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Abstract: - This work, first of this study, describes five numerical tools to perform perfect gas simulations of 
the laminar and turbulent viscous flow in two-dimensions. The Van Leer, Harten, Frink, Parikh and Pirzadeh, 
Liou and Steffen Jr. and Radespiel and Kroll schemes, in their first- and second-order versions, are 
implemented to accomplish the numerical simulations. The Navier-Stokes equations, on a finite volume context 
and employing structured spatial discretization, are applied to solve the supersonic flow along a ramp in two-
dimensions. Three turbulence models are applied to close the system, namely: Cebeci and Smith, Baldwin and 
Lomax and Sparlat and Allmaras. On the one hand, the second-order version of the Van Leer scheme is 
obtained from a “MUSCL” extrapolation procedure, whereas on the other hand, the second order version of the 
Harten scheme is obtained from the modified flux function approach. The convergence process is accelerated to 
the steady state condition through a spatially variable time step procedure, which has proved effective gains in 
terms of computational acceleration (see Maciel). The results have shown that, with the exception of the Harten 
scheme, all other schemes have yielded the best result in terms of the prediction of the shock angle at the ramp. 
Moreover, the wall pressure distribution is also better predicted by the Van Leer scheme. 
 
Key-Words: - Laminar and turbulent flows, TVD algorithms, Cebeci and Smith turbulence model, Baldwin and 
Lomax turbulence model, Sparlat and Allmaras turbulence model. 
 

1 Introduction 
Conventional non-upwind algorithms have been 
used extensively to solve a wide variety of problems 
([1]). Conventional algorithms are somewhat 
unreliable in the sense that for every different 
problem (and sometimes, every different case in the 
same class of problems) artificial dissipation terms 
must be specially tuned and judicially chosen for 
convergence. Also, complex problems with shocks 
and steep compression and expansion gradients may 
defy solution altogether. 
 Upwind schemes are in general more robust but 
are also more involved in their derivation and 
application. Some upwind schemes that have been 
applied to the Euler equations are, for example, [2-
5,7]. Some comments about these methods are 
reported below: 
 [2] developed a method suggesting an upwind 
scheme based on the flux vector splitting concept. 
This scheme considered the fact that the convective 
flux vector components could be written as flow 
Mach number polynomial functions, as main 
characteristic. Such polynomials presented the 
particularity of having the minor possible degree 
and the scheme had to satisfy seven basic properties 
to form such polynomials. 

 [3] developed a class of new finite difference 
schemes, explicit and with second order of spatial 
accuracy for calculation of weak solutions of the 
hyperbolic conservation laws. These highly 
nonlinear schemes were obtained by the application 
of a first order non-oscillatory scheme to an 
appropriately modified flux function. These second 
order algorithms reached high resolution, while 
preserving the robustness of the original scheme. 
 [4] proposed a new scheme, unstructured and 
upwind, to the solution of the Euler equations. They 
tested the precision and the utility of this scheme in 
the analysis of the inviscid flows around two 
airplane configurations: one of transport 
configuration, with turbines under the wings, and 
the other of high speed civil configuration. Tests 
were accomplished at subsonic and transonic Mach 
numbers with the transport airplane and at transonic 
and low supersonic Mach numbers with the civil 
airplane, yielding good results. 
 [5] proposed a new flux vector splitting scheme. 
They declared that their scheme was simple and its 
accuracy was equivalent and, in some cases, better 
than the [6] scheme accuracy in the solutions of the 
Euler and the Navier-Stokes equations. The scheme 
was robust and converged solutions were obtained 
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so fast as the [6] scheme. The authors proposed the 
approximated definition of an advection Mach 
number at the cell face, using its neighbour cell 
values via associated characteristic velocities. This 
interface Mach number was so used to determine the 
upwind extrapolation of the convective quantities. 
 [7] emphasized that the [5] scheme had its merits 
of low computational complexity and low numerical 
diffusion as compared to other methods. They also 
mentioned that the original method had several 
deficiencies. The method yielded local pressure 
oscillations in the shock wave proximities, adverse 
mesh and flow alignment problems. In the [7] work, 
a hybrid flux vector splitting scheme, which 
alternated between the [5] scheme and the [2] 
scheme, in the shock wave regions, was proposed, 
assuring that the resolution of strength shocks was 
clear and sharp. 
 Second order spatial accuracy can be achieved 
by introducing more upwind points or cells in the 
schemes. It has been noted that the projection stage, 
whereby the solution is projected in each cell face 
(i-1/2,j; i+1/2,j) on piecewise constant states, is the 
cause of the first order space accuracy of the 
Godunov schemes ([8]). Hence, it is sufficient to 
modify the first projection stage without modifying 
the Riemann solver, in order to generate higher 
spatial approximations. The state variables at the 
interfaces are thereby obtained from an 
extrapolation between neighboring cell averages. 
This method for the generation of second order 
upwind schemes based on variable extrapolation is 
often referred to in the literature as the MUSCL 
(“Monotone Upstream-centered Schemes for 
Conservation Laws”) approach. The use of 
nonlinear limiters in such procedure, with the 
intention of restricting the amplitude of the 
gradients appearing in the solution, avoiding thus 
the formation of new extrema, allows that first order 
upwind schemes be transformed in TVD high 
resolution schemes with the appropriate definition 
of such nonlinear limiters, assuring monotone 
preserving and total variation diminishing methods. 
 Second order spatial accuracy can also be 
obtained from the use of a modified flux function 
approach, as suggested by [3]. This approach 
consists in adopting a modified flux to be 
considered in the numerical flux function. A limiter 
is used to consider only smooth variations of the 
flux function. Moreover, this minmod like limiter 
eliminates high variations of the flux function, 
reducing this one to a constant behaviour between 
the right and left states. This approach also 
introduces TVD like properties into the calculation 
algorithm. 

 Computational fluid dynamics (CFD) methods 
have been widely used in the design of aircraft. 
Because of the great difficulties in experimental 
study, CFD demonstrates its great importance in the 
simulation of transonic high-angle-of-attack (AOA) 
flow about realistic configurations, which is 
dominated by extremely complex phenomena such 
as shock/boundary-layer interaction, massive flow 
separation, and complicated vortex structures. Until 
now, numerical prediction of such phenomena has 
been highly dependent on the selection of 
turbulence models. 

There is a practical necessity in the aeronautical 
industry and in other fields of the capability of 
calculating separated turbulent compressible flows. 
With the available numerical methods, researches 
seem able to analyze several separated flows, three-
dimensional in general, if an appropriated 
turbulence model is employed. Simple methods as 
the algebraic turbulence models of [9-10] supply 
satisfactory results with low computational cost and 
allow that the main features of the turbulent flow be 
detected. 

More elaborate treatments of turbulent flow, 
especially involving separation, are obtained with 
one-equation turbulence models. Such models are 
cheaper than their counterpart two-equation models 
and a bit more expensive than the algebraic models. 
One such a model is the [11] one. In this model, a 
transport equation for the turbulent viscosity is 
assembled, using empiricism and arguments of 
dimensional analysis, Galilean invariance and 
selective dependence on the molecular viscosity. 
The equation includes a destruction term that 
depends on the distance to the wall, related to the 
one in [12] model and to one due to [13]. Unlike 
early one-equation models, the resulting turbulence 
model is local (i.e., the equation at one point does 
not depend on the solution at others points) and 
therefore compatible with grids of any structure and 
Navier-Stokes solvers in two- and three-dimensions. 
It is numerically forgiving, in terms of near-wall 
resolution and stiffness, and yields rapid 
convergence to steady state. 

In 2006, [14] have presented a work that 
considered first-order algorithms applied to the 
solution of an aerospace flow problem. The [3,7] 
algorithms, both first order accurate in space, were 
studied. The Navier-Stokes equations written in 
conservative form, employing a finite volume 
formulation and a structured spatial discretization, 
in two-dimensions, were solved. The [10] 
turbulence algebraic model closed the problem. The 
steady state physical problem of the supersonic flow 
around a simplified version of the VLS 
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configuration was studied. The results have 
demonstrated that the -Cp distribution around the 
geometry generated by the [3] scheme, in both 
solutions laminar and turbulent, was smoother than 
to the one obtained by the [7] scheme, presenting a 
minor pressure increase in the booster initial region. 
The lift and drag aerodynamic coefficients were 
minimized in the turbulent solution generated by the 
[3] scheme, presenting non-zero values. The [7] 
scheme predicted the same coefficients with values 
practically equal to zero to the laminar case and 
with small values in the turbulent case. The 
stagnation pressure ahead of the configuration was 
better predicted by the [3] scheme. 

In 2008, [15] has presented a work, the second 
part of the study started in 2006, that considered 
upwind algorithms implemented with the [10] 
turbulence algebraic model applied to the solution 
of transonic and “cold gas” hypersonic problems. 
The [3,7] algorithms, both first order accurate in 
space, were studied. The Navier-Stokes equations 
written in conservative form, employing a finite 
volume formulation and a structured spatial 
discretization, in two-dimensions, were solved. The 
steady state physical problems of the transonic flow 
along a convergent-divergent nozzle and the “cold 
gas” hypersonic flow around a double ellipse 
configuration were studied. Results were compared 
with experimental or theoretical solutions. The 
results have shown good agreement between the 
tested algorithms. In the nozzle problem, the [3] 
scheme predicts a more severe shock at the throat 
than the [7] scheme, as well closer wall pressure 
distribution to experimental results, for both laminar 
and turbulent cases. In the double ellipse case, the [7] 
scheme presented more severe pressure field and 
better prediction of the stagnation pressure than the 
[3] scheme, again to both laminar and turbulent 
cases. 

In 2010, [16] has presented a work that was the 
final part of the study that aimed a comparison 
between the turbulence models of [9] and [10] 
applied to aeronautical and aerospace problems. The 
[17] algorithm was used to perform the numerical 
experiments. The algorithm was symmetrical, 
second order accurate in space and time, and the 
temporal integration was accomplished by a Runge-
Kutta type method. The Reynolds average Navier-
Stokes equations were solved, using a finite volume 
formulation and a structured spatial discretization, 
and the models of [9] and [10] were used to describe 
the turbulence effects in the flow properties. The 
physical problems of the transonic flow along a 
convergent-divergent nozzle and the “cold gas” 
hypersonic flow around a double ellipse 

configuration were studied. A spatially variable time 
step was employed to accelerate the convergence of 
the numerical scheme. Effective gains in terms of 
convergence ratio were observed with this technique, 
as reported in [18-19]. The numerical results were 
compared with experimental or theoretical solutions. 
These results have demonstrated that the [10] model 
was more severe in the nozzle problem, while the [9] 
model was more severe in the double ellipse 
problem and more accurate in both examples. 

This work, first of this study, describes five 
numerical tools to perform perfect gas simulations 
of the laminar and turbulent viscous flow in two-
dimensions. The [2-5,7] schemes, in its first- and 
second-order versions, are implemented to 
accomplish the numerical simulations. The Navier-
Stokes equations, on a finite volume context and 
employing structured spatial discretization, are 
applied to solve the supersonic flow along a ramp in 
two-dimensions. Three turbulence models are 
applied to close the system, namely: [9], [10] and 
[11]. On the one hand, the second-order version of 
the [2,4-5,7] schemes are obtained from a “MUSCL” 
extrapolation procedure, whereas on the other hand, 
the modified flux function approach is applied in the 
[3] scheme for the same accuracy. The convergence 
process is accelerated to the steady state condition 
through a spatially variable time step procedure, 
which has proved effective gains in terms of 
computational acceleration (see [18-19]). The 
results have shown that the [2,4-5,7] schemes have 
yielded the best results in terms of the prediction of 
the shock angle at the ramp. Moreover, the wall 
pressure distribution is also better predicted by the 
[2] scheme. 
  
 

2 Navier-Stokes Equations 
The flow is modeled by the Navier-Stokes equations, 
which express the conservation of mass and energy 
as well as the momentum variation of a viscous, 
heat conducting and compressible media, in the 
absence of external forces. The integral and 
conservative form of these equations can be 
represented by: 

     0dSnFFnEEdVQ
t S

yvexve
V





 , 

(1) 

where Q is written for a Cartesian system, V is the 
cell volume, nx and ny are components of the normal 
versor to the flux face, S is the flux area, Ee and Fe 
are the components of the convective flux vector 
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and Ev and Fv are the components of the diffusive 
flux vector. The vectors Q, Ee, Fe, Ev and Fv are 
represented by: 
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The components of the viscous stress tensor are 
defined as: 
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and the components of the Fourier heat flux vector 
are defined as: 

x
e

dPrq i

effect
x 






 , y

e
dPrq i

effect
y 






 , 

(4) 

where  is the fluid density; u and v are the 
Cartesian components of velocity vector in the x and 
y directions, respectively; p is the static pressure; e 
is the total energy per unit volume; the ’s are the 
viscous stresses; qx and qy are the Cartesian 
components of the heat conduction vector (Fourier 
law);  is the ratio of specific heats; effect is the 
effective fluid viscosity, which is equal to the sum 
of the molecular viscosity with the turbulent 
viscosity: 

                         TMeffect  ;                         (5) 

The  effectdPr  is defined as: 

       TTLMeffect dPrdPrdPr  ,     (6) 

where PrdL and PrdT  are the laminar and the 
turbulent Prandtl numbers, respectively, with PrdL = 
0,72 and PrdT = 0.9; Re is the flow Reynolds 
number defined as: 

                          MREFluRe  ,                        (7) 

where uREF is a characteristic flow speed and l is a 
characteristic configuration length; and the internal 
energy is given by: 

                      22
i vu5.0ee  .                    (8) 

The molecular viscosity is estimated by the empiric 
Sutherland formula: 

                     TS1bT 21
M  ,                    (9) 

where T is the absolute temperature (K), b = 
1.458x10-6 Kg/(m.s.K1/2) and S = 110.4 K, to the 
atmospheric air in the standard atmospheric 
conditions ([20]). 
 The Navier-Stokes equations are dimensionless 
in relation to the freestream density, the freestream 
speed of sound and the freestream molecular 
viscosity. The system is closed by the state equation 
for a perfect gas: 

                )vu(5.0e)1(p 22  ,               (10) 

considering the ideal gas hypothesis. The total 
enthalpy is determined by: 
 
                              peH .                           (11) 
 
 

3 TVD Algorithms 
The description of the convective algorithms of [2-
5,7] is presented in [21-31] and the reader is 
encouraged to read these papers to become familiar 
with the numerical schemes. Moreover, the second 
order spatial accuracy, which incorporates TVD and 
high resolution properties, is described in [25-31]. 
Hereafter, this paper will present the viscous 
formulation of both numerical schemes. 
 The numerical flux vector is defined for the [3] 
scheme, for instance, considering the (i+1/2,j) 
interface: 
 

    l
Harteny

l
v

l
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l
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l
e

l
j,2/1i D5.0nFFnEEF

j,2/1ij,2/1ij,2/1ij,2/1i


 , 

(12) 
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where: l varies from 1 to 4 (two-dimensional space) 
and DHarten is the Harten’s dissipation function, 
defined in [23-26]. The Euler vectors are defined by 
the convective contributions of the numerical 
schemes. 
 The viscous vectors are calculated with the 
gradients of the conserved and primitive variables 
keeping constant in each volume and the application 
of the Green’s theorem to change from a volume 
integral to a surface integral. 
 The time integration is performed by a time 
splitting method, for the [2-3,5,7] schemes, which 
divides the integration in two parts, each one 
associated with a spatial coordinate direction. 
Therefore, to the  direction, one has: 
 

 n
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t
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                         *
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and to the  direction, one has: 
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                        1n
j,i

*
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1n
j,i QQQ   .               (14) 

 
The [4] scheme uses a Runge-Kutta time steeping 
method to perform time integration. This Runge-
Kutta method is a five step one. Details in [30-31]. 
 
 

4 Turbulence Models 
 
4.1 Turbulence model of Cebeci and Smith 
The problem of the turbulent simulation is in the 
calculation of the Reynolds stress. Expressions 
involving velocity fluctuations, originating from the 
average process, represent six new unknowns. 
However, the number of equations keeps the same 
and the system is not closed. The modeling function 
is to develop approximations to these correlations. 
To the calculation of the turbulent viscosity 
according to the [9] model, the boundary layer is 
divided in internal and external. 
 Initially, the (w) kinematic viscosity at wall and 
the (xy,w) shear stress at wall are calculated. After 
that, the () boundary layer thickness, the (LM) 
linear momentum thickness and the (VtBL) boundary 
layer tangential velocity are calculated. So, the (N) 
normal distance from the wall to the studied cell is 
calculated. The N+ term is obtained from: 

               www,xy NReN  ,              (15) 

where w is the wall density. The van Driest 
damping factor is calculated by: 

                  
)AN( wwe1D

  ,                 (16) 

with 26A   and w  is the wall molecular 

viscosity. After that, the ( dNdVt ) normal to the 
wall gradient of the tangential velocity is calculated 
and the internal turbulent viscosity is given by: 

                dNdVt)ND(Re 2
Ti  ,                (17) 

where  is the von Kárman constant, which has the 
value 0.4. The intermittent function of Klebanoff is 
calculated to the external viscosity by: 

               
   16

Kleb N5.51)N(g


 .                 (18) 

With it, the external turbulent viscosity is calculated 
by: 

           KlebLMBLTe gVt)0168.0Re(  .           (19) 

Finally, the turbulent viscosity is chosen from the 
internal and the external viscosities: 

),(MIN TeTiT  . 
 
4.2 Turbulence model of Baldwin and 
Lomax 
To the calculation of the turbulent viscosity 
according to the [10] model, the boundary layer is 
again divided in internal and external. In the internal 
layer, 

   
 2

mixTi l    and     0AN
mix e1Nl .  (20) 

In the external layer, 

     
)C/N;N(FFC KlebmaxKlebwakecpTe  ,       (21) 

with: 

    
 max

2
difmaxwkmaxmaxwake F/UNC;FNMINF  ,  (22a) 

                
   mix

N
max lMAX1F .              (22b) 

Hence, maxN  is the value of N where mixl  

reached its maximum value and lmix is the Prandtl 
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mixture length. The constant values are: 4.0 , 

0168.0 , 26A0  , 6.1Ccp  , 3.0CKleb   and 

1Cwk  . KlebF  is the intermittent function of 
Klebanoff given by: 

               16
maxKlebKleb NNC5.51)N(F


 ,     (23) 

  is the magnitude of the vortex vector and difU  

is the maximum velocity value in the boundary layer 
case. To free shear layers, 
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
 


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
  .  (24) 

 
4.3 Turbulence model of Sparlat and 
Allmaras 
The purpose of the [11] one-equation model was 
overcome the algebraic model limitations and, at the 
same time, to avoid the difficulties in the 
implementation of the two-equation models or the 
Reynolds stress equations. This model employs a 
transport turbulent viscosity to solve the turbulence 
scaling. Such model takes naturally into account the 
turbulence and diffusion histories, which improves 
its accuracy. 
 The transport equation to the work turbulent 
kinematic viscosity is described by: 

     
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w1w
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(25) 

In this equation, the first term of the right-hand-side 
is the production contribution to the work kinematic 
viscosity; the second term is the viscosity diffusion; 
and the last term is the destruction of the work 
kinematic viscosity. The turbulent viscosity is 
defined by: 

                               1vT f~ .                          (26) 

With the purpose of assuring that ~  becomes equal 

to ww,xyNK   in the logarithmic layer and 

in the viscous sub-layer, the 1vf damping function is 
defined by: 
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                            (27) 

as function of the  ~ variable. The S
~

 function, 
representing the deformation work of the mean flow, 
is determined as follows: 
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in which 2vf  has the following expression: 
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 The destruction term should disappear at the 
external region of the boundary layer. [11] purpose 
the following function to reproduce such behaviour: 
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with the r argument and the wf function reaching the 
value 1.0 at the logarithmic layer and decreasing at 
the external region. The g function is merely a 
limiter to prevent wf  high values. The [11] model 
constants are: 
 

1,7c,3,0c,622,0c,1355,0c 1v2w2b1b  ; 

       
 



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 2b
2
1b

1w3w

c1c
c,0,2c,32 .    (31) 

The [11] model is marched in time using a LU-SGS 
(“Lower-Upper Factorization – Symmetrical Gauss-
Seidel”) implicit method. Details of the implicit 
implementation in two-dimensions are found in [11]. 
The extension to three-dimensions is 
straightforward. 
 In this work, the term referent to the diffusion of 
the work kinematic viscosity was not implemented. 
The studied model considers only the production 
and dissipation terms of the work kinematic 
viscosity. 
 
 

5. Spatially Variable Time Step 
The basic idea of the spatially variable time step 
procedure consists in keeping constant the CFL 
number in all calculation domain, allowing, hence, 
the use of appropriated time steps to each specific 
mesh region during the convergence process. In this 
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work, a convective + diffusive option of spatially 
variable time step calculated at each iteration was 
studied and is described below: 
 To a viscous simulation and according to the 
work of [32], it is possible to write: 
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with tc being the convective time step and tv 
being the viscous time step. These quantities are 
defined as: 
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where interface properties are calculated by 
arithmetical average, M is the freestream Mach 
number,  is the fluid molecular viscosity and Kv is 
equal to 0.25, as recommended by [32]. 
 
 
6. Initial and Boundary Conditions 

6.1 Initial Condition 
Freestream values, at all grid cells, are adopted for 
all flow properties as initial condition, as suggested 
by [17] and [33]. Therefore, the vector of conserved 
variables is defined as: 

T
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(35) 
 
6.2 Boundary Conditions 
The boundary conditions are basically of three types: 
solid wall, entrance, and exit. These conditions are 
implemented in ghost cells. 
 
 
 

6.2.1 Wall Condition 
Considering the viscous case, it imposes the non-
permeability and non-slip wall conditions. Therefore, 
the tangent velocity component of the ghost volume 
at wall has the same magnitude as the respective 
velocity component of its real neighbor cell, but 
opposite signal. In the same way, the normal 
velocity component of the ghost volume at wall is 
equal in value, but opposite in signal, to the 
respective velocity component of its real neighbor 
cell. These procedures lead to the following 
expressions to ughost and vghost: 
 

                                realghost

realghost

vv

uu





     
                    (36) 

 The pressure gradient normal to the wall is 
assumed to be equal to zero, following a boundary-
layer like condition. The same hypothesis is applied 
to the temperature gradient normal to the wall, 
considering adiabatic wall. The ghost volume 
density and pressure are extrapolated from the 
respective values of the real neighbor volume (zero 
order extrapolation), with these two conditions. The 
total energy is obtained by the state equation of a 
perfect gas. 
 
6.2.2 Entrance Condition 
The entrance condition considers subsonic and 
supersonic flow. They are detailed below: 
 
(a) Subsonic flow: Three properties are specified 
and one extrapolated. This approach is based on 
information propagation analysis along 
characteristic directions in the calculation domain 
(see [33]). In other words, for subsonic flow, three 
characteristic propagate information point into the 
computational domain. Thus three flow properties 
must be fixed at the inlet plane. Just one 
characteristic line allows information to travel 
upstream. So, one flow variable must be 
extrapolated from the grid interior to the inlet 
boundary. The pressure was the extrapolated 
variable from the real neighbor volumes, for the 
studied problem. Density and velocity components 
adopted values of freestream flow. 
(b) Supersonic flow: In this case no information 
travels upstream; therefore all variables are fixed 
with their freestream values. 
 
6.2.3 Exit Condition 
Again, two flow situations are analyzed. They are 
detailed below: 
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(a) Subsonic flow: Three characteristic propagate 
information outward the computational domain. 
Hence, the associated variables should be 
extrapolated from interior information. The 
characteristic direction associated to the “(qnormal-a)” 
velocity should be specified because it point inward 
to the computational domain (see [33]). In this case, 
the ghost volume pressure is specified from its 
initial value. Density, and velocity components are 
extrapolated. The total energy is obtained from the 
state equation of a perfect gas. 
(b) Supersonic flow: All variables are extrapolated 
from interior grid cells, as no flow information can 
make its way upstream. In other words, nothing can 
be fixed. 
 
 

7. Results 
One problem was studied in this work, namely: the 
viscous supersonic flow along a ramp geometry. 
The ramp configuration is detailed as also the type 
of boundary contours. These configuration 
characteristics are described in Figs. 1 and 2. 
 

 
Figure 1. Ramp Configuration. 

 
Numerical experiments were run on a Notebook 
computer with Intel Core i7 processor of 2.3GHz of 
clock and 8.0 GBytes of RAM. The criterion 
adopted to reach the steady state was to consider a 
reduction of three (3) orders of magnitude in the 
value of the maximum residual in the calculation 
domain, a typical CFD community criterion. The 
maximum residual is defined as the maximum value 
obtained from the discretized equations in the 
overall domain, considering all conservation 
equations. 
 

 
Figure 2. Ramp Computational Domain. 

 
The initial conditions to the ramp problem are 
described in Tab. 1. 
 
Table 1. Initial Conditions to the Studied Problem. 

 

 The number of cells and nodes for the ramp 
problem are presented in Tab. 2. A mesh of 61x60 
nodes, in a finite difference context, is employed. 
 

Table 2. Cells and Nodes of the Mesh. 
 

Problem: Number of 
rectangular cells: 

Number 
of nodes: 

Ramp 3,540 3,660 

 
Figure 3. Ramp viscous mesh. 

 
 Figure 3 exhibits the mesh employed in the 
calculation of the viscous flow to the ramp problem. 

Problem: Property: Value: 
 Freestream Mach, M∞ 2.0 

Ramp Attack angle,  0.0 
 Ratio of specific heats,  1.4 
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An exponential stretching of 10.0% was applied 
close to the wall, in the  direction, to capture the 
viscous phenomena. 
 The Reynolds number is equal to 1.613x105, a 
turbulent flow. Three turbulence models will be 
studied, namely: [9-11]. Two algebraic and an one-
equation models are implemented. 
 
7.1 Laminar Viscous Results 
The laminar viscous results are divided in two 
solution groups: the first order and the second order 
solutions. The first order results are presented here 
to serve as a benchmark to compare the second 
order viscous results, aiming to distinguish the 
excessive diffusion characteristics resulting from the 
former, as referenced by the CFD literature. 
 
7.1.1 First order results 
Figures 4 to 8 presents the pressure contours 
obtained by the [2-5,7] schemes, respectively. All 
schemes capture a strong viscous interaction typical 
of viscous flow simulations, at the ramp entrance. 

 
Figure 4. Pressure contours (VL-1st Order). 

 
Figure 5. Pressure contours (H-1st Order). 

 
Figure 6. Pressure contours (FPP-1st Order). 

 
Figure 7. Pressure contours (LS-1st Order). 

 
Figure 8. Pressure contours (RK-1st Order). 

 
A weak shock wave is formed ahead of the ramp 
due to the boundary layer detachment. The [3] 
scheme captures the biggest detachment region of 
the boundary layer, resulting in the biggest 
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circulation bubble formation. Moreover, the [2] 
scheme captures the most severe pressure field, 
characterizing this one as more conservative than 
the others schemes. 
 Figures 9 to 13 exhibit the Mach number 
contours obtained by the [2-5,7] schemes, 
respectively. All schemes capture the boundary 
layer detachment close to the ramp corner. 
Apparently, the all schemes capture the same region 
of separation flow and consequently the same 
bubble size. The five fields are approximately the 
same in quantitative terms. 

 
Figure 9. Mach number contours (VL-1st Order). 

 
Figure 10. Mach number contours (H-1st Order). 

 
 Figure 14 presents the wall pressure distributions 
of all schemes. They are compared with the oblique 
shock wave theory results and with the Prandtl-
Meyer expansion fan results. It is important to 
observe that this theoretical profile is the correct to 
be obtained in a viscous simulation, because of the 
pressure gradient in the normal direction from the 
wall is equal to zero, according to the boundary 

layer theory. Hence, the pressure at the boundary 
layer edge is imposed to the wall pressure. 

 
Figure 11. Mach number contours (FPP-1st Order). 

 
Figure 12. Mach number contours (LS-1st Order). 

 
Figure 13. Mach number contours (RK-1st Order). 

 
 As can be seen, the [2] solution is closer to the 
pressure profile than the other solutions. The [3] 
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scheme predicted the smallest severe shock than the 
others schemes. The expansion fan is better captured 
by the [5] scheme. 

 
Figure 14. Wall pressure distributions. 

 
Figure 15. Circulation bubble. (VL-1st Order). 

 
Figure 16. Circulation bubble. (H-1st Order). 

 
Figure 17. Circulation bubble (FPP-1st Order). 

 
Figure 18. Circulation bubble (LS-1st Order). 

 
Figure 19. Circulation bubble (RK-1st Order). 

 
 Finally, the circulation bubble closes to the ramp 
corner is exhibited in Figs. 15 to 19. The [4-5] 
solutions show bigger circulation bubbles than the 
other solutions. 
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7.1.2 Second order results/TVD 
For the second order results, a minmod non-linear 
limiter was employed in the [2,4-5,7] scheme. The 
[5,7] schemes did not present converged results. 
Figures 20 to 22 exhibit the pressure contours 
obtained by the [2-4] schemes. 

 
Figure 20. Pressure contours (VL-TVD). 

 
Figure 21. Pressure contours (H-TVD). 

 
Figure 22. Pressure contours (FPP-TVD). 

All solutions present a weak shock ahead of the 
ramp corner. This shock wave is formed far ahead 
the ramp corner. The pressure field is also more 
severe in the solution obtained by the [2] scheme, 
indicating this one as the most conservative. 

 
Figure 23. Mach number contours (VL-TVD). 

 
Figure 24. Mach number contours (H-TVD). 

 
Figure 25. Mach number contours (FPP-TVD). 
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 Figures 23 to 25 show the Mach number 
contours obtained by the [2-4] algorithms. All 
solutions present a significant region of the detached 
boundary layer. No quantitative differences exists in 
the solutions, although in qualitative terms the [2] 
solution is more correct. 
 Figure 26 shows the wall pressure distributions 
generated by the [2-4] schemes in their TVD 
versions. All solutions capture the circulation 
bubble formation, resulting from the boundary layer 
detachment. The [2] solution presents a pressure 
distribution closer to the pressure plateau, whereas 
the [4] solution shows a more extent separation 
region. 

 
Figure 26. Wall pressure distributions. 

 
 Figures 27 to 29 presents the formation of 
circulation bubble closes to the ramp corner 
obtained by [2-4] schemes. The circulation bubbles 
obtained by the [3-4] schemes are larger than the 
respective of the [2] scheme. 

 
Figure 27. Circulation bubble (VL-TVD). 

 
 

 
Figure 28. Circulation bubble (H-TVD). 

 
Figure 29. Circulation bubble (FPP-TVD). 

 
 As a resume of the present simulations, the [2] 
scheme was more conservative and more correct in 
physical terms, representing accurately the flow 
physics. 
 
7.2 Turbulent Viscous Results 
 
7.2.1 Cebeci and Smith results/TVD 
Figures 30 to 34 show the pressure contours 
obtained by the [2-5,7] schemes, respectively, as 
using the [9] turbulence model. All solutions 
practically ignore the existence of the weak shock 
ahead of the ramp corner. It indicates that the 
boundary layer detachment is negligible in all 
solutions and that the circulation bubble is reduced 
in size. The pressure field generated by the [3] 
scheme is the most severe in relation to those 
generated by the other schemes. 
 Figures 35 to 39 exhibit the Mach number 
contours generated by the [2-5,7] numerical 
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algorithms, as using the [9] turbulence model. As 
can be observed, the boundary layer detachment is 
reduced in relation to the other results 
aforementioned for all algorithms. The circulation 
bubble is much more reduced. 

 
Figure 30. Pressure contours (Roe-CS). 

 
Figure 31. Pressure contours (H-CS). 

 
Figure 32. Pressure contours (FPP-CS). 

 
Figure 33. Pressure contours (LS-CS). 

 
Figure 34. Pressure contours (RK-CS). 

 
Figure 35. Mach number contours (VL-CS). 

 
 Figure 40 exhibits the wall pressure distributions 
obtained by the [2-5,7] algorithms, as using the [9] 
turbulence model. As can be observed, all solutions 
are very similar and agree better with the theoretical 
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solution than in the laminar cases. The expansion 
fan pressure is better predicted by the [7] algorithm. 

 
Figure 36. Mach number contours (H-CS). 

 
Figure 37. Mach number contours (FPP-CS). 

 
Figure 38. Mach number contours (LS-CS). 

 
 Figures 41 to 45 show the circulation bubble 
formation close to the ramp corner. All solutions 

predicted a small circulation bubble, although that 
generated by the [2] scheme is larger than those 
generated by the other schemes. 

 
Figure 39. Mach number contours (RK-CS). 

 
Figure 40. Wall pressure distributions. 

 
Figure 41. Circulation bubble (VL-CS). 
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Figure 42. Circulation bubble (H-CS). 

 
Figure 43. Circulation bubble (FPP-CS). 

 
Figure 44. Circulation bubble (LS-CS). 

 
 In resume, as can be observed the [9] turbulence 
model predicts a more energized boundary layer. 
With it, the weak shock wave ahead of the ramp 

corner is negligible and the circulation bubble 
presents a discrete formation. 

 
Figure 45. Circulation bubble (RK-CS). 

 
7.2.2 Baldwin and Lomax results/TVD 
In this case, only the [2-4] schemes have presented 
converged results. Figures 46 to 48 exhibit the 
pressure contours obtained by the [2-4] schemes, 
respectively, as using the [10] turbulence model. A 
weak shock wave is formed ahead of the ramp 
corner in all solutions. It is important to remember 
that such weak shock wave is due to the boundary 
layer detachment which induces a false thick 
geometry at the ramp and the flow only see this 
thick geometry, originating the oblique shock wave. 
So, it is possible to distinguish that the effect of 
increasing boundary layer thickness is more 
pronounced in the [4] solution than in the other 
solutions. It also induces the expected behavior of a 
larger circulation bubble formed in the [4] solution. 
In terms of the pressure field, the [2] scheme again 
presents the most severe pressure field, 
characterizing this algorithm as more conservative. 

 
Figure 46. Pressure contours (VL-BL). 
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Figure 47. Pressure contours (H-BL). 

 
Figure 48. Pressure contours (FPP-BL). 

 
Figure 49. Mach number contours (VL-BL). 

 
 Figures 49 to 51 show the Mach number 
contours obtained by the [2-4] numerical algorithms, 
respectively, as using the [10] turbulence model. It 
is possible to observe that the boundary layer 

detachment is bigger in the [4] solution, with the 
consequent formation of a bigger circulation bubble 
than the other solutions. The Mach number field of 
all solutions is the same in quantitative terms, 
although in qualitative terms they are different. 

 
Figure 50. Mach number contours (H-BL). 

 
Figure 51. Mach number contours (FPP-BL). 

 
Figure 52. Wall pressure distributions. 
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 Figure 52 presents the wall pressure distributions 
generated by all algorithms. As noted, all solutions 
capture the circulation bubble formation closes to 
the ramp corner, but all solutions differs from the 
theoretical solution (all under-predict the shock 
plateau). 

 
Figure 53. Circulation bubble (VL-BL). 

 
Figure 54. Circulation bubble (H-BL). 

 
Figure 55. Circulation bubble (FPP-BL). 

 Figures 53 to 55 exhibit the circulation bubble 
formed close to the ramp corner generated by the [2-
4] algorithms. The [4] schemes present the a bigger 
circulation bubble extent and size than the others. 
 In resume, the [10] turbulence model predicts a 
great extent region of boundary layer detachment 
and, consequently, bigger bubble size. The [10] 
model predicts bigger separation than the [9] model. 
 
7.2.3 Sparlat and Allmaras results/TVD 

Only the [5] scheme did not present converged 
results. Figures 56 to 59 present the pressure 
contours obtained by the [2-4,7] schemes, 
respectively, as using the [11] turbulence model. 
The [2] solution captures a small boundary layer 
detachment, which results in a less intense weak 
shock wave. The [4] solution captures the biggest 
boundary layer detachment, which results in a more 
intense weak shock wave. The pressure field 
generated by the [2] scheme is again the most severe 
in relation to those generated by the others schemes. 

 
Figure 56. Pressure contours (VL-SA). 

 
Figure 57. Pressure contours (H-SA). 
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Figure 58. Pressure contours (FPP-SA). 

 
Figure 59. Pressure contours (RK-SA). 

 
Figure 60. Mach number contours (VL-SA). 

 
 Figures 60 to 63 show the Mach number 
contours obtained by the [2-4,7] numerical schemes, 
respectively. The [4] solution again captures a 
bigger circulation bubble than the other solutions. In 

quantitative terms the solutions are the same, the 
difference existing in qualitative terms. 

 
Figure 61. Mach number contours (H-SA). 

 
Figure 62. Mach number contours (FPP-SA). 

 
Figure 63. Mach number contours (RK-SA). 

 
 Figure 64 shows the wall pressure distributions 
obtained by the [2-4,7] algorithms. All solutions 
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capture the circulation bubble at the ramp corner. 
Moreover, the [2] pressure peak is close to the 
theoretical pressure plateau. 

 
Figure 64. Wall pressure distributions. 

 
Figure 65. Circulation bubble (VL-SA). 

 
Figure 66. Circulation bubble (H-SA). 

 

 It is important to be mentioned here that the best 
behavior to the pressure plateau was obtained by the 
[9] turbulence model in spite of the loss of physical 
meaning of the flow (loss of the circulation bubble 
formation). 

 
Figure 67. Circulation bubble (FPP-SA). 

 
Figure 68. Circulation bubble (RK-SA). 

 
 Figures 65 to 68 exhibit the circulation bubble 
captured by the [2-4,7] schemes, respectively, as 
using the [11] turbulence model. As can be seen, the 
[4] solution generates the largest bubble region than 
the other solutions. 
 In resume, the [11] turbulence model predicts a 
less extent region of boundary layer detachment and, 
consequently, minor bubble size. The [11] model, an 
one-equation model, predicts less severe separation 
than the [10] model. 
 
7.3 Quantitative Analysis 
One way to quantitatively verify if the solutions 
generated by each scheme are satisfactory consists 
in determining the shock angle of the oblique shock 
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wave, , measured in relation to the initial direction 
of the flow field. [34] (pages 352 and 353) presents 
a diagram with values of the shock angle, , to 
oblique shock waves. The value of this angle is 
determined as function of the freestream Mach 
number and of the deflection angle of the flow after 
the shock wave, . To  = 20º (ramp inclination 
angle) and to a freestream Mach number equals to 
2.0, it is possible to obtain from this diagram a value 
to  equals to 53.0º. Using a transfer in Figures 4 to 
8 (laminar, first order), Figs. 20 to 22 (laminar, 
second order), Figs. 30 to 34 (CS), Figs. 46 to 48 
(BL), Figs. 56 to 59 (SA), it is possible to obtain the 
values of  to each scheme and to each studied case, 
as well the respective errors, shown in Tab. 3. 
 

Table 3. Values of the oblique shock wave angle. 
 

Case Lam., 
1st 

Lam., 
2nd  

CS, 
TVD 

BL, 
TVD 

SA, 
TVD

VL 51.0 56.4 51.0 53.0 51.6
Error 3.77 6.42 3.77 0.00 2.64

H 49.3 55.0 52.5 55.0 51.7
Error 6.98 3.77 0.94 3.77 2.45
FPP 52.4 51.6 51.4 53.0 55.0

Error 1.13 2.64 3.02 0.00 3.77
LS 53.0 - 52.0 - - 

Error 0.00 - 1.89 - - 
RK 51.0 - 51.2 - 53.0

Error 3.77 - 3.40 - 0.00
 
It is possible to distinguish that only the [3] scheme 
did not capture the exact value of the oblique shock 
wave angle. All other schemes capture this exact 
value in a particular case. The [10] turbulence 
model was the most exact because allows the [2] 
and [4] schemes to capture accurately the shock 
angle. 
 

Table 4. Computational data. 
 

Case Lam., 
1st 

Lam., 
2nd  

CS, 
TVD 

BL, 
TVD 

SA, 
TVD

VL 0.7(1) 0.1 0.1 0.1 0.1 
 3,872 32,138 12,318 32,144 19,961

H 0.9(1) 0.9 0.9 0.9 0.9 
 2,909 3,880 1,100 3,880 2,376

FPP 0.9(1) 0.1 0.1 0.1 0.1 
 6,326 48,378 22,374 48,378 34,615

LS 0.9(1) - 0.1 - - 
 6,484 - 22,593 - - 

RK 0.9(1) - 0.1 - 0.1 
 3,904 - 13,614 - 33,091

 (1): Convergence in 4 orders. 

 Table 4 presents the computational data of the 
simulations. With exception of the first order results, 
all others results converged in three (3) orders. All 
second order solutions of the [2,4-5,7] scheme 
converged with a CFL number of 0.1. On the other 
hand, all second order solutions of the [3] scheme 
converged with a CFL Number of 0.9. It is 
important to highlight the excellent convergence of 
the [3] scheme, converging in all cases with a CFL 
number of 0.9. 
 
 

8 Conclusions 
This work describes five numerical tools to perform 
perfect gas simulations of the laminar and turbulent 
viscous flow in two-dimensions. The [2-5,7] 
schemes, in its first- and second-order versions, are 
implemented to accomplish the numerical 
simulations. The Navier-Stokes equations, on a 
finite volume context and employing structured 
spatial discretization, are applied to solve the 
supersonic flow along a ramp in two-dimensions. 
Three turbulence models are applied to close the 
system, namely: [9], [10] and [11]. On the one hand, 
the second-order version of the [2,4-5,7] schemes 
are obtained from a “MUSCL” extrapolation 
procedure, whereas on the other hand, the modified 
flux function approach is applied in the [3] scheme 
for the same accuracy. The convergence process is 
accelerated to the steady state condition through a 
spatially variable time step procedure, which has 
proved effective gains in terms of computational 
acceleration (see [18-19]). The results have shown 
that the [2,4-5,7] schemes have yielded the best 
results in terms of the prediction of the shock angle 
at the ramp. Moreover, the wall pressure distribution 
is also better predicted by the [2] scheme. 
 It is important to emphasize that the study of the 
present turbulence models aims a verification of 
their potentialities to be used in re-entry flows in 
Earth and entry flows in Mars, to perform turbulent 
reactive simulations on the future. Some references 
to the reader become familiar with such line of 
research of the present author are: [35-39]. 
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