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1 Introduction
All graphs considered in this paper are finite, undi-
rected, loopless and without multiple edges. For a
positive integer k and a real number x, let [k] =
{1, 2, · · · , k}, ⌊x⌋ and ⌈x⌉ denote the smallest inte-
ger not less than x and the largest integer not greater
than x, respectively.

In recent years, many parameters and graph
classes were studied. For example, in [24], Zuo
showed that a conjecture holds for all unicyclic graphs
and all bicyclic graphs, in [25], Xue, Zuo et al. studied
the hamiltonicity and path t-coloring of Sierpiński-
like graphs, in [27], Jin and Zuo gave the further
ordering bicyclic graphs with respect to the Lapla-
cian spectra radius, in [28], Lai et al. gave a sur-
vey for the more recent developments of the re-
search on supereulerian graphs and the related prob-
lems, in [29], Jiang and Zhang studied Randomly
Mt-decomposable multigraphs and M2-equipackable
multigraphs, and in [26], Xue and Zuo obtained the
linear (n− 1)-arboricity of Kn(m).

Equitable coloring as a special vertex coloring on
graphs was first introduced by Meyer[1]. His motiva-
tion came from the problem of assigning one of the
six days of the work week to each garbage collec-
tion route. Here, the vertices represent garbage col-
lection routes and two such vertices are joined by an
edge when the corresponding routes should not be run
on the same day. The problem of assigning one of
the six days of the work week to each route becomes
the problem of 6-coloring of G. On practical grounds
it might also be desirable to have an approximately
equal number of routes run on each of the six days, so
we have to color the graph in the equitable way.

We can find another application of equitable col-
oring in scheduling and timetabling. Consider, for ex-
ample, a problem of constructing university timeta-
bles. As we know, we can model this problem as col-
oring the vertices of a graph G whose nodes corre-
spond to classes, edges correspond to time conflicts
between classes, and colors to hours. If the set of
available rooms is restricted, then we may be forced
to partition the vertex set into independent subsets of
as near equal size as possible, since then the room us-
age is the highest. For applications of equitable col-
oring such as scheduling and constructing timetables,
please see [1, 5, 11, 12, 13].

A graph G = (V,E) is equitably k-colorable
if V (G) cab be divided into k independent sets for
which any two sets differ in size at most 1. The eq-
uitable chromatic number of a graph G, denoted by
χ=(G), is the minimum k such that G is equitably
k-colorable. The equitable chromatic threshold of a
graph G, denoted by χ∗

=(G), is the minimum t such
that G is equitably k-colorable for all k ≥ t. It is
evident from the definition that

χ(G) ≤ χ=(G) ≤ χ∗
=(G)

for any graph G.
In [3], Lin and Chang obtained the exact values

or upper bounds of the equitable chromatic number on
Kronecker products of G and H , when G and H are
complete graphs, bipartite graphs, paths or cycles, and
in [4], they studied the equitable colorings of Carte-
sian product of paths and cycles, respectively, with
bipartite graphs. In [16], Lih and Wu studied the eq-
uitable colorings of bipartite graphs, and in [17], Lih
gave a good survey for this coloring. In [23], Zhu gave
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a survey for Hedetniemi’s conjecture about the tensor
product of graphs. The general problem of deciding if
χ=(G) ≤ 3 is NP-complete [10]. If, however,G has a
regular or simplified structure we are sometimes able
to provide a polynomial algorithm coloring it in the
equitable way. For more details about this coloring,
please see [1, 2, 6, 7, 8, 14, 20, 21, 22].

The Cartesian product of graphs G = (V1, E1)
and H = (V2, E2) is the graph G2H with vertex set

{(u, v) | u ∈ V1, v ∈ V2}

and edge set{
(u, v)(x, y) | u = x with vy ∈ E2,

or v = y with ux ∈ E1

}
.

Graph products are interesting and useful in many sit-
uations. For example, Sabbidussi [19] showed that
any graph has the unique decomposition into prime
factors under the Cartesian product. The complexity
of many problems, also equitable coloring, that deal
with very large and complicated graphs is reduced
greatly if one is able to fully characterize the prop-
erties of less complicated prime factors.

In the present paper, we study the equitable col-
orings of Cartesian products of wheels with complete
bipartite graphs.

2 Main results
In the following, let s, l,m, n, n′ be all nonnegative
integers, and Wn′ represent the wheel with vertex set

V (Wn′) = {x, x1, x2, · · · , xn′}.

Let H be a complete bipartite graph with two parts

Y = {y1, y2, · · · , ym}

and
Z = {z1, z2, · · · , zn}

where m ≥ n. In the following, we will study the
equitable chromatic number and the equitable chro-
matic threshold of Wn′2H according to the parity of
n′. Clearly, if n′ = 2l + 1, then

χ(Wn′2H) ≥ 4

since χ(Wn′) = 4, so we have

χ∗
=(Wn′2H) ≥ χ=(Wn′2H)

≥ χ(Wn′2H) ≥ 4.

Theorem 1. Suppose that l ≥ 1 and k ≥ 4. If n′ =
2l + 1, then Wn′2H is equitably k-colorable, hence

χ∗
=(Wn′2H) = 4.

Proof. The Cartesian product graph Wn′2H is rep-
resented in Figure 1, where s is some fixed positive
integer determined by the parity of m.
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Figure 1. The Cartesian product Wn′2H

We will partition the vertex set of Wn′2H into
eight subsets as A,B,C,D,E, F,R,K, i. e.,

V (Wn′2H) =

A ∪B ∪ C ∪D ∪ E ∪ F ∪R ∪K,
where

A : (x, ys+1) , (x, ys+2) , . . . , (x, ym) ,
(x2, y1) , (x2, y2) , . . . , (x2, ys) ,
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B : (x3, z1) , (x3, z2) , . . . , (x3, zn) ,
(x5, z1) , (x5, z2) , . . . , (x5, zn) , . . . ,
(xn′−4, z1) , (xn′−4, z2) , . . . , (xn′−4, zn) ,
(xn′−2, z1) , (xn′−2, z2) , . . . , (xn′−2, zn) ,
(xn′ , z1) , (xn′ , z2) , . . . , (xn′ , zn) ,

C : (x4, y1) , (x4, y2) , . . . , (x4, ys) ,
(x6, y1) , (x6, y2) , . . . , (x6, ys) , . . . ,
(xn′−3, y1) , (xn′−3, y2) , . . . , (xn′−3, ys) ,
(xn′−1, y1) , (xn′−1, y2) , . . . , (xn′−1, ys) ,

D : (x2, ys+1) , (x2, ys+2) , . . . , (x2, ym) ,
(x1, y1) , (x1, y2) , . . . , (x1, ys) ,

E : (x, z1) , (x, z2) , . . . , (x, zn) ,
(x4, ys+1) , (x4, ys+2) , . . . , (x4, ym) ,
(x6, ys+1) , (x6, ys+2) , . . . , (x6, ym) , . . . ,
(xn′−3, ys+1) , (xn′−3, ys+2) , . . . , (xn′−3, ym) ,
(xn′−1, ys+1) , (xn′−1, ys+2) , . . . , (xn′−1, ym) ,

F : (x3, y1) , (x3, y2) , . . . , (x3, ys) ,
(x5, y1) , (x5, y2) , . . . , (x5, ys) , . . . ,
(xn′−4, y1) , (xn′−4, y2) , . . . , (xn′−4, ys) ,
(xn′−2, y1) , (xn′−2, y2) , . . . , (xn′−2, ys) ,
(x1, ys+1) , (x1, ys+2) , . . . , (x1, ym) ,
(xn′ , y1) , (xn′ , y2) , . . . , (xn′ , ys) ,
(x2, z1) , (x2, z2) , . . . , (x2, zn) ,
(x3, ys+1) , (x3, ys+2) , . . . , (x3, ym) ,
(x5, ys+1) , (x5, ys+2) , . . . , (x5, ym) , . . . ,
(xn′−4, ys+1) , (xn′−4, ys+2) , . . . , (xn′−4, ym) ,
(xn′−2, ys+1) , (xn′−2, ys+2) , . . . , (xn′−2, ym) ,

R : (x4, z1) , (x4, z2) , . . . , (x4, zn) ,
(x6, z1) , (x6, z2) , . . . , (x6, zn) , . . . ,
(xn′−3, z1) , (xn′−3, z2) , . . . , (xn′−3, zn) ,
(xn′−1, z1) , (xn′−1, z2) , . . . , (xn′−1, zn) ,

and

K : (xn′ , ys+1) , (xn′ , ys+2) , . . . , (xn′ , ym) ,
(x, y1) , (x, y2) , . . . , (x, ys) ,
(x1, z1) , (x1, z2) , . . . , (x1, zn) .

Clearly,
|A| = m,

|B| = ln,

|C| = (l − 1)s,

|D| = m,

|E| = n+ (l − 1)(m− s),

|F | = lm+ n,

|R| = (l − 1)n,

and
|K| = m+ n.

Now sort the vertices of Wn′2H as

A,B,C,D,E, F,R,K

in the order shown. It is not difficult to verify that
the cardinality of every greatest independent vertex set
which contains the consecutive vertices in this sorting
is at least

m+ n+ (l − 1)s.

Let

σt =

⌊
(2l + 2)(m+ n) + t− 1

k

⌋
,

for t ∈ [k]. Since l ≥ 1 and k ≥ 4, we will deal with
the problem in the following cases.

(1) If k ≥ 2l + 2, then

σ1 =

⌊
(2l + 2)(m+ n)

k

⌋

≤ σk =

⌊
(2l + 2)(m+ n) + k − 1

k

⌋
=

⌈
(2l + 2)(m+ n)

k

⌉
≤ m+ n.

If m = 2p+ 1 and s = p+ 1, then it is clear that

σk ≤ m+ n ≤ m+ n+ (l − 1)(p+ 1).

If m = 2p and s = p, then

σk ≤ m+ n ≤ m+ n+ (l − 1)p.

So, applying the vertex sorting above, the vertex set of
Wn′2H can be partitioned into k independent subsets
with the cardinality

σ1, σ2, . . . , σk,

respectively. Hence Wn′2H is equitably k-colorable
for all k ≥ 2l + 2.

(2) For 4 ≤ k < 2l + 2, it is evident that

|A ∪B| = m+ nl,

|A ∪B ∪ C| = m+ nl + (l − 1)s,

and the cardinality of the greatest independent set con-
sisting of consecutive vertices in

P = C ∪D ∪ E ∪ F ∪R ∪K

is at least s+nl+ l(m−s) or n+ml, where the order
of vertices of these six parts are all not varied.
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(2.1) Note that

σt =

⌊
(2l + 2)(m+ n) + t− 1

4

⌋
,

where t ∈ [4] for k = 4.
If m = 2p+1 and s = p+1, then we can choose

an independent vertex set M1 with the cardinality σ1
in

A ∪B ∪ C
in continues from the first vertex because A ∪ B ∪ C
is an independent set. Since

m+ ln = |A ∪B|

≤ σ1 ≤ σ4 ≤ |A ∪B ∪ C|
= m+ ln+ (l − 1)s,

we have

(A ∪B) ⊆M1 ⊆ A ∪B ∪ C.

Let
P ′ = V (Wn′2H)−M1.

Then P ′ ⊆ P , and so the cardinality of the greatest
independent set consisting of consecutive vertices in
P ′ is at least

p+ 1 + nl + lp

or
n+ml.

It is not difficult to verify that

σ4 =

⌈
(l + 1)(m+ n)

2

⌉
≤ min {p+ 1 + nl + lp, n+ml} .

Therefore, we can partition the remaining vertices of
P ′ into three independent sets M2,M3, and M4 with
the cardinality σ2, σ3, and σ4, respectively. Hence
Wn′2H is equitably 4-colorable.

Similarly, for m = 2p and s = p, we can show
that Wn′2H is equitably 4-colorable.

(2.2) For 5 ≤ k ≤ 2l + 1,

σk =

⌈
(2l + 2)(m+ n)

k

⌉
> m+ n.

Let m = 2p+ 1 and s = p+ 1. Note that

A ∪B ∪ C

is an independent set. Choose the first k′ (≥ 1) inde-
pendent vertex subsets

M1,M2, · · · ,Mk′

of
A ∪B ∪ C

in the order with cardinality

σ1, σ2, . . . , σk′ ,

respectively, such that

|A ∪B ∪ C| − σ1 − . . .− σk′ < σk′+1,

and then we will choose the remaining k − k′ inde-
pendent vertex subsets in two subcases according to
the position of the last vertex of Mk′ .

(2.2.1) If the last vertex of Mk′ is (xn′ , zn) or be-
longs to C, then let

M ′ = V (Wn′2H)−M1 ∪M2 ∪ · · · ∪Mk′ ,

and thus M ′ ⊆ P . By

σk =

⌈
(2l + 2)(m+ n)

k

⌉
≤ min {p+ 1 + nl + lp, n+ml} , (∗)

the vertex set M ′ can be partitioned into k − k′ inde-
pendent sets

Mk′+1,Mk′+2, · · · ,Mk

according to the sorting, with the cardinality

σk′+1, σk′+2, · · · , σk,

respectively. Hence Wn′2H is equitably k-colorable.

(2.2.2) Suppose that the last vertex of Mk′ be-
longs to B but not equals (xn′ , zn). Let

B′ = A ∪B −M1 ∪M2 ∪ · · · ∪Mk′ ,

and

B′′ = V (Wn′2H)−M1 ∪M2 ∪ · · · ∪Mk′ ,

then we will choose the (k′ + 1)th independent set
Mk′+1 in B′′ with the cardinality σk′+1 as following.

(2.2.2.1) If∣∣B′ ∪ C
∣∣ < σk′+1 ≤

∣∣B′ ∪ C ∪D
∣∣ ,

then we can chooseMk′+1 afterMk′ sinceB′∪C∪D
is an independent set. Let

D′ = V (Wn′2H)−M1 ∪M2 ∪ · · · ∪Mk′+1.

Then D′ ⊂ P , so, by (∗), we can partition vertex set
D′ into the remaining k − k′ − 1 independent set

Mk′+2, · · · ,Mk
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with cardinality

σk′+2, · · · , σk,

respectively. Hence Wn′2H is equitably k-colorable.

(2.2.2.2) Suppose that

σk′+1 >
∣∣B′ ∪ C ∪D

∣∣ ,
then we will choose the (k′ + 1)th independent set
Mk′+1 with cardinality σk′+1 inB′′ according to |B′|.

If |B′| ≥ n, then let

E′ = E − {(x, z1) , (x, z2) , . . . , (x, zn)} .

Clearly,B′∪C∪D∪E′ is an independent set with the
cardinality at least n+ml. So, inB′∪C∪D∪E′, we
can choose Mk′+1 in the order where the last vertex
belongs to E′. Let

E′′ = B′ ∪ C ∪D ∪ E′ −Mk′+1.

Set

F ′ = F − {(x2, z1) , (x2, z2) , . . . , (x2, zn)} .

Then E′′∪F ′ is such a vertex subset in which the size
of the every greatest independent vertex set consisting
of the consecutive vertices is at least ml. First we
choose

{(x, z1) , (x, z2) , . . . , (x, zn)} ,

then we choose the remaining vertices ofMk′+2 in the
ordering shown inE′′∪F ′ with the last vertex belongs
to F ′.

Let

F ′′ = {(x, z1) , (x, z2) , . . . , (x, zn)}∪E′′∪F ′−Mk′+2.

Then F ′′ ⊆ F . Now we can choose Mk from R ∪K
in the inverse order from the last vertex of it with the
cardinality σk since

σk ≤ |M1 ∪ · · · ∪Mk′ |+ 1 ≤ |A ∪B| ,

and
|R ∪K| = |A ∪B| .

Set
K ′ = R ∪K −Mk,

then

L = F ′′ ∪K ′ ∪ {(x2, z1) , (x2, z2) , . . . , (x2, zn)}

is an independent set. Thus, we can choose the re-
maining k − k′ − 3 independent sets in L, with the
cardinality

σk′+3, · · · , σk−1,

respectively.
If 1 ≤ |B′| < n, then

B′ ⊆ {(xn′ , z2) , . . . , (xn′ , zn)} .

Suppose that the first vertex in B′ is (xn′ , zg), and set

J ′ = E − {(x, z1) , . . . , (x, zn)} .

Then

B′ ∪ C ∪D ∪ {(x, z1) , . . . , (x, zg−1)} ∪ J ′

is an independent set with the cardinality n +ml, so
we can choose Mk′+1 in the sequence shown. If

{(x, z1) , . . . , (x, zg−1)} −Mk′+1

is not empty or (x, zg−1) is the last vertex in Mk′+1,
set

J ′′ = B′∪C∪D∪{(x, z1) , . . . , (x, zg−1)}−Mk′+1,

then(
J ′′ ∪ {(x, zg) , . . . , (x, zn)} ∪ J ′ ∪ F ∪R ∪K

)
⊂ P.

So we can choose the remaining k−k′−1 independent
sets

Mk′+2, · · · ,Mk

with the cardinality

σk′+2, · · · , σk,

respectively. Thus Wn′2H is equitably k-colorable.
If the last vertex of Mk′+1 belongs to J ′, then set

L = B′∪C∪D∪{(x, z1) , . . . , (x, zg−1)}∪J ′−Mk′+1.

We will choose the (k′ + 2)th independent set Mk′+2

with cardinality σk′+2 as following. Let

W ′ = F − {(x2, z1) , (x2, z2) , . . . , (x2, zn)} .

Then L ∪W ′ is a set which contains the greatest in-
dependent consecutive vertex set with the cardinality
ml. First, we choose

{(x, zg) , . . . , (x, zn)}

∪ {(x2, z1) , . . . , (x2, zg−1)} ,
then we choose the remaining vertices ofMk′+2 inL∪
W ′ in the order where the last vertex belongs to W ′.
Let the set of remaining vertices of W ′ be denoted by
W ′′. Now we can choose Mk with cardinality σk in
R ∪K since

σk ≤ |M1 ∪M2 · · · ∪Mk′ |+ 1 ≤ |A ∪B| ,
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and
|R ∪K| = |A ∪B| .

Let K ′ = R ∪K −Mk, then

M ′ = K ′ ∪ {(x2, zg) , . . . , (x2, zn)} ∪W ′′

is an independent set. So we can choose the remaining
independent sets k − k′ − 3 from M ′ with the cardi-
nality

σk′+3, · · · , σk−1,

respectively.

Similarly as the argument above, we can show
that Wn′2H is equitably k-colorable for m = 2p and
s = p in all subcases of (2.2).

In a word, we have proved that Wn′2H is equi-
tably k-colorable for any k ≥ 4, and

χ∗
=(Wn′2H) = 4

for odd n′. Hence Theorem 1 holds.

Theorem 2. Suppose that l ≥ 2, n′ = 2l and k ≥ 4.
Then Wn′2H is equitably k-colorable.

proof. Sort the vertices of Wn′2H as following.

(x, y1) , (x, y2) , . . . , (x, ys) ,
(x2, z1) , (x4, z1) , . . . , (x2h, z1) , . . . , (xn′ , z1) ,
(x2, z2) , (x4, z2) , . . . , (x2h, z2) , . . . , (xn′ , z2) ,
. . . ,
(x2, zn) , (x4, zn) , . . . , (x2h, zn) , . . . , (xn′ , zn) ,

(x1, ys+1) , (x3, ys+1) , . . . , (x2h−1, ys+1) ,
. . . , (xn′−1, ys+1) ,
(x1, ys+2) , (x3, ys+2) , . . . , (x2h−1, ys+2) ,
. . . , (xn′−1, ys+2) ,
. . . ,
(x1, ym) , (x3, ym) , . . . , (x2h−1, ym) ,
. . . , (xn′−1, ym) ,

(x1, y1) , (x1, y2) , . . . , (x1, ys) ,
(x3, y1) , (x3, y2) , . . . , (x3, ys) , . . . ,
(x2h−1, y1) , (x2h−1, y2) , . . . , (x2h−1, ys) ,
. . . , (xn′−1, y1) , (xn′−1, y2) . . . , (xn′−1, ys) ,

(x, z1) , (x, z2) , . . . , (x, zn) ,
(x2, ys+1) , (x4, ys+1) , . . . , (x2h, ys+1) ,
. . . , (xn′ , ys+1) ,
(x2, ys+2) , (x4, ys+2) , . . . , (x2h, ys+2) , . . . ,
(xn′ , ys+2) , . . . , (x2, ym) ,
(x4, ym) , . . . ,
(x2h, ym) , . . . , (xn′ , ym) ,

(x2, y1) , (x2, y2) . . . , (x2, ys) ,
(x4, y1) , (x4, y2) . . . , (x4, ys) , . . . ,
(x2h, y1) , (x2h, y2) , . . . , (x2h, ys) , . . . ,
(xn′ , y1) , (xn′ , y2) , . . . , (xn′ , ys) ,

(x1, z1) , (x1, z2) , . . . , (x1, zn) ,
(x3, z1) , (x3, z2) , . . . , (x3, zn) ,
. . . ,
(x2h−1, z1) , (x2h−1, z2) , . . . , (x2h−1, zn) ,
. . . ,
(xn′−1, z1) , (xn′−1, z2) , . . . , (xn′−1, zn) ,
(x, ys+1) , (x, ys+2) , . . . , (x, ym) ,

where h is an integer and 1 ≤ h ≤ l.
If m = 2p + 1, p ≥ 0, and s = p + 1, then the

cardinality of every greatest independent consecutive
vertex set in this sorting is at least

lp+ nl + p+ 1

or
n+ (l − 1)m+ p.

If m = 2p, p ≥ 1, and s = p, then the cardinality of
every greatest independent set consisting of consecu-
tive vertices in this ordering is at least

n+ (l − 1)m+ p

or
nl + pl + p.

Note that

σt =

⌊
(2l + 1)(m+ n) + t− 1

k

⌋
,

where t ∈ [k].

(1) Suppose that k ≥ 5.

By l ≥ 2, we have

σ1 =

⌊
(2l + 1)(m+ n)

k

⌋

≤ σk =

⌊
(2l + 1)(m+ n) + k − 1

k

⌋
=

⌈
(2l + 1)(m+ n)

k

⌉
≤
⌈
(2l + 1)(m+ n)

5

⌉
.

If m = 2p+ 1, then

σk ≤
⌈
(2l + 1)(m+ n)

5

⌉
≤ min{lp+ nl + p+ 1, n+ (l − 1)m+ p}.
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If m = 2p, then

σk < ⌈(2l + 1)(m+ n)

5
⌉

≤ min{n+ (l − 1)m+ p, nl + pl + p}.

Thus, applying the vertex sorting above, the ver-
tex set of Wn′2H can be partitioned into k indepen-
dent sets with the cardinality σ1, σ2, . . . , σk, respec-
tively. Hence Wn′2H is equitably k-colorable.

(2) If k = 4, then

σt =

⌊
(2l + 1)(m+ n) + t− 1

4

⌋
for t ∈ [4].

(2.1) Suppose that m ≥ n+ 2.

For m = 2p+ 1, it is obvious that

σ4 ≤
⌈
(2l + 1)(m+ n)

4

⌉
≤ min{lp+ nl + p+ 1, n+ (l − 1)m+ p}.

For m = 2p, clearly,

σ4 ≤
⌈
(2l + 1)(m+ n)

4

⌉
≤ min{n+ (l − 1)m+ p, nl + pl + p}.

Hence Wn′2H is equitably 4-colorable.

(2.2) Suppose that m ≤ n+ 1.

Since the cardinality of the greatest independent
set which contains consecutive vertices from the first
one in the sorting is

l(m+ n) + s− ls,

we can choose the independent set M1 with cardinal-
ity σ1 from beginning of the sorting. Clearly, the last
vertex of M1 is (xn′−2, zn), or (xn′ , zn), or (xi, yj)
where i ∈ {1, 3, . . . , n′ − 1} and j ∈ [s + 1,m] by
m ≥ n. Furthermore, the cardinality of the greatest
independent set K which contains consecutive ver-
tices beginning from the next one of the last vertex in
M1 in the sorting is lm + n, and then we can choose
the independent set M2 from the first vertex in K. By

l(m+ n) +
m+ n

2
− 1

≤ σ1 + σ2

≤ l(m+ n) +
m+ n

2
,

we will show that the following result holds.

Claim The last vertex of M2, denoted by (u, v),
is (xn′−1, ys), or (x, zq) for some q ∈ [1, n], where
(m,n) ̸= (1, 1).

Note that

σi =

⌊
(2l + 1)(m+ n) + i− 1

4

⌋
for i ∈ [1, 4], and

n ≤ m ≤ n+ 1.

Let

A =



(x, y1) , (x, y2) , . . . , (x, ys) ,
(x2, z1) , (x4, z1) , . . . ,
(x2h, z1) , . . . , (xn′ , z1) ,
(x2, z2) , (x4, z2) , . . . ,
(x2h, z2) , . . . , (xn′ , z2) ,
. . . ,
(x2, zn) , (x4, zn) , . . . ,
(x2h, zn) , . . . , (xn′ , zn)


and

B =



(x1, ys+1) , (x3, ys+1) , . . . ,
(x2h−1, ys+1) , . . . , (xn′−1, ys+1) ,
(x1, ys+2) , (x3, ys+2) , . . . ,
(x2h−1, ys+2) , . . . , (xn′−1, ys+2) ,
. . . ,
(x1, ym) , (x3, ym) , . . . ,
(x2h−1, ym) , . . . , (xn′−1, ym) ,
(x1, y1) , (x1, y2) , . . . , (x1, ys) ,
(x3, y1) , (x3, y2) , . . . , (x3, ys) ,
. . . ,
(x2h−1, y1) , (x2h−1, y2) ,
. . . , (x2h−1, ys) ,
. . . ,
(xn′−1, y1) , (xn′−1, y2) ,
. . . , (xn′−1, ys) ,
(x, z1) , (x, z2) , . . . , (x, zn)



.

It is obvious that

|A| = nl + s,

and
|B| = lm+ n.

We will show that the claim in the following cases.

Case 1. m = n.
Clearly,

σ1 =

⌊
(2l + 1)n

2

⌋
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in this case.
If m = 2p, then the last vertex of M1 is (xn′ , zn)

by

σ1 =

⌊
(2l + 1)n

2

⌋
= nl +

n

2

and
|A| = nl +

n

2
.

Thus the last vertex in M2 is
(
x, zn

2

)
since σ1 = σ2,

and B is an independent set.
If m = 2p+ 1, then

σ1 = nl +
n− 1

2
,

and
|A| − σ1 = 1,

so the last vertex of M1 is (xn′−2, zn). Since

σ2 = σ1 = nl +
n− 1

2
,

and
|B ∪ {(xn′ , zn)} − {(x, zn)}|
= ml + n = nl + n,

the last vertex in M2 is (xn′−1, ys) or (x, zq) for some
q ∈ [1, n− 1].

Case 2. m = n+ 1.

If m = 2p, then

σ1 =

⌊
(2l + 1)(m+ n)

4

⌋

=

⌊
(2l + 1)(2n+ 1)

4

⌋
=

⌊
nl +

n+ 1

2
+

2l − 1

4

⌋
,

and
|A| = nl +

n+ 1

2
,

so σ1 ≥ |A|+1 and the last vertex ofM1 is (xi, yj) for
l ≥ 3, where i ∈ {1, 3, ..., n′ − 1} and j ∈ [s+1,m].
For l = 2, σ1 = |A|, then the last vertex of M1 is
(xn′ , zn) .

If m = 2p+ 1, then

σ1 =

⌊
(2l + 1)(m+ n)

4

⌋

=

⌊
(2l + 1)(2n+ 1)

4

⌋
=

⌊
nl +

n

2
+

2l + 1

4

⌋
,

and
|A| = nl +

n

2
+ 1.

If l ≥ 4, then
σ1 ≥ |A|+ 1,

so the last vertex of M1 is some (xi, yj) , where i ∈
{1, 3, ..., n′ − 1} and j ∈ [s + 1,m]. If l ∈ {2, 3},
then σ1 = |A|, so the last vertex of M1 is (xn′ , zn) .

If n ≥ 2, similarly as Case 1, we can obtain that
the last vertex ofM2 is (xn′−1, ys) or (x, zq) for some
q ∈ [1, n− 1].

If n = 1, then m = 2,

|A ∪B − {(x, z1) , ..., (x, zn)}| = 3l + 1,

and ⌊
3l + 1

2

⌋
≥ |A|,

so
A ∪B − {(x, z1) , ..., (x, zn)}

can be equitably partitioned into two independent sets,
i. e., the last vertex of M2 is (xn′−1, ys) . Hence the
claim holds. ⊓⊔

Now we deal with the problem according to the
value of n.

(2.2.1) n ≥ 2.

Since

σ1 + σ2 ≥ l(m+ n) +
m

2
,

we have
σ1 + σ2 ≥ l(m+ n) + s,

and then
(u, v) = (xn′−1, ys)

or
(u, v) = (x, zq)

for some q ∈ [1, n − 1]. Thus, the cardinality of the
greatest independent set consisting of consecutive ver-
tices from the next vertex of (u, v) is

n+ l(m− s) + ls = lm+ n ≥ σ3

by

σ3 ≤
(2l + 1)(m+ n) + 2

4
.

Hence we can choose independent sets M3,M4 with
cardinality σ3, σ4, respectively.

(2.2.2) n = 1.

Note that

1 ≤ m ≤ n+ 1 = 2.
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Since

σ1 + σ2 ≤ l(m+ n) +
m+ n

2

< l(m+ n) + s+ n,

we have
(u, v) = (xn′−1, ys),

and then the size of the greatest independent set con-
sisting of consecutive vertices from the next vertex of
(xn′−1, ys) is

lm+ 1− s = 2l ≥ 3l/2 + 1 = σ3

for m = 2. So we can obtain the result as (2.2.1)
similarly.

If m = 1, then the vertex partition

(x, y1), (x2, z1), (x4, z1), . . . , (xn′ , z1);

(x1, y1), (x3, y1), . . . , (xn′−1, y1);

(x, z1), (x2, y1), (x4, y1), . . . , (xn′−2, y1);

(xn′ , y1), (x1, z1), (x3, z1), . . . , (xn′−1, z1),

is an equitably 4-coloring of Wn′2H .
In a word, we have proved Theorem 2.
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[10] H. Furmańczyk, Equitable coloring of graphs,
in: M. Kubale (ed.), Optymalizacja dyskretna.
Modele imetody kolorowania grafów, WNT
Warszawa, 2002, 72-92 (in Polish).

[11] H. A. Kierstead, A. V. Kostochka, A short
proof of the Hajnal-Szemerédi theorem on equi-
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