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Abstract: A graph G is said to be γ - stable if γ(Gxy) = γ(G), for all x, y ∈ V (G), x is not adjacent to y,
where Gxy denotes the graph obtained by merging the vertices x, y. In this paper we have provided a necessary
and sufficient condition for Ḡ to be γ - stable, where Ḡ denotes the complement of G. We have obtained a
characterization of planar graphs when G and Ḡ are γ - stable graphs.

Key–Words: γ - stable graph, planar, nonplanar, dominating set.

1 Introduction

In graph theory, a planar graph is a graph that can be
embedded in the plane, that is it can be drawn on the
plane in such a way that its edges intersect only at their
endpoints. In other words, it can be drawn in such a
way that no edges cross each other [13].

Planarity of graph is related with various proper-
ties. Tilings appears in many fields such as architec-
ture, crystal structure etc. In [7], Hao Li has obtained
some properties of planar normal tilling. In [6], Gu-
rami Tsitsiashvili and Marina Osipova have discussed
the asymptotic analysis of connectivity probability in
random planar graphs. Pulley blank has proved that
deciding whether a graph is supereulerian within pla-
nar graphs is NP-complete[9]. Hong-Jian Lai, Yehong
Shao and Huiya Yan have provided a survey on su-
pereulerian graph [9]. In[11], C. H. C. Little and G.
Sanjith have provide a new characterization of planar
graphs that concerns the structure of the cocycle space
of a graph.

Characterizing planar graphs based on graph
properties is a common problem discussed by various
authors. In [2], By Joseph Battle, Frank Harary and
Yukihiro Kodama have proved that every planar graph
with nine points has a nonplanar complement. In[1],
Jin Akiyama and Frank Harary have characterized all
graphs for which G and Ḡ are outerplanar.

In [4], Rosa I. Enciso and Ronald D. Dutton have
classified planar graph based on the complement of G.
They have proved the following result.

R1. If G is a planar graph, γ(Ḡ) ≤ 4.

In this paper we have characterized planar graphs
based on the property of Ḡ.

2 Terminology

We consider only simple connected undirected graphs
G = (V,E). The open neighborhood of vertex
v ∈ V (G) is defined by N(v) = {u ∈ V (G)|uv ∈
E(G)}, while its closed neighborhood is the set
N [v] = N(v) ∪ {v}. We say that H is a subgraph
of G, if V (H) ⊆ V (G) and uv ∈ E(H) implies
uv ∈ E(G). If a subgraph H satisfies the added prop-
erty that for every pair u, v of vertices, uv ∈ E(H) if
and only if uv ∈ E(G), then H is called an induced
subgraph of G and is denoted by ⟨H⟩. Two graphs are
said to be homeomorphic if one graph can obtained
from the other by the creation of edges in series( that
is by insertion of vertices of degree two ) or by the
merger of edges in series. In the literature of graph
theory, K5 and K3,3 are called Kuratowskí s graph.

An elementary contraction of a graph G is ob-
tained by identifying two adjacent points u and v, that
is by the removal of u and v and the addition of a new
point w adjacent to those points to which u or v was
adjacent. A graph G is contractible to a graph H if
H can be obtained from G by a sequence of elemen-
tary contractions[5]. For properties related to graph
theory we refer to F. Harary [5]. We indicate that u is
adjacent to v by writing u⊥v [3].

A set of vertices D in a graph G = (V,E) is a
dominating set if every vertex of V −D is adjacent to
some vertex of D. If D has the smallest possible car-
dinality of any dominating set of G, then D is called
a minimum dominating set - abbreviated MDS. The
cardinality of any MDS for G is called the domina-
tion number of G and it is denoted by γ(G). A γ - set
denotes a dominating set for G with minimum cardi-
nality. The private neighborhood of v ∈ D is defined
by pn[v,D] = N(v) − N(D − {v}). For properties
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related to domination we refer to T. W. Haynes, S. T.
Hedetniemi, and P. J. Slater [8].

3 Results and Discussions
In [14], M. Yamuna and K. Karthika defined γ - sta-
ble graphs. A graph G is said to be γ - stable if
γ(Gxy) = γ(G), for all x, y ∈ V (G), x is not ad-
jacent to y, where Gxy denotes the graph obtained by
merging the vertices x, y

They have proved the following results.
R2. A graph G is γ - stable if and only if every γ-

set D of G is a clique.
R3. If G is γ - stable, then pn[u,D] ≥ 2, for all

u ∈ V (G).
In all the figures encircled vertices denotes a γ-

set.

(a)

(b)

Fig.1

In Fig. 1(a), G24 denote the graph obtained by
merging the nonadjacent vertices 2 and 4, γ(G) =
γ(G24). This is true for all x, y ∈ V (G), x is not
adjacent to y, which implies G is γ - stable.

The graph in Fig. 1 (a) is self complement, that is
G, Ḡ are γ - stable, G planar. In Fig.1 (b) G, Ḡ are γ
- stable, G nonplanar. We observe that when G and Ḡ
are γ - stable graphs G may or may not be planar.

In this paper we focus on obtaining conditions un-
der which Ḡ is γ - stable and hence use it for charac-
terizing planarity of γ - stable graphs.

Theorem 1 For any graph G such that γ(Ḡ) = k, Ḡ
is γ - stable if and only if

1. there is at least one set of k - independent ver-
tices S ⊆ V (G) such that there is no v ∈ V −S,
v adjacent to all vertices in S.

2. for all k - non - independent vertices S in G,
there is at least one v ∈ V − S, v adjacent to
all vertices in S.

Proof: Assume that Ḡ is a γ - stable graph such
that γ(Ḡ) = k. We know that any γ - set in Ḡ is
a clique. Let S = {v1, v2, · · · , vk} be a γ - set in
Ḡ. ⟨S⟩ is a clique in Ḡ, which implies there is no
adjacency between these vertices in G, that is S is in-
dependent with respect to G. Assume that there is a
vertex v ∈ V (G) − S(G) such that v adjacent to all
vertices in S. This means that, in Ḡ vertex v is not
adjacent to any vertex in S, a contradiction as S is a γ
- set in Ḡ. Hence condition 1 is true.

Let S = {u1, u2, · · · , uk} be a set of non - in-
dependent vertices in G. Assume that there is no
v ∈ V − S such that v adjacent to all vertices in S.
This means that in Ḡ, every v ∈ V − S is adjacent
to at least one vertex in S, that is S is a γ - set with
respect to Ḡ. Since S is a non - independent set in G,
there is at least one ui, uj ∈ S(G) such that ui⊥uj .
This means that there is no edge between ui and uj in
Ḡ, a contradiction as Ḡ is γ - stable and S is a γ - set
with respect to Ḡ. Hence condition 2 is satisfied.

Conversely, let G be a graph such that

i. γ(Ḡ) = k

ii. condition 1 and 2 of the theorem satisfied.

We have to prove that Ḡ is γ - stable, that is we need
to prove every γ - set of Ḡ is a clique [ by R2 ].
Let S(G) = {v1, v2, · · · , vk} be a set of vertices that
satisfies condition 1. Since S is independent in G,
⟨S⟩ is a clique with respect to Ḡ. Since there is no
v ∈ V (G)− S(G), v adjacent to all vertices in S(G),
every v ∈ V (Ḡ) − S(Ḡ) is adjacent to at least one
vertex in S, that is S is a γ - set in Ḡ.

Let S = {u1, u2, · · · , uk} be a set of vertices in
G, that satisfies condition 2. Since S is non - indepen-
dent in G, ⟨S⟩ cannot be a clique in Ḡ. Since there is
atleast one v ∈ V (G) − S(G), v adjacent to all ver-
tices in S(G), v is not adjacent to any vertex in S(Ḡ),
that is S is not a γ - set with respect to Ḡ. This is true
for every set S(Ḡ) such that

i.
⟨
S(Ḡ)

⟩
is not a clique,

ii. |S(Ḡ)| = k,

that is there is no γ - set that is not a clique in Ḡ.
From the above discussion we conclude that every

γ - set of Ḡ is a clique. ⊓⊔
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Theorem 2 Let G and Ḡ be γ - stable graphs such
that γ(G) = k, γ(Ḡ) = m,m > k. Then every
m − 1,m − 2, · · · , 2 independent vertices in G are
collectively adjacent to atleast two vertices in G.

Proof: LetG and Ḡ be γ - stable graphs. Let γ(Ḡ) =
D = {x1, x2, · · · , xm} and let Z = {v1, v2, · · · , vp}
be a set of independent vertices in G, where p ∈ [m−
1,m− 2, · · · , 2].

If possible assume that the vertices in Z are col-
lectively adjacent to one vertex say x ∈ V (G). In
Ḡ, ⟨v1, v2, · · · , vp⟩ is a clique. In Ḡ, Z dominates
V (Ḡ) − {x}, which implies Z ∪ {x} is a dominat-
ing set for Ḡ, |Z ∪ {x}| ≤ m,x selfish. ⟨Z ∪ {x}⟩ is
not a clique in Ḡ.

If |Z ∪ {x}| < m, then {Z ∪ {x}} dominates Ḡ
such that |Z ∪ {x}| < m, a contradiction as γ(Ḡ) =
m.

If |Z ∪ {x}| = m, then since ⟨Z ∪ {x}⟩ is not a
clique, we get a contradiction to our assumption that
Ḡ is a γ - stable graph.

So everym−1,m−2, · · · , 2 independent vertices
inG are collectively adjacent to atleast two vertices in
G. ⊓⊔

4 Planar Characterization of γ - Sta-
ble Graphs

We recollect the following famous theorem on planar
graphs.

R4. A necessary and sufficient condition for a
graph G to be planar is that G does not contain either
of Kuratowskí s two graphs or any graph homeomor-
phic to either of them.

R5. A graph is planar if and only if it does not
have a subgraph contractible to K5 or K3,3.[5]

We shall prove that a γ - stable graph is planar or
nonplanar using R4 and R5.

If γ(G) = 1, then Ḡ is disconnected and hence
Ḡ is not a γ - stable graph. Also by R1, if G is a
planar graph, γ(G) ≤ 4. So in the remaining part of
this section we restrict our discussion to cases where
1 < γ(G) ≤ 4, 1 < γ(Ḡ) ≤ 4.

We shall use the following results of Theorem 1
and 2 frequently.

i. Ifγ(Ḡ) = k, then every k - non - independent
vertices in G are collectively adjacent to atleast
one vertex in G.

ii. If G, Ḡ are γ - stable, γ(G) = k, γ(Ḡ) =
m,m > k, then every m− 1,m− 2, · · · , 2 inde-
pendent vertices in G are collectively adjacent to
atleast two vertices in G.

In all figures, in the remaining part of the discussion,

i. −−− represents the newly added edges in the
current discussion.

ii. When we use edge contraction, a vertex receives
a label of the contracted vertices. For example
y : bb1x1x2 means that the contracted edges are
bb1, b1x1, x1x2 and is assigned the new label as
b.

iii. If a, b, c, · · · denote graphs in figures, then
á, b́, ć, · · · denotes subgraphs of a, b, c, · · · re-
spectively [ á, b́, ć, · · · are either K5 or K3,3 ].

All cases and subcases are supported with graphs
along with the discussion.

Theorem 3 If G and Ḡ are γ - stable graphs such
that γ(G) ≤ 4 and γ(Ḡ) = 4, then G is nonplanar.

Proof: Case 1: γ(G) = 2, γ(Ḡ) = 4.
Let γ(G) = D = {a, b}. Since G is γ - stable,

pn[u,D] ≥ 2, for all u ∈ D [ by R3 ]. Let {a1, a2} ∈
pn[a,D], {b1, b2} ∈ pn[b,D]. ⟨a1, a, b, b1⟩ is non
- independent in G, γ(Ḡ) = 4. There is a vertex
x ∈ V (G) such that x⊥(a1, a, b, b1) [ Since a2 ∈
pn[a,D], b2 ∈ pn[b,D], x ̸= a2, b2 ].
⟨x, a, b, a1⟩ is non - independent inG. So, there is

one y ∈ V (G) such that y⊥(x, a, b, a1) [ Since a2 ∈
pn[a,D], {b1, b2} ∈ pn[b,D], x ̸= a2, b1, b2 ].

Similarly ⟨x, a, b, y⟩ is non - independent, there
is one z ∈ V (G) such that z⊥(x, a, b, y) [ Since
{a1, a2} ∈ pn[a,D], {b1, b2} ∈ pn[b,D], x ̸=
a1, a2, b1, b2 ]. ⟨a, b, x, y, z⟩ is K5, which is a sub-
graph of G as seen in Fig. 2 implies G is nonplanar.

Fig. 2

Case 2: γ(G) = 3, γ(Ḡ) = 4.
Let γ(G) = D = {a, b, c} be a γ - set for G.

Since G is γ - stable, pn[u,D] ≥ 2, for all u ∈ D [
by R3 ]. Let {a1, a2} ∈ pn[a,D], {b1, b2} ∈ pn[b,D]
and {c1, c2} ∈ pn[c,D].
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⟨a1, a, b, c⟩ is non - independent in G, γ(Ḡ) = 4,
there is a vertex x ∈ V (G) such that x⊥(a1, a, b, c)
[ Since a2 ∈ pn[a,D], {b1, b2} ∈ pn[b,D] and
{c1, c2} ∈ pn[c,D], x ̸= a2, b1, b2, c1, c2].
⟨x, a, b, c⟩ is non - independent in G, there is a

vertex y such that y⊥(x, a, b, c) [ Since {a1, a2} ∈
pn[a,D], {b1, b2} ∈ pn[b,D] and {c1, c2} ∈
pn[c,D], y ̸= a1, a2, b1, b2, c1, c2].

So, ⟨x, y, a, b, c⟩ is K5, which is a subgraph of G
as seen in Fig. 3 implies G is nonplanar.

Fig.3

Case 3: γ(G) = 4 and γ(Ḡ) = 4.
Let γ(G) = {a, b, c, d}.⟨a, b, c, d⟩ is non - inde-

pendent in G, γ(Ḡ) = 4. There is a vertex x ∈ V (G)
such that x⊥(a, b, c, d), that is ⟨a, b, c, d, x⟩ is K5 as
seen in Fig. 4 implies G is nonplanar.

Fig.4

From case 1, 2 and 3 we conclude that, ifG and Ḡ
are γ - stable graphs such that γ(G) ≤ 4 and γ(Ḡ) =
4, then G is nonplanar. ⊓⊔

Theorem 4 If G and Ḡ are γ - stable graphs such
that γ(G) ≤ 4 and γ(Ḡ) = 3, then G is nonplanar.

Proof: We prove the following claims to prove the
theorem.

Claim 1: If γ(G) = 2, γ(Ḡ) = 3, then G is nonpla-
nar.

Proof: Let γ(G) = D = {a, b}. Since G is γ-stable,
pn[u,D] ≥ 2, for all u ∈ D [ by R3 ]. Let {
a1, a2} ∈ pn[a,D], {b1, b2} ∈ pn[b,D]. ⟨a, b, a1⟩

is non - independent in G, γ(Ḡ) = 3, there is a
vertex x1 ∈ V (G) such that x1⊥(a, b, a1). [ Since
a2 ∈ pn[a,D], {b1, b2} ∈ pn[b,D], x1 ̸= a2, b1, b2].

Fig.5

⟨a, a1, x1⟩ is non - independent, there is one
vertex adjacent to these vertices. Note that this
common vertex cannot be b, b1, b2 [ Since a1 ∈
pn[a,D], {b1, b2} ∈ pn[b,D]]. So, the common ver-
tex is either a2 or any other vertex ( say x3).

Case 1 : a, a1, x1⊥a2

Fig.6

⟨a2, x1, b2⟩ is non-independent. The common ad-
jacent vertex can be a1, b1, or any vertex say x2.

Subcase 1: a2, x1, b2⊥a1

Fig.7

A. If a2⊥b2, then contracting the edge
bb2, ⟨a, b, a1, a2, x1⟩ is K5 as seen in Fig.
8 implies G is nonplanar.

B. If a2 is not adjacent to b1, b2, since a2, b1 and
a2, b2 are independent in G, by Theorem 2, there
is at least two vertices common to a2, b1 and
a2, b2. These two common vertices can be x1, a1.

a. a2, b1⊥x1, a1 and a2, b2⊥x1, a1. á is K3,3

as seen in Fig. 9 implies G is nonplanar.

b. a2, b1 and a2, b2 is not adjacent to
a1, x1.This means that, a2, b1 and a2, b2
are adjacent to some vertex in G. Let a2, b1
be adjacent to some y ∈ V (G).
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Fig.8

Fig.9

Contracting edges yb1, b1b and bb2, ⟨a, b, a1, a2,
x1⟩ is K5 as seen in Fig. 10 implies G is nonplanar.

Fig.10

Similarly if there is any y ∈ V (G)⊥a2, b2, ⟨a, b,
a1, a2, x1⟩ is K5 implies G is nonplanar.

Subcase 2: a2, x1, b2⊥b1

Fig.11

A. If a1⊥b2, then contracting the edges b1b and bb2,
⟨a, b, a1, a2, x1⟩ is K5 as seen in Fig. 12 implies
G is non planar.

Fig.12

B. If a1 is not adjacent to b2, then by Theorem 2
a1, b2 are adjacent to at least two vertices. The
different possible cases is discussed in a to c.

a. If a1, b2⊥a2, x1, then á is K3,3 as seen in
Fig. 13 implies G is nonplanar.

Fig.13

b. If a1, b2⊥a2, b1, then contracting the edges
b1b and bb2, ⟨a, b, a1, a2, x1⟩ is K5 as seen
in Fig. 14 implies G is nonplanar.

c. If a1, b2⊥x1, b1, then contracting the edges
b1b and bb2, ⟨a, b, a1, a2, x1⟩ is K5 as seen
in Fig. 14 implies G is nonplanar.

Fig.14

C. If a1, b2 are adjacent to some y ∈ V (G),
then contracting the edges b1b, bb2, b2y,
⟨a, b, a1, a2, x1⟩ is K5 as seen in Fig. 15 implies
G is nonplanar.

Fig.15

Subcase 3: a2, x1, b2 are adjacent to some x2 ∈
V (G).

Fig.16
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A. If a1⊥b2, then contracting the edges x2b2, b2b,
⟨a, b, a1, a2, x1⟩ is K5 as seen in Fig. 17 implies
G is nonplanar.

Fig.17

B. If a1 is not adjacent to b2, then by Theorem 2
a1, b2 are adjacent to at least two vertices. The
different possible cases is discussed in a to g.

a. a1, b2⊥a2, x1

Fig.18

x2 is dominated either by a or b.
a1. If x2⊥a, then a1́ is K3,3 implies G is non-

planar.
a2. If x2⊥b, then contracting the edge ab we

see that a2́ is K3,3 implies G is nonplanar.

Fig.19

b. If a1, b2⊥a2, b1, then contract the edges
b1b2, b2b.

c. If a1, b2⊥x1, b1, then contract the edges
x2b2, b2b, bb1.

d. If a1, b2⊥b1, x2, then contract the edges
x2b2, b2b.

e. If a1, b2⊥a2, x2, then contract the edges
x2b2, b2b.

f. If a1, b2⊥x1, x2, then contract the edges
x2b2, b2b.

g. If a1, b2 are adjacent to some vertex y ∈
V (G), then contract edges x2b2, b2b, b2y.

In all cases from b to g, ⟨a, b, a1, a2, x1⟩ is K5 as seen
in Fig. 20 implies G is nonplanar.

Fig.20

Case 2: a, a1, x1⊥x3

Fig.21
⟨x3, x1, b2⟩ is non-independent. So, x3, x1, b2

are collectively adjacent to either a1, a2, b, b1 or some
x4 ∈ V (G).

Subcase 1: x3, x1, b2⊥a1

Fig.22
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The graph in Fig. 22 is isomorphic to graph in
Fig. 7 of subcase 1 of case 1. So, the discussion is
analogues to subcase 1 of case 1.

Subcase 2: x3, x1, b2⊥a2

Fig.23

A. If a1⊥b1, then contracting the edge a2b2, b2b,
bb1, ⟨a, b, a1, x1, x3⟩ is K5 as seen in Fig. 24
implies G is nonplanar.

Fig.24

B. If a1 is not adjacent to b1, then by Theorem 2
a1, b1 are adjacent to at least two vertices. The
different possible cases is discussed in a to g.

a. If a1, b1⊥b2, a2, then ⟨a, a1, a2, x1, x3⟩ is
K5.

b. If a1, b1⊥b2, x1, then contract the edge
a2b2.

c. If a1, b1⊥b2, x3, then contract the edge
a2b2.

d. If a1, b1⊥a2, x1, then ⟨a, a1, a2, x1, x3⟩ is
K5.

e. If a1, b1⊥a2, x3, ⟨a, a1, a2, x1, x3⟩ is K5.

f. If a1, b1⊥y, then contract the edges
a2b2, b2b, bb1, b1y.

g. If a1, b1⊥x1, x3, then contracting the edge
a2b2, we see that ǵ is K3,3.

In cases a to f , ⟨a, a1, a2, x1, x3⟩ is K5 and ǵ is K3,3

as seen in Fig. 25 implies G is nonplanar.

Fig.25

Subcase 3: x3, x1, b2⊥b.

Fig.26

A. If a1⊥b1, then contracting the edge bb1,
⟨a, b, a1, x1, x3⟩ is K5 as seen in Fig. 27 implies
G is nonplanar.

Fig.27
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B. If a1 is not adjacent to b1, then by Theorem 2,
a1, b1 are adjacent to at least two vertices. The
different possible cases is discussed in a to g.

a. If a1, b1⊥b2, a2, then contract the edge bb2.
b. If a1, b1⊥b2, x1, then contract the edge bb2.
c. If a1, b1⊥b2, x3, then contract the edge bb2.
d. If a1, b1⊥a2, x1, then contract the edges
a2b1, b1b.

e. If a1, b1⊥a2, x3, then contract the edges
a2b1, b1b.

f. If a1, b1⊥y, then contract the edges
yb1, b1b.

In case a to f , ⟨a, b, a1, x1, x3⟩ is K5 implies G is
nonplanar.

If a1⊥b2, then contracting the edge b2b,
⟨a, b, a1, x1, x3⟩ is K5 implies G is nonplanar. If a1
is not adjacent to b2, then a1, b1 and a1, b2 are pair of
independent vertices. By Theorem 2, these vertices
are collectively adjacent to at least two vertices. In all
possible combinations except the case when a1, b1, b2
are collectively adjacent to x1, x3, ⟨a, b, a1, x1, x3⟩ is
K5 implies G is nonplanar as in cases a to f .

g. If a1, b1, b2⊥x1, x3, then ǵ is K3,3 implies G is
nonplanar.

Fig.28

Subcase 4: x3, x1, b2⊥b1.

Fig.29

The graph in Fig. 29 is isomorphic to graph in
Fig. 11 of subcase 2 of case 1. So, the discussion is
analogues to subcase 2 of case 1.

Subcase 5: x3, x1, b2⊥x4.

Fig.30

The graph in Fig. 30 is isomorphic to graph in
Fig. 16 of subcase 3 of case 1. So, the discussion is
analogues to subcase 3 of case 1.

By case 1 and case 2, we conclude that G is non-
planar.

Claim 2 If G and Ḡ are γ - stable graphs such that
γ(G) = γ(Ḡ) = 3, then G is nonplanar.

Proof: Let γ(G) = D = {a, b, c}. Since G is
γ - stable, pn[u,D] ≥ 2, for all u ∈ D [by R3].
Let {a1, a2} ∈ pn[a,D], {b1, b2} ∈ pn[b,D] and
{c1, c2} ∈ pn[c,D]. Since ⟨a, b, c⟩ is non - indepen-
dent, γ(Ḡ) = 3, there is a vertex x1 ∈ V (G) such
that x1⊥(a, b, c) [ Since a1 ∈ pn[a,D], b1 ∈ pn[b,D]
and c1 ∈ pn[c,D], x1 ̸= a1, b1, c1]. Since ⟨a1, a, x1⟩
is non - independent, let x2⊥(a1, a, x1) [Since a1 ∈
pn[a,D], b1 ∈ pn[b,D] and c1 ∈ pn[c,D], x2 ̸=
b, b1, c1].

Fig.31
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Since ⟨x1, x2, b1⟩ is non - independent, there is
atleast one vertex adjacent to them. The common ver-
tex could be b, a1, c1 or any xj ∈ V (G).
Case 1: x1, x2, b1⊥b

Fig.32

⟨x1, x2, c1⟩ is non - independent. x1, x2, c1 are
collectively adjacent to either c, a1, b1 or some xi ∈
V (G).

a. If x1, x2, c1⊥c, then ⟨a, b, c, x1, x2⟩ is K5.

b. If x1, x2, c1⊥a1, then contract the edges cc1 and
c1a1.

c. If x1, x2, c1⊥b1, then contract the edges b1x2 and
cc1.

d. If x1, x2, c1⊥ some xi ∈ V (G), then contract the
edges xic1 and c1c.

In all cases, ⟨a, b, c, x1, x2⟩ is K5 as seen in Fig. 33
implies G is nonplanar.

Fig.33

Case 2: x1, x2, b1⊥a1

Fig.34

⟨x1, x2, c1⟩ is non-independent. x1, x2, c1 are
collectively adjacent to either c, a1, b1 or some xi ∈
V (G).

a. If x1, x2, c1⊥c, then contract the edges bb1 and
b1a1.

b. If x1, x2, c1⊥a1, then contract the edges cc1,
x2a1 and bb1.

c. If x1, x2, c1⊥b1, then contract the edges
b1a1, a1x2 and cc1.

d. If x1, x2, c1⊥ some xi ∈ V (G), then contract the
edges a1b1, b1b and xic1, c1c.

In all cases ⟨a, b, c, x1, x2⟩ is K5 as seen in Fig. 35
implies G is nonplanar.
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Fig.35

Case 3: x1, x2, b1⊥c1
Contracting the edges bb1 and a1x2, á is K3,3 as

seen in Fig. 36 implies G is nonplanar.

Fig.36

Case 4: x1, x2, b1 adjacent to some xj ∈ V (G), xj ̸=
b.

Fig.37

Subcase 1: Since ⟨x1, x2, c1⟩ is non - indepen-
dent, x1, x2, c1 adjacent to either c, a1, b1 or xj ∈
V (G).

a. If x1, x2, c1⊥c, then contract the edges xjb1, b1b.

b. If x1, x2, c1⊥a1, then contract the edges
xjb1, b1b and a1c1, c1c.

c. If x1, x2, c1⊥b1, then contract the edges b1x2 and
c1c.

d. If x1, x2, c1⊥xj , then contract the edges
bb1, x2xj and c1c.

In all cases, ⟨a, b, c, x1, x2⟩ is K5 as seen in Fig. 38
implies G is nonplanar.

Fig.38

Subcase 2: x1, x2, c1 ⊥ some xk ∈ V (G), xk ̸=
c.

Fig.39

a. If xj = xk, then xj is adjacent to b1, x2, x1, c1.
Contract the edges x2xj , bb1, cc1.

b. If xk and xj are distinct, then contract the edges
bb1, b1xj and xkc1, c1c.

In both the cases ⟨a, b, c, x1, x2⟩ is K5 as seen in Fig.
40 implies G is nonplanar.
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Fig.40

From case 1, 2, 3 and 4 we see that if G and Ḡ
are γ - stable graphs satisfying the conditions of the
theorem, then G is nonplanar.

Claim 3: If γ(G) = 4, γ(Ḡ) = 3, then G is nonpla-
nar.
Proof: Let D = γ(G) = {a, b, c, d}. Since G is
γ - stable, we know that pn[u,D] ≥ 2, for all u ∈
D, [ by R3]. Let {a1, a2} ∈ pn[a,D], {b1, b2} ∈
pn[b,D], {c1, c2} ∈ pn[c,D], {d1, d2} ∈ pn[d,D].
⟨a1, a, b⟩ is non - independent. Let x1⊥a1, a, b [ Since
a1 ∈ pn[a,D], b1 ∈ pn[b,D], c1 ∈ pn[c,D], d1 ∈
pn[d,D], x1 ̸= b1, c1, d1, c, d].
⟨c, c1, x1⟩ is non - independent. Let x2⊥c, c1, x1

[Since a1 ∈ pn[a,D], b1 ∈ pn[b,D], c1 ∈
pn[c,D], d1 ∈ pn[d,D], x2 ̸= a1, b1, d1, a, b, d].

Fig.41

⟨d, d1, x1⟩ is non - independent. The common ad-
jacent vertex is either x2 or any vertex x3 ∈ V (G) [
Note that d, d1, x1 cannot be collectively adjacent to
a, b, c, a1, b1, c1].

a. If d, d1, x1⊥x2, then contract the edge x2x1.

b. If d, d1, x1⊥x3, then contract the edges x3x1 and
x1x2 .

In both the cases, ⟨a, b, c, d, x1⟩ is K5 as seen in the
Fig. 42 implies G is nonplanar.

Fig.42

From the above discussion, we conclude that G is
nonplanar.

Remark 5 If G and Ḡ are γ-stable graphs such that
γ(G) ≤ 4 and γ(Ḡ) = 2, then G need not be nonpla-
nar.

Example 6

Case 1: γ(G) = 2 and γ(Ḡ) = 2.

Fig.43

Case 2: γ(G) = 3 and γ(Ḡ) = 2.
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Fig.44

Case 3 γ(G) = 4 and γ(Ḡ) = 2.

Fig.45

In Fig. 43, 44 and 45 G and Ḡ are γ - stable
graphs, G planar.

5 Conclusion
From the above discussion we conclude that, if G, Ḡ
are γ - stable graphs, then

1. G is nonplanar, if 2 < γ(Ḡ) ≤ 4.

2. G need not be nonplanar, ifγ(Ḡ) = 2.
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