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Abstract: It is well known that the gradient-projection algorithm plays an important role in solving constrained
convex minimization problems. In this paper, based on Xu’s method [Xu, H. K.: Averaged mappings and the
gradient-projection algorithm, J. Optim. Theory Appl. 150, 360-378(2011)], we use the idea of regularization
to establish implicit and explicit iterative methods for finding the approximate minimizer of a constrained convex
minimization problem and prove that the sequences generated by our methods converge strongly to a solution of
the constrained convex minimization problem. Such a solution is also a solution of a variational inequality defined
over the set of the solutions of the constrained convex minimization problem. As application, we apply our main
result to solve the split feasibility problem in Hilbert spaces.
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1 Introduction
Strong convergence is convergent in norm. In finite
dimensional space, strong convergence is equivalent
to the weak convergence. In infinite dimension space,
strong convergence must be weak convergence, but
weak convergence is not necessarily strong conver-
gence. Therefore, we hope to obtain a iterative al-
gorithm which converges in norm to a best solution of
constrained convex minimization problems.

Now we give an example that is weakly but not
strongly convergent.

Assume that l2 = {x = {xk}|
∑∞
k=1 x

2
k < ∞},

{ei} ∈ l2, ei = (0, 0, · · · · · · , 1, 0, · · · · · ·). For ∀ v ∈
l2, we can obtain ⟨ei, v⟩ = vi → ⟨0̄, v⟩, which implies
that ei ⇀ 0̄. However, ∥ei∥ = 1 (i = 1, 2, 3, · · · · · ·)
implies that ei is not strongly convergent to the 0̄.

Consider the following constrained convex mini-
mization problem:

min
x∈C

f(x), (1)

where C is a nonempty closed and convex subset of
a real Hilbert space H and f : C → IR is a real-
valued convex and continuously Fréchet differentiable
function. Assume that the minimization problem (1)
is consistent and let S denote its solution set.

It is well known that the gradient-projection algo-
rithm is very useful in dealing with constrained con-

vex minimization problems and has extensively been
studied (see [1-8]and the references therein). It has
recently been applied to solve split feasibility prob-
lems(see [9-14]) which find applications in image re-
constructions and the intensity modulated radiation
therapy (see [12, 13, 15, 16, 17]) .

The gradient-projection algorithm (GPA) gener-
ates a sequence {xn}∞n=0 using the following recur-
sive formula:

xn+1 := ProjC(xn − γ∇f(xn)), n ≥ 0, (2)

or more generally,

xn+1 := ProjC(xn − γn∇f(xn)), n ≥ 0, (3)

where, in both (2) and (3), the initial guess x0 is taken
from C arbitrarily, the parameters γ or γn are positive
real numbers satisfying appropriate conditions. The
convergence of the algorithms (2) and (3) depends
on the behavior of the gradient ∇f ; see Levitin and
Polyak [1]. As a matter of fact, it is known [1] that
if f has a Lipschitz continuous and strongly mono-
tone gradient, then {xn}∞n=0 generated by (2) and (3)
can be strongly convergent to a minimizer of f in C,
respectively. If the gradient of f fails to be strongly
monotone, then {xn}∞n=0 can only be weakly conver-
gent if H is infinite-dimensional. Regularization, in
particular, the traditional Tikhonov regularization, is
usually used to solve ill-posed optimization problems.
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Next consider the regularized minimization prob-
lem:

min
x∈C

fα(x) := f(x) +
α

2
∥x∥2, (4)

here α > 0 is the regularization parameter. f is con-
vex and ∇f is inverse strongly monotone. Since now
the gradient ∇fα is α-strongly monotone and (L+α)-
Lipschitzian, (4) has a unique solution which is de-
noted as xα ∈ C.

Assume that the minimization problem (1) is con-
sistent. If we appropriately select the regularized
parameter α and the parameter γ in the projection-
gradient algorithm, we can get a single iterative algo-
rithm that generates a sequence {xn}∞n=0 in the fol-
lowing manner:

xn+1 = ProjC(I − γ∇fαn)xn. (5)

It is proved that if the sequence {αn} and the pa-
rameter γ satisfy appropriate conditions, the sequence
{xn} generated by (5) converges weakly to a mini-
mizer of (1) [18].

One question arises in the literature naturally: Is
it possible to get strong convergence of (5) when we
make some changes?

In 2001, Yamada [19] introduced the following
hybrid iterative algorithm for solving the variational
inequality

xn+1 = Txn − µαnFTxn, n ≥ 0, (6)

where F is a κ-Lipschitzian and η-strongly mono-
tone operator with κ > 0, η > 0. Then he proved
that if {αn} satisfies appropriate conditions, the se-
quence {xn} generated by (6) converges strongly to
the unique solution of variational inequality

⟨Fx̃, x− x̃⟩ ≥ 0, x ∈ Fix(T ). (7)

Recently, Xu [20] provided a modification of
GPA so that strong convergence is guaranteed. He
considered the following hybrid gradient-projection
algorithm

xn+1 = θnh(xn)+(1−θn)ProjC(xn−λn∇f(xn)).
(8)

Assume that the minimization problem (1) is
consistent, it is proved that if the sequences {θn}
and {λn} satisfy appropriate conditions, the sequence
{xn} generated by (8) converges in norm to a mini-
mizer of (1) which solves the variational inequality

x∗ ∈ S, ⟨(I − h)x∗, x− x∗⟩ ≥ 0, x ∈ S. (9)

In this article, motivated and inspired by the re-
search work of [20], we will combine the iterative
method (6) with the iterative method (5) and consider

the following hybrid algorithm for the idea of regular-
ization approach:{

yn = (I − µθnF )ProjC(I − γ∇fαn)xn,
xn+1 = ProjCyn, n ≥ 0.

(10)

Assume that the minimization problem (1) is con-
sistent, we will prove that if the sequence {θn} of pa-
rameters and the sequence {αn} of parameters satisfy
appropriate conditions, then the sequence {xn} gener-
ated by (10) converges in norm to a minimizer of (1)
which solves the variational inequality (VI)

x∗ ∈ S, ⟨Fx∗, x− x∗⟩ ≥ 0, ∀ x ∈ S,

where S is the solution set of the minimization prob-
lem (1).

Finally, in Sect.4, we apply this algorithm to the
split feasibility problem, and give the numerical result
in Sect. 5

2 Preliminaries
Throughout this paper, we assume that H is a Hilbert
space whose inner product and norm are denoted by
⟨·, ·⟩ and ∥ · ∥, respectively, and C is a nonempty
closed convex subset of H . We write xn ⇀ x to in-
dicate that the sequence {xn} converges weakly to x,
xn → x implies that {xn} converges strongly to x.
ωw(xn) := {x : ∃xnj ⇀ x} is the weak ω-limit set of
the sequence {xn}∞n=1.

Definition 1 A mapping T : H → H is said to be
(a) nonexpansive, if and only if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ H.

(b) firmly nonexpansive, if and only if 2T − I is
nonexpansive, or equivalently

⟨x−y, Tx−Ty⟩ ≥ ∥Tx−Ty∥2, ∀x, y ∈ H.

Alternatively, T is firmly nonexpansive, if and only if
T can be expressed as

T =
1

2
(I +W ),

where W : H → H is nonexpansive. Projections are
firmly nonexpansive.

(c) an averaged mapping, if and only if it can be
written as the average of the identity I and a nonex-
pansive mapping; that is,

T = (1− ε)I + εW,
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where ε is a number in (0, 1) and W : H → H is
nonexpansive. More precisely, when the above ex-
pression holds, we say that T is ε-averaged. Thus
firmly nonexpansive mappings (in particular, projec-
tions) are (1/2)-averaged maps.

Proposition 2 ([15, 21]) Let T : H → H be given.
We have:

(i) if T is υ-ism, then for γ > 0, γT is (υ/γ)-ism;
(ii) T is averaged, iff the complement I − T is υ-

ism for some υ > 1/2; indeed, for ε ∈ (0, 1), T is
ε-averaged, iff I − T is (1/2ε)-ism;

(iii) the composite of finitely many averaged map-
pings is averaged. That is, if each of the map-
pings {Ti}Ni=1 is averaged, then so is the composite
T1 · · ·TN (see [22]).

In particular, an averaged mapping is a nonex-
pansive mapping.

Definition 3 (See[23]) for comprehensive theory of
monotone operators.)

(i) A is monotone if and only if,

⟨x− y,Ax−Ay⟩ ≥ 0, ∀x, y ∈ H.

(ii) Given is a number υ > 0. A : H → H is said
to be υ-inverse strongly monotone, if and only if

⟨x−y,Ax−Ay⟩ ≥ υ∥Ax−Ay∥2, ∀x, y ∈ H.

(iii) Given is a number ζ > 0. A is said to be
ζ-strongly monotone, if and only if

⟨x− y,Ax−Ay⟩ ≥ ζ∥x− y∥2, ∀x, y ∈ H.

It is easily seen that, if T is nonexpansive, then I − T
is monotone. It is also easily seen that a projection is
a one-ism.

Inverse strongly monotone operators have widely
been applied to solve practical problems in var-
ious fields; for instance, in traffic assignment
problems(see[24, 25]).

Definition 4 Let the operators S, T, V : H → H be
given.

(i) If T = (1 − α)S + αV for some α ∈ (0, 1)
and if S is averaged and V is nonexpansive, then T is
averaged.

(ii) T is firmly nonexpansive, if and only if the
complement I − T is firmly nonexpansive.

(iii) If T = (1 − α)S + αV for some α ∈ (0, 1),
S is firmly nonexpansive and V is nonexpansive, then
T is averaged.

(iv) T is nonexopansive, if and only if the comple-
ment I − T is (1/2)-ism.

Lemma 5 [26] Assume that {an}∞n=0 is a sequence of
non-negative real numbers such that

an+1 ≤ (1− γn)an + γnδn + βn, n ≥ 0,

where {γn}∞n=0 and {βn}∞n=0 are sequences in (0,1)
and {δn}∞n=0 is a sequence in IR such that

(i)
∞∑
n=0

γn = ∞;

(ii) either lim supn→∞ δn ≤ 0 or
∞∑
n=0

γn|δn| <∞;

(iii)
∞∑
n=0

βn <∞.

Then limn→∞ an = 0.

Lemma 6 [27] Let C be a closed and convex subset
of a Hilbert space H and let T : C → C be a non-
expansive mapping with FixT ̸= ∅. If {xn}∞n=1 is
a sequence in C weakly converging to x and if {(I −
T )xn}∞n=1 converges strongly to y, then (I−T )x = y.

Lemma 7 Let C be a closed subset of a real Hilbert
space H , given x ∈ H and y ∈ C. Then y = PCx if
and only if there holds the inequality

⟨x− y, y − z⟩ ≥ 0, ∀ z ∈ C.

3 Main results
Assume that the minimization problem (1) is consis-
tent and let S denote its solution set. Assume that the
gradient ∇f is 1

L -inverse strongly monotone ( 1L -ism)
(see [23]) with a constant L > 0. Throughout the rest
of this paper, we always let H be a real Hilbert space
and let C be a nonempty closed and convex subset
of H . Since S is a closed convex subset, the near-
est point projection from H onto S is well defined.
Let F : C → H be a κ-Lipschitzian and η-strongly
monotone operator with κ, η > 0.

Let 0 < µ < 2η/κ2, τ = µ(η − µκ2

2 ). Assume
that αt is continuous with respect to t and in addition,
limt→0

αt
t = 0; that is, there is a constant B > 0 so

as to |αt
t | < B. For t ∈ (0, 1), we consider a mapping

Xt on C defined by

Xt(x) = ProjC(I − tµF )Vαt(x), x ∈ C, (11)

where
Vαt := ProjC(I − γ∇fαt).

It is obvious that Vαt is a nonexpansive mapping. It is
also easy to see that Xt is a contraction.
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For t ∈ (0, 1), we can get

∥(I − tµF )Vαt(x)− (I − tµF )Vαt(y)∥2

= ∥Vαt(x)− Vαt(y)

−tµ(FVαt(x)− FVαt(y))∥2

= ∥Vαt(x)− Vαt(y)∥2

−2tµ⟨Vαt(x)− Vαt(y), FVαt(x)− FVαt(y)⟩
+t2µ2∥FVαt(x)− FVαt(y)∥2

≤ ∥Vαt(x)− Vαt(y)∥2

−2tµη∥Vαt(x)− Vαt(y)∥2

+t2µ2κ2∥Vαt(x)− Vαt(y)∥2

= (1− tµ(2η − tµκ2))∥Vαt(x)− Vαt(y)∥2

≤ (1− sµ(2η − sµκ2)

2
)2∥Vαt(x)− Vαt(y)∥2

≤ (1− tµ(η − µκ2

2
))2∥Vαt(x)− Vαt(y)∥2

= (1− tτ)2∥x− y∥2.

Indeed, we have

∥Xt(x)−Xt(y)∥
= ∥ProjC(I − tµF )Vαt(x)

−ProjC(I − tµF )Vαt(y)∥
≤ ∥(I − tµF )Vαt(x)− (I − tµF )Vαt(y)∥
≤ (1− tτ)∥x− y∥.

Hence Xt has a unique fixed point, denoted xt, which
uniquely solves the fixed point equation

xt = ProjC(I − tµF )Vαt(xt). (12)

The next proposition summarizes the properties of
{xt}.

Proposition 8 Let xt be defined by (12)

(i) {xt} is bounded for t ∈ (0, 1τ ).

(ii) limt→0 ∥xt −ProjC(I − γ∇fαt)(xt)∥ = 0.

(iii) xt defines a continuous curve from (0, 1/τ)
into H.

Proof: (i) For a p ∈ S, then we have

∥xt − p∥
= ∥ProjC(I − tµF )Vαt(xt)− p∥
≤ ∥(I − tµF )Vαt(xt)− p∥
= ∥(I − tµF )ProjC(I − γ∇fαt)(xt)

−(I − tµF )ProjC(I − γ∇f)p
−tµFProjC(I − γ∇f)p∥

≤ (1− tτ)∥ProjC(I − γ∇fαt)(xt)

−ProjC(I − γ∇f)p∥+ t∥µFp∥
≤ (1− tτ)(∥xt − p∥+ γαt∥p∥) + t∥µFp∥
≤ (1− tτ)∥xt − p∥+ t∥µFp∥+ γαt∥p∥

= (1− tτ)∥xt − p∥+ t(∥µFp∥+ γ
αt
t
∥p∥)

≤ (1− tτ)∥xt − p∥+ t(∥µF (p)∥+ γB∥p∥).

It follows that

∥xt − p∥ ≤ ∥µF (p)∥+ γB∥p∥
τ

.

Hence, {xt} is bounded.
(ii) By the definition of {xt}, we have

∥xt −ProjC(I − γ∇fαt)(xt)∥
= ∥ProjC(I − tµF )Vαtxt

−ProjCProjC(I − γ∇fαt)(xt)∥
≤ ∥(I − tµF )Vαtxt −ProjC(I − γ∇fαt)(xt)∥
= tµ∥FVαtxt∥ → 0.

{xt} is bounded, so is {FVαtxt}.
(iii) For t, t0 ∈ (0, 1/τ), we have

∥xt − xt0∥
= ∥ProjC(I − tµF )Vαt(xt)

−ProjC(I − t0µF )Vαt0
(xt0)∥

≤ ∥(I − tµF )ProjC(I − γ∇fαt)(xt)

−(I − t0µF )ProjC(I − γ∇fαt0
)(xt0)∥

= ∥(I − µtF )Vαtxt − (I − µt0F )Vαt0
xt

+(I − µt0F )Vαt0
xt − (I − µt0F )Vαt0

xt0∥
≤ ∥(I − t0µF )ProjC(I − γ∇fαt0

)(xt)

−(I − t0µF )ProjC(I − γ∇fαt0
)(xt0)∥

+∥(I − tµF )ProjC(I − γ∇fαt)(xt)

−(I − t0µF )ProjC(I − γ∇fαt0
)(xt)∥

≤ (1− t0τ)∥xt − xt0∥
+∥(I − tµF )ProjC(I − γ∇fαt)(xt)

−(I − tµF )ProjC(I − γ∇fαt0
)(xt)∥

+∥(I − tµF )ProjC(I − γ∇fαt0
)(xt)

−(I − t0µF )ProjC(I − γ∇fαt0
)(xt)∥

≤ (1− t0τ)∥xt − xt0∥
+∥ProjC(I − γ∇fαt)xt

−ProjC(I − γ∇fαt0
)xt∥

+∥t0µFProjC(I − γ∇fαt0
)(xt)

−tµFProjC(I − γ∇fαt0
)(xt)∥

≤ (1− t0τ)∥xt − xt0∥
+∥(I − γ∇fαt)xt − (I − γ∇fαt0

)xt∥
+µ|t− t0|∥FProjC(I − γ∇fαt0

)(xt)∥
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= (1− t0τ)∥xt − xt0∥
+γ|αt − αt0 |∥xt∥
+µ|t− t0|∥FProjC(I − γ∇fαt0

)(xt)∥.

Therefore,

∥xt − xt0∥ ≤
µ∥FProjC(I−γ∇fαt0

)xt∥
t0τ

|t− t0|

+γ∥xt∥
t0τ

|αt − αt0 |.

Therefore xt → xt0 as t → t0. This means xt is
continuous.

Our main result below shows that {xt} converges
in norm to a minimizer of (1) which solves a varia-
tional inequality.

Theorem 9 Assume that the minimization problem
(1) is consistent and let S denote its solution set. As-
sume that the gradient ∇f is 1

L -ism. Let F : C → H
is η-strongly monotone and κ-Lipschitzian. Fix a con-
stant µ satisfying 0 < µ < 2η/κ2 and a constant γ
satisfying 0 < γ < 2/L. Assume also that t ∈ (0, 1)
satisfies the condition αt = o(t). Let {xt} be defined
by (12). Then xt converges in norm, as t → 0, to a
minimizer of (1) which solves the variational inequal-
ity

⟨Fx∗, x̃− x∗⟩ ≥ 0, ∀ x̃ ∈ S. (13)

Equivalently, we have

ProjS(I − F )x∗ = x∗.

Proof: It is easy to see that the uniqueness of a so-
lution of the variational inequality (13). Let x∗ ∈ S
denote the unique solution of (13).

Let us prove that xt → x∗(t→ 0). Set

yt := (I − tµF )Vαt(xt)

and
V := ProjC(I − γ∇f).

Then we have xt = ProjCyt. For a given x̃ ∈ S, we
write

xt − x̃

= ProjCyt − x̃

= ProjCyt − yt + yt − x̃

= ProjCyt − yt + (I − tµF )Vαt(xt)

−(I − tµF )x̃− tµF (x̃).

Since ProjC is the metric projection from H onto C,
we have

⟨yt − xt, x̃− xt⟩ ≤ 0.

It follows that

∥xt − x̃∥2

= ⟨ProjCyt − yt,ProjCyt − x̃⟩
+⟨(I − tµF )Vαt(xt)− (I − tµF )x̃, xt − x̃⟩
−tµ⟨F (x̃), xt − x̃⟩

≤ ⟨(I − tµF )Vαt(xt)− (I − tµF )x̃, xt − x̃⟩
−tµ⟨F (x̃), xt − x̃⟩

≤ ∥(I − tµF )Vαt(xt)− (I − tµF )V x̃∥∥xt − x̃∥
−tµ⟨F (x̃), xt − x̃⟩

≤ (1− tτ)∥Vαt(xt)− V x̃∥∥xt − x̃∥
−tµ⟨F (x̃), xt − x̃⟩

= (1− tτ)∥Vαt(xt)− Vαt x̃

+Vαt x̃− V x̃∥∥xt − x̃∥
−tµ⟨F (x̃), xt − x̃⟩

≤ (1− tτ)∥xt − x̃∥2 + γαt∥x̃∥∥xt − x̃∥
−tµ⟨F (x̃), xt − x̃⟩.

To derive that

∥xt − x̃∥2

≤ −1

τ
⟨µF (x̃), xt − x̃⟩

+
αt
t

γ

τ
∥x̃∥∥xt − x̃∥. (14)

Since {xt} is bounded as t → 0, we see that if {tn}
is a sequence in (0,1) such that tn → 0 and xtn ⇀ x̄,
then by (14), xtn → x̄. We may further assume that
αtn → 0. Notice that ProjC(I − γ∇f) is nonexpan-
sive. It turns out that

∥xtn −ProjC(I − γ∇f)xtn∥
≤ ∥xtn −ProjC(I − γ∇fαtn)xtn∥

+∥ProjC(I − γ∇fαtn)xtn
−ProjC(I − γ∇f)xtn∥

≤ ∥xtn −ProjC(I − γ∇fαtn)xtn∥+ γαtn∥xtn∥.

From the boundedness of {xt} and

lim
t→0

∥ProjC(I − γ∇fαt)xt − xt∥ = 0,

we conclude that

lim
n→∞

∥xtn −ProjC(I − γ∇f)xtn∥ = 0.

Since xtn ⇀ x̄, by lemma 6, we obtain

x̄ = ProjC(I − γ∇f)x̄.

This shows that x̄ ∈ S. We next prove that x̄ is a
solution of the variational inequality (13). Since

xt = ProjCyt − yt + (I − tµF )Vαt(xt),
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we can derive that

F (xt)

=
1

tµ
(ProjCyt − yt)

+
1

tµ
((I − tµF )Vαt(xt)− (I − tµF )(xt)).

Note that, for x̃ ∈ S, ⟨ProjCyt−yt,ProjCyt− x̃⟩ ≤
0. Therefore, for x̃ ∈ S,

⟨F (xt), xt − x̃⟩

=
1

tµ
⟨ProjCyt − yt, xt − x̃⟩+ 1

tµ
⟨(I − tµF )

Vαt(xt)− (I − tµF )(xt), xt − x̃⟩

≤ 1

tµ
⟨(I − tµF )Vαt(xt)− (I − tµF )(xt),

xt − x̃⟩

= − 1

tµ
⟨(I − tµF )(xt)− (I − tµF )Vαt(xt),

xt − x̃⟩

= − 1

tµ
⟨(I − Vαt)(xt), xt − x̃⟩

+⟨F (xt)− FVαt(xt), xt − x̃⟩

= − 1

tµ
⟨(I − Vαt)(xt)− (I − Vαt)x̃, xt − x̃⟩

− 1

tµ
⟨(I − Vαt)x̃, xt − x̃⟩

+⟨F (xt)− FVαt(xt), xt − x̃⟩

≤ − 1

tµ
⟨(I − Vαt)x̃, xt − x̃⟩

+⟨F (xt)− FVαt(xt), xt − x̃⟩

≤ 1

tµ
∥Vαt x̃− V x̃∥∥xt − x̃∥

+⟨F (xt)− FVαt(xt), xt − x̃⟩

≤ 1

tµ
γαt∥x̃∥∥xt − x̃∥

+⟨F (xt)− FVαt(xt), xt − x̃⟩.

Since ProjC(I − γ∇fαt) is nonexpansive, we obtain
that I −ProjC(I − γ∇fαt) is monotone, i.e.

⟨(I −ProjC(I − γ∇fαt))(xt)

−(I −ProjC(I − γ∇fαt))(x̃), xt − x̃⟩ ≥ 0.

Taking the limit through t = tn → 0 ensures that x̄ is
a solution to (13). That is to say

⟨F (x̄), x̄− x̃⟩ ≤ 0.

Hence x̄ = x∗ by uniqueness. Therefore xt → x∗ as
t → 0. The variational inequality (13) can be written
as

⟨(I − F )x∗ − x∗, x̃− x∗⟩ ≤ 0, ∀ x̃ ∈ S.

So, by lemma 7, it is equivalent to the fixed point
equation

PS(I − F )x∗ = x∗.

Finally, we consider the following hybrid algo-
rithm for the idea of regularization approach:{

yn = (I − µθnF )ProjC(I − γ∇fαn)xn,
xn+1 = ProjCyn, n ≥ 0,

(15)

where the initial guess x0 is selected in C arbitrarily.
Assume that the parameter γ satisfies the condi-

tion 0 < γ < 2/L and in addition, that the following
conditions are satisfied for {αn}∞n=0 and {θn}∞n=0 ⊂
(0, 1):

(i) θn → 0;

(ii) lim
n→∞

αn
θn

= 0;

(iii)
∞∑
n=0

θn = ∞;

(iv)
∞∑
n=0

|θn+1 − θn| <∞;

(v)
∞∑
n=0

|αn+1 − αn| <∞.

Theorem 10 Assume that the minimization problem
(1) is consistent and the gradient ∇f is 1

L -ism.
Let F : C → H is η-strongly monotone and κ-
Lipschitzian. Fix a constant µ satisfying 0 < µ <
2η/κ2 and a constant γ satisfying 0 < γ < 2/L.
Let {xn} be generated by algorithm (15) with the se-
quences {θn} and {αn} satisfying the above condi-
tions. Then the sequence {xn} converges in norm to
x∗ that is obtained in Theorem 9.

Proof: (1) The sequence {xn}∞n=0 is bounded. Set

Vαn := ProjC(I − γ∇fαn).

First we see that

∥(I − µθnF )ProjC(I − γ∇fαn)xn

−(I − µθnF )ProjC(I − γ∇fαn)xn−1∥2

= ∥(I − µθnF )Vαnxn − (I − µθnF )Vαnxn−1∥2

= ∥Vαnxn − Vαnxn−1

−µθn(FVαnxn − FVαnxn−1)∥2

= ∥Vαnxn − Vαnxn−1∥2

+µ2θ2n∥FVαnxn − FVαnxn−1∥2

−2µθn⟨Vαnxn − Vαnxn−1,

FVαnxn − FVαnxn−1⟩
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≤ ∥Vαnxn − Vαnxn−1∥2

+µ2θ2nk
2∥Vαnxn − Vαnxn−1∥2

−2µθnη∥Vαnxn − Vαnxn−1∥2

= (1− 2µθnη + µ2θ2nk
2)∥Vαnxn − Vαnxn−1∥2

≤ (1− µθn(2η − µθn)k
2

2
)2∥Vαnxn − Vαnxn−1∥2

≤ (1− θnτ)
2∥xn − xn−1∥2.

Indeed, we have, for x̄ ∈ S,

∥xn+1 − x̄∥
= ∥ProjCyn −ProjC x̄∥
≤ ∥yn − x̄∥
= ∥ − θnµF (x̄)

+(I − µθnF )ProjC(I − γ∇fαn)xn

−(I − µθnF )ProjC(I − γ∇f)x̄∥
≤ µθn∥F (x̄)∥

+(1− θnτ)∥ProjC(I − γ∇fαn)xn

−ProjC(I − γ∇f)x̄∥
= ∥µθnF (x̄)∥

+(1− θnτ)∥ProjC(I − γ∇fαn)xn

−ProjC(I − γ∇fαn)x̄

+ProjC(I − γ∇fαn)x̄−ProjC(I − γ∇f)x̄∥
≤ θn∥µF (x̄)∥+ (1− θnτ)∥xn − x̄∥+ γαn∥x̄∥
= (1− θnτ)∥xn − x̄∥

+θn(∥µF (x̄)∥+ γ
αn
θn

∥x̄∥)

≤ (1− θnτ)∥xn − x̄∥
+θn(∥µF (x̄)∥+ γB∥x̄∥)

≤ max
{
∥xn − x̄∥, 1

τ
(∥µF (x̄)∥+ γB∥x̄∥)

}
.

By induction

∥xn − x̄∥ ≤ max
{
∥x0 − x̄∥, ∥µF (x̄)∥+ γB∥x̄∥

τ

}
.

In particular, {xn}∞n=0 is bounded.

(2) We prove that ∥xn+1 − xn∥ → 0 as n → ∞.
Let M be a constant such that

M > max
{

sup
κ,n≥0

µ∥FVαk
xn∥, sup

n≥0
γ∥xn∥

}
.

We compute

∥xn+1 − xn∥
= ∥ProjCyn −ProjCyn−1∥
≤ ∥yn − yn−1∥
≤ ∥(I − µθnF )ProjC(I − γ∇fαn)xn

−(I − µθnF )ProjC(I − γ∇fαn)xn−1∥
+∥(I − µθnF )ProjC(I − γ∇fαn)xn−1

−(I − µθn−1F )ProjC(I − γ∇fαn−1)xn−1∥
≤ (1− θnτ)∥xn − xn−1∥

+∥(I − µθnF )ProjC(I − γ∇fαn)xn−1

−(I − µθnF )ProjC(I − γ∇fαn−1)xn−1 +

(I − µθnF )ProjC(I − γ∇fαn−1)xn−1

−(I − µθn−1F )ProjC(I − γ∇fαn−1)xn−1∥
≤ (1− θnτ)∥xn − xn−1∥

+∥Vαnxn−1 − Vαn−1xn−1∥
+∥(I − µθnF )Vαn−1xn−1

−(I − µθn−1F )Vαn−1xn−1∥
= (1− θnτ)∥xn − xn−1∥

+∥Vαnxn−1 − Vαn−1xn−1∥
+µ|θn − θn−1|∥FVαn−1xn−1∥

≤ (1− θnτ)∥xn − xn−1∥+M |θn − θn−1|
+∥Vαnxn−1 − Vαn−1xn−1∥

and

∥Vαnxn−1 − Vαn−1xn−1∥
= ∥ProjC(I − γ∇fαn)xn−1

−ProjC(I − γ∇fαn−1)xn−1∥
≤ ∥(I − γ∇fαn)xn−1 − (I − γ∇fαn−1)xn−1∥
= ∥ − γ∇fαn(xn−1) + γ∇fαn−1(xn−1)∥
= γ|αn − αn−1|∥xn−1∥. (16)

Combining (16) and (16), we can obtain

∥xn+1 − xn∥
≤ (1− τθn)∥xn − xn−1∥

+M(|θn − θn−1|+ |αn − αn−1|). (17)

Apply lemma 5 to (17) to conclude that
∥xn+1 − xn∥ → 0 as n→ ∞.

(3) We prove that ωw(xn) ⊂ S. Let x̂ ∈ ωw(xn)
and assume that xnk

⇀ x̂ for some subsequence
{xnk

}∞k=1 of {xn}∞n=0. We may further assume that
αnk

→ 0. Set

V := ProjC(I − γ∇f).

Notice that V is nonexpansive and FixV = S. It
turns out that

∥xnk
− V xnk

∥
≤ ∥xnk

− Vαnk
xnk

∥+ ∥Vαnk
xnk

− V xnk
∥

≤ ∥xnk
− xnk+1∥+ ∥xnk+1 − Vαnk

xnk
∥

+∥Vαnk
xnk

− V xnk
∥
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= ∥xnk
− xnk+1∥

+∥ProjCynk
−ProjC(I − γ∇fαnk

)xnk
∥

+∥ProjC(I − γ∇fαnk
)xnk

−ProjC(I − γ∇f)xnk
∥

≤ ∥xnk
− xnk+1∥+ θnk

∥ − µFVαnk
xnk

∥
+γαnk

∥xnk
∥

≤ ∥xnk
− xnk+1∥+M(θnk

+ αnk
) → 0

as k → ∞.

So lemma 6 guarantees that ωw(xn) ⊂ FixV = S.

(4) We prove that xn → x∗ as n → ∞, where x∗
is the unique solution of the V I (13). First we observe
that there is some x̂ ∈ ωw(xn) ⊂ S. Such that

lim sup
n→∞

⟨Fx∗, xn − x∗⟩ = ⟨Fx∗, x̂− x∗⟩ ≥ 0. (18)

We now compute

∥xn+1 − x∗∥2

= ∥ProjCyn −ProjCx
∗∥2

≤ ∥yn − x∗∥2

= ∥(I − µθnF )Vαn(xn)− (I − µθnF )V x
∗

−θnµFx∗∥2

≤ ∥(I − µθnF )Vαn(xn)− (I − µθnF )V x
∗∥2

−2θn⟨µFx∗, xn+1 − x∗⟩
≤ (1− θnτ)

2∥Vαn(xn)− Vαnx
∗

+Vαnx
∗ − V x∗∥2

−2µθn⟨Fx∗, xn+1 − x∗⟩
= (1− θnτ)

2(∥Vαn(xn)− Vαnx
∗∥2

+∥Vαnx
∗ − V x∗∥2

+2⟨Vαn(xn)− Vαnx
∗, Vαnx

∗ − V x∗⟩)
−2µθn⟨Fx∗, xn+1 − x∗⟩

≤ (1− θnτ)
2(∥xn − x∗∥2 + γ2α2

n∥x∗∥2

+2γαn∥x∗∥∥xn − x∗∥)
−2µθn⟨Fx∗, xn+1 − x∗⟩

≤ (1− θnτ)
2∥xn − x∗∥2

+γ2α2
n∥x∗∥2 + 2γαn∥x∗∥∥xn − x∗∥

−2µθn⟨Fx∗, xn+1 − x∗⟩
= (1− 2θnτ)∥xn − x∗∥2

+θn[2γ
αn
θn

∥x∗∥∥xn − x∗∥+ γ2αn
αn
θn

∥x∗∥2

−2⟨µFx∗, xn+1 − x∗⟩+ θnτ
2∥xn − x∗∥2]

= (1− θ̄n)∥xn − x∗∥2 + θ̄nχ̄n. (19)

whereθ̄n = 2θnτ .
Therefore,

∥xn+1 − x∗∥2

≤ (1− θ̄n)∥xn − x∗∥2 + θ̄nχ̄n.

χ̄n = 1
2τ [2γ

αn
θn

∥x∗∥∥xn − x∗∥+ γ2αn
αn
θn

∥x∗∥2

−2⟨µFx∗, xn+1 − x∗⟩+ θnτ
2∥xn − x∗∥2].

Applying lemma 5 to the inequality (19), together
with (18), we get ∥xn − x∗∥ → 0 as n→ ∞.

4 Application
In this section, we give an application of Theorem 10
to the split feasibility problem (say SFP, for short),
which was introduced by Censor and Elfving [12].
Since its inception in 1994, the split feasibility prob-
lem (SFP) has received much attention due to its ap-
plications in signal processing and image reconstruc-
tion, with particular progress in intensity-modulated
radiation therapy.

The SFP can mathematically be formulated as the
problem of finding a point x with the property

x ∈ C, and Ax ∈ Q, (20)

where C and Q are nonempty, closed and convex sub-
set of Hilbert space H1 and H2, respectively. A :
H1 → H2 is a bounded linear operator.

It is clear that x∗ is a solution to the split fea-
sibility problem (21) if and only if x∗ ∈ C and
Ax∗−ProjQAx

∗ = 0. We define the proximity func-
tion f by

f(x) =
1

2
∥Ax−ProjQAx∥2,

and consider the constrained convex minimization
problem

min
xϵC

f(x) = min
xϵC

1

2
∥Ax−ProjQAx∥2. (21)

Then x∗ solves the split feasibility problem (21) if and
only if x∗ solves the minimization problem (22) with
the minimize equal to 0. Byrne [15] introduced the
so-called CQ algorithm to solve the (SFP).

xn+1 = ProjC(I − γA∗(I −ProjQ)A)xn, n ≥ 0,
(22)

where 0 < γ < 2/∥A∥2. He obtained that the se-
quence {xn} generated by (23) converges weekly to a
solution of the (SFP).

In order to obtain strong convergence iterative se-
quence to solve the (SFP). We propose the following
algorithm:
yn = (I − µθnF )ProjC(I − γ(A∗(I −ProjQ)A

+αnI))xn,
xn+1 = ProjCyn, n ≥ 0,

(23)
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where the initial guess is x0 ∈ C and F : C → H
is η-strongly monotone and κ-Lipschitzian with con-
stants κ > 0, η > 0 such that 0 < µ < 2η/κ2. We
can show that the sequence {xn} generated by (24)
converges strongly to a solution of the (SFP) (21) if
the sequence {θn} ⊂ (0, 1) and the sequence {αn} of
parameters satisfy appropriate conditions.

Applying Theorem 10, we obtain the following
result.

Theorem 11 Assume that the split feasibility problem
(21) is consistent. Let the sequence {xn} be generated
by (24), where the sequence {θn} ⊂ (0, 1) and the
sequence {αn} satisfy the conditions (i)-(v). Then the
sequence {xn} converges strongly to a solution of the
split feasibility problem (21).

Proof: By the definition of the proximity function f ,
we have

∇f(x) = A∗(I −ProjQ)Ax.

Hence, we obtain

∥∇f(x)−∇f(y)∥2

= ∥A∗(I −ProjQ)Ax−A∗(I −ProjQ)Ay∥2

= ⟨A∗(I −ProjQ)Ax−A∗(I −ProjQ)Ay,

A∗(I −ProjQ)Ax−A∗(I −ProjQ)Ay⟩
= ⟨(I −ProjQ)Ax− (I −ProjQ)Ay,

AA∗(I −ProjQ)Ax−AA∗(I −ProjQ)Ay⟩
≤ ∥AA∗∥∥(I −ProjQ)Ax− (I −ProjQ)Ay∥2

= ∥AA∗∥⟨(I −ProjQ)Ax− (I −ProjQ)Ay,

(I −ProjQ)Ax− (I −ProjQ)Ay⟩
= ∥AA∗∥⟨Ax−Ay − (ProjQAx−ProjQAy),

(I −ProjQ)Ax− (I −ProjQ)Ay⟩
= ∥AA∗∥(⟨x− y,A∗(I −ProjQ)Ax

−A∗(I −ProjQ)Ay⟩
−⟨ProjQAx−ProjQAy,

(I −ProjQ)Ax− (I −ProjQ)Ay⟩)

and

⟨ProjQAx−ProjQAy, (I −ProjQ)Ax

−(I −ProjQ)Ay⟩
= ⟨ProjQAx−ProjQAy,Ax−Ay

−(ProjQAx−ProjQAy)⟩
= ⟨Ax−Ay,ProjQAx−ProjQAy⟩

−∥ProjQAx−ProjQAy∥2

≥ ∥ProjQAx−ProjQAy∥2

−∥ProjQAx−ProjQAy∥2

= 0.

Therefore,

∥∇f(x)−∇f(y)∥2

= ∥A∗(I −ProjQ)Ax−A∗(I −ProjQ)Ay∥2

≤ ∥AA∗∥⟨x− y,A∗(I −ProjQ)Ax

−A∗(I −ProjQ)Ay⟩.

That is,

⟨x− y,∇f(x)−∇f(y)⟩
= ⟨x− y,A∗(I −ProjQ)Ax

−A∗(I −ProjQ)Ay⟩

≥ 1

∥AA∗∥
∥A∗(I −ProjQ)Ax

−A∗(I −ProjQ)Ay∥2

=
1

∥A∥2
∥∇f(x)−∇f(y)∥2.

Hence, ∇f is 1
∥A∥2 -ism. Set fαn(x) = f(x) +

αn
2 ∥x∥2. Consequently,

∇fαn(x)

= ∇f(x) + αnI(x)

= A∗(I −ProjQ)Ax+ αnx.

Then the iterative scheme (24) is equivalent to{
yn = (I − µθnF )ProjC(I − γ∇fαn)xn,
xn+1 = ProjCyn, n ≥ 0,

(24)

where the initial guess is x0 ∈ C and the parame-
ters {θn}∞n=0 ⊂ (0, 1) and {αn}∞n=0 satisfy the above
conditions (i)-(v). Due to Theorem 10, we have the
conclusion immediately.

5 Numerical Result

In this section, we consider the following simple ex-
ample to illustrate the effectiveness, realization, and
convergence of the algorithm in Theorem 11.

Example 12 In part 4, we assume that H1 = H2 =
IR3. Take F = I with Lipschitz constant κ = 1 and
strongly monotone constant η = 1. Give the param-
eters θn = 1

n+2 , αn = 1
(n+2)2

for every n ≥ 0. Fix

µ = γ = 1
2 . In the split feasibility problem (SFP), we

take

A =

 1 0 1
−1 1 0
1 2 −3



WSEAS TRANSACTIONS on MATHEMATICS Ming Tian, Minmin Li

E-ISSN: 2224-2880 279 Volume 13, 2014



b =

 5
−7
−17

 , x0 =

 0
1
1

 .
The SFP can be formulated as the problem of finding
a point x∗ with the property

x∗ ∈ C and Ax∗ ∈ Q

where C = H1, Q = {b} ⊂ H2.
This implies that x∗ is the solution of system of

linear equations Ax = b, and x∗ =

 2
−5
3

 .
Then by Theorem 4.1, the sequence {xn} is generated
by

xn+1

= (I − 1

2(n+ 2)
I)

PC

(
xn −

1

2
A∗Axn +

1

2
A∗b− 1

2(n+ 2)2
xn

)
.

As n→ ∞, we have {xn} → x∗ = (2,−5, 3)T .

Table 1: x0 = (0, 1, 1)T

n(iterative number) Error(n)
55 9.85×10−3

550 9.899×10−4

2200 9.9885×10−5

Table 2: x0 = (0, 1, 1)T

n(iterative number) xn(iterative point)
55 (1.9905,−4.9901, 2.9905)T

550 (1.9989,−4.9990, 2.9985)T

2200 (1.9999,−4.9998, 2.9998)T

From the computer programming point of view, the
algorithms are easier to implement in this paper.

6 Conclusion

Methods for solving constrained convex minimiza-
tion problem have been extensively studied in Hilbert
space. But to the best of our knowledge, in this pa-
per, it would probably be the first time in the litera-
ture that we use the idea of regularization to establish
a different hybrid method for finding a minimizer of
constrained convex minimization problems and also

prove some strong convergence theorems. Finally, we
apply this algorithm to the split feasibility problem.
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