whether or not the solution
goes around E∗. The following result gives a positive
answer.

Theorem 4 If R0 > 1 and the following conditions
are satisfied

σ21 < 2µ, σ23 < µ, σ24 < µ0, (9)

then for any given initial value
(S(0), I(0), R(0), O(0)) ∈ R+, the solution of
model (4) has the property

lim sup
t→∞

1
tE

∫ t

0
{[(S(r)− 2µ

2µ− σ21
S∗)2

+[I(r)− 2µµ0(α+β)−µ0pα2−µqk20
2µµ0(α+β)−µ0pα2−µqk20−µµ0σ2

2
I∗]2

+[R(r)− µ
µ−σ2

3
R∗]2 + [O(r)− µ0

µ0−σ2
4
O∗]2}dr

≤ Kσ
M ,
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where p and q are positive constants and satisfy

2µµ0(α+ µ)− µ0pα2 − µqk2 − µµ0σ22 > 0,

and

Kσ = µ
2µ−σ2

1
S∗2

+
σ2
2 [2µµ0(α+µ)−µ0pα2−µqk2]

4µµ0(α+µ)−2µ0pα2−2µqk2−2µµ0σ2
2
I∗2

+ pµ
2(µ−σ2

3)
R∗2 + qµ0

2(µ0−σ2
4)
O∗2,

M = min{µ− 1
2σ2

1
,

2µµ0(α+ µ)− µ0pα2 − µqk2 − µµ0σ22,
µ

µ−σ2
3
, µ0

µ0−σ2
4
}.

Proof. If R0 > 1 then system (4) has a unique posi-
tive epidemic equilibrium as (3).

Define a C2 function V :R4
+ → R+ by

V (S, I,R,O) = 1
2(S − S

∗ + I − I∗)2

+w1(S + I) + p
2(R−R

∗)2

+ q
2(O −O

∗)2,
(10)

where w1 > 0, p > 0, q > 0 are positive constants
to be chosen later. For simplicity, we divide (10) into
two functions: V (x) = V1 + V2, where

V1 =
1

2
(S − S∗ + I − I∗)2 + w1(S + I),

V2 =
1

2
p(R−R∗)2 +

1

2
q(O −O∗)2.

Applying Itô formula, we obtain

dV1 = LV1dt+ (S − S∗ + I − I∗ + w1)

×(σ1S(t)dB1(t) + σ2I(t)dB2t),

dV2 = LV2dt+ p(R−R∗)RdB3(t)

+q(O −O∗)OdB4(t).

In detail

LV1 = (S − S∗ + I − I∗)[Λ− µS − (α+ µ)I]

+ w1[Λ− µS − (α+ µ)I]

+ 1
2(σ

2
1S

2 + σ22I
2)

= (S − S∗ + I − I∗)[−µS + µS∗

+ (α+ µ)I∗ − (α+ µ)I]

+ w1[Λ− µS − (α+ µ)I]

+ 1
2(σ

2
1S

2 + σ22I
2)

= −µ(S − S∗)2 − (α+ µ)(I − I∗)2

− (α+ 2µ)(S − S∗)(I − I∗)
+ w1[Λ− µS − (α+ µ)I]

+ 1
2(σ

2
1S

2 + σ22I
2)

= −µ(S − S∗)2 − (α+ µ)(I − I∗)2

+ w1Λ + [(α+ 2µ)I∗ − w1µ]S

+ [(α+ 2µ)S∗ − (α+ µ)w1]I

+ 1
2(σ

2
1S

2 + σ22I
2)

− (α+ 2µ)(SI + S∗I∗),
(11)

and

LV2 = p(R−R∗)(αI − µR) + 1
2pσ

2
3R

2

+ q(O −O∗)(KI − µ0O) + 1
2qσ

2
4O

2

= p(R−R∗)[α(I − I∗)− µ(R−R∗)]

+ 1
2pσ

2
3R

2 + q(O −O∗)[K(I − I∗)
− µ0(O −O∗)] + 1

2qσ
2
4O

2

≤ pα2

2µ (I − I∗)2 + (pµ2 − pµ)(R−R
∗)2

+ 1
2pσ

2
3R

2 + qk2

2µ0
(I − I∗)2

+ ( qµ0

2 − qµ0)(O −O
∗)2 + 1

2qσ
2
4O

2

= (pα
2

2µ + qk2

2µ0
)(I − I∗)2 − pµ

2 (R−R∗)2

− qµ0

2 (O −O∗)2 + 1
2pσ

2
3R

2 + 1
2qσ

2
4O

2.
(12)

Choose w1 = max{ (α+2µ)I∗

µ , (α+2µ)S∗

α+µ }. As a result

(α+ 2µ)I∗ − w1µS ≤ 0,

and

(α+ 2µ)S∗ − (α+ µ)w1 ≤ 0.
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Taking (11) and (12) together, we get

LV = LV1 + LV2 ≤ −µ(S − S∗)2

−(α+ µ+ pα2

2µ + qk2

2µ0
)(I − I∗)2

+1
2(σ

2
1S

2 + σ22I
2 + pσ23R

2 + σ24O
2)

−pµ
2 (R−R∗)2 − qµ0

2 (O −O∗)2

= −(µ− 1
2σ2

1
)(S − 2µ

2µ−σ2
1
S∗)2

− (2µµ0(α+ β)− µ0pα2

− µqk20 − µµ0σ22)

× [I − 2µµ0(α+β)−µ0pα2−µqk20
2µµ0(α+β)−µ0pα2−µqk20−µµ0σ2

2
I∗]2

− (pµ2 −
pσ2

3
2 )(R− µ

µ−σ2
3
R∗)2

− (pµ2 −
qσ2

4
2 )(O − µ0

µ0−σ2
4
O∗)2

+ µ
2µ−σ2

1
S∗2

+
σ2
2 [2µµ0(α+µ)−µ0pα2−µqk2]

4µµ0(α+µ)−2µ0pα2−2µqk2−2µµ0σ2
2
I∗2

+ pµ
2(µ−σ2

3)
R∗2 + qµ0

2(µ0−σ2
4)
I∗2.

(13)
Note that p and q are positive constants and satisfy

2µµ0(α+ µ)− µ0pα2 − µqk2 − µµ0σ22 > 0.

Besides, the condition (9) implies

µ− 1

2
σ21 > 0,

pµ

2
− pσ23

2
> 0,

pµ

2
− qσ24

2
> 0.

Thus

dV = LV dt+ (S − S∗ + I − I∗ + w1)

×(σ1S(t)dB1(t) + σ2I(t)dB2t)

+p(R−R∗)RdB3(t)

+ q(O −O∗)OdB4(t).

(14)

Integrating both sides of (14) from 0 to t, then taking
expectations, and considering inequality (13), yields

0 ≤ E[V (S(t), I(t), R(t), O(t))]

≤ E[V (S(0), I(0), R(0), O(0))]

+ E

∫ t

0
{−(µ− 1

2σ21
)[S(r)− 2µ

2µ− σ21
S∗]2

− (2µµ0(α+ β)− µ0pα2 − µqk20 − µµ0σ22)

× [I(r)− 2µµ0(α+β)−µ0pα2−µqk20
2µµ0(α+β)−µ0pα2−µqk20−µµ0σ2

2
I∗]2

− (pµ2 −
pσ2

3
2 )[R(r)− µ

µ−σ2
3
R∗]2

− (pµ2 −
qσ2

4
2 )[O(r)− µ0

µ0−σ2
4
O∗]2}dr +Kσt,

(15)

where Kσ is defined in Theorem 4. (15) implies that

E

∫ t

0
{(µ− 1

2σ21
)[S(r)− 2µ

2µ− σ21
S∗]2

+ (2µµ0(α+ β)− µ0pα2 − µqk20 − µµ0σ22)

× [I(r)− 2µµ0(α+β)−µ0pα2−µqk20
2µµ0(α+β)−µ0pα2−µqk20−µµ0σ2

2
I∗]2

+ (pµ2 −
pσ2

3
2 )[R(r)− µ

µ−σ2
3
R∗]2

+ (pµ2 −
qσ2

4
2 )[O(r)− µ0

µ0−σ2
4
O∗]2}dr

≤ E[V (S(0), I(0), R(0), O(0))] +Kσt.

Dividing both sides by t and letting t → ∞, one
gets

lim sup
t→∞

1

t
E

∫ t

0
{(µ− 1

2σ21
)[S(r)− 2µ

2µ− σ21
S∗]2

+ (2µµ0(α+ β)− µ0pα2 − µqk20 − µµ0σ22)

× [I(r)− 2µµ0(α+β)−µ0pα2−µqk20
2µµ0(α+β)−µ0pα2−µqk20−µµ0σ2

2
I∗]2

+ (pµ2 −
pσ2

3
2 )[R(r)− µ

µ−σ2
3
R∗]2

+ (pµ2 −
qσ2

4
2 )[O(r)− µ0

µ0−σ2
4
O∗]2}dr

≤ Kσ.

Set

M = min{µ− 1
2σ2

1
,

2µµ0(α+ µ)− µ0pα2 − µqk2 − µµ0σ22,
µ

µ−σ2
3
, µ0

µ0−σ2
4
},

then it is easy to obtain

lim supt→∞
1
tE
∫ t
0{[(S(r)−

2µ
2µ−σ2

1
S∗)2

+[I(r)− 2µµ0(α+β)−µ0pα2−µqk20
2µµ0(α+β)−µ0pα2−µqk20−µµ0σ2

2
I∗]2

+[R(r)− µ
µ−σ2

3
R∗]2 + [O(r)− µ0

µ0−σ2
4
O∗]2}dr

≤ Kσ
M .

This completes the proof. ⊓⊔

Remark 5 Theorem 4 shows that the solution of
model (4) fluctuates around the certain level which is
relevant to

P ∗ ( 2µ
2µ−σ2

1
S∗,

2µµ0(α+β)−µ0pα2−µqk20
2µµ0(α+β)−µ0pα2−µqk20−µµ0σ2

2
I∗,

µ
µ−σ2

3
R∗, µ0

µ0−σ2
4
O∗)

and σi for i = 1, 2, 3, 4. With the value of σi decreas-
ing, P ∗ will be closing to E∗, and the difference be-
tween X and P ∗ also decreases, where X denotes the
solution of system (2).
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5 Numerical Simulations and Con-
clusion

In order to conform the results above, we numerically
simulate the solution of system (4). Using Milsteins
Higher Order Method [25], we get the discretization
equation:

Sk+1 = Sk + (Λ− βSkOk − µSk)∆t

+σ1Sk
√
∆tε1,k +

1
2Sk∆t(ε

2
1,k − 1),

Ik+1 = Ik + (βSkOk − (α+ µ)Ik)∆t

+σ2Ik
√
∆tε2,k +

1
2Ik∆t(ε

2
2,k − 1),

Rk+1 = Rk + (αIk − µRk)∆t

+σ3Rk

√
∆tε3,k +

1
2Rk∆t(ε

2
3,k − 1),

Ok+1 = Ok + (kIk − µ0Ok)∆t

+σ4Ok

√
∆tε4,k +

1
2Ok∆t(ε

2
4,k − 1).

where time increment ∆t > 0, and ε1,k, ε2,k,
ε3,k, ε4,k, areN(0, 1)-distributed independent random
variables.

Firstly, we show the effect of white noise on the
disease-free equilibrium. As we have can see in sec-
tion 1, deterministic system (2) has a disease-free
equilibrium E0, and it is globally stable if R0 =

kβΛ
µµ0(α+µ) ≤ 1. By Theorem 2 and Remark 3, we
showed that the expectations of S(t), I(t), R(t) and
O(t) are bounded in time average when condition (7)
is also satisfied. Obviously, the boundedness is pro-
portional to σ1, moreover, the smaller σ1 is, the less
the boundedness is. In addition, if σ1 is decreasing
to zero, E0 is stochastically asymptotically stable in
the large. The following numerical simulations of the
strong solution of (4) confirm the above results we
have shown in Fig.1, we always choose initial values
S(0) = 50, I(0) = 1, R(0) = 20, O(t) = 1 and
parameters Λ = 1.154, β = 0.52/54, k = 1/20, µ =
0.6/52, µ0 = 7/100, α = 0.5 with different intensi-
ties of white noise which satisfies condition (7). The
dash line in the figure represents solutions of the de-
terministic system (2) . The red line in the figure rep-
resents solutions of the stochastic system (4) whose
intensities of white noise value in group (a) and the
blue line represents solutions of the stochastic system
(4) whose intensities of white noise value in group (b)
. As we can see, the curves of system (4) always fluc-
tuate around the curves of system (2). In Fig.1, com-
parisons of different intensities of white noise sug-
gest that the fluctuations reduce as the noise level de-
creases.

Secondly, in Fig. 2, we choose parameters satis-
fying R0 > 1 and condition (9) in Theorem 4. Sim-
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Figure 1: The stochastically asymptotical stability of
disease-free equilibrium. (a): σ1 = 0.008, σ2 =
0.006, σ3 = 0.004, σ4 = 0.002. (b):σ1 =
0.004, σ2 = 0.003, σ3 = 0.002, σ4 = 0.001.

ilarly as said above, the solution of system (4) also
fluctuates around the solution of system (2), which
supports the conclusion of Theorem 4. In detail, in
Fig.2 parameters are the same except for the decreas-
ing intensities. From the figures, with intensities de-
creasing, the fluctuation is weaker.

Finally, we show compare the effects of σ1, σ2,
σ3 and σ4 on system (2). In Fig.3 Group (a) the in-
tensities of white noise are much larger than those in
Group (b) but σ1 keeps the same, we can see the fluc-
tuation does not substantial increase. That means the
intensities of σ2, σ3 and σ4 have little effect on the
fluctuation. Fig.3 shows the fluctuation for S(t) al-
most cannot be seen for σ1. Then we can believe the
solution is stochastically asymptotically stable in the
large.
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