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Abstract:We propose the cubic-order numerical method free of second derivatives and derive the asymptotic error
constantin terms of control parameters. Applying this proposed scheme to various test functions, numerical results
show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-
precision computability.
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1 Introduction By Corollary 1 and Corollary 2, we hayé(z)]{%, =

0,0 <k <m-1landf(a) = flla) = -+ =
fm=U(a) =0, f™ +£ 0. Using L'Hospital’s rule
repeatedly[5,6,9], we have

The iteration methods to find the roots of nonlinear
equations have various applications in many science
problems. Among them, the Newton’s method is one

of the most well-known iteration schemes and is mod- [f(z)](n_%l)
ified by many researchers[1,2,3,4]. lim F(z) = % =0 (6)
Assume that a functiofi : C — C has a multiple . [f'(2)]

root o with integer multiplicitym > 1 and is analytic The next corollary is useful to calculagé(c), ¢"(c)
in a small neighborhood af. We express the given andg”(a).

equationf(z) = 0 in the formz — g(z) = 0 where
g : € — Cis analytic in a sufficiently small neigh-  Corollary 1 Supposef : C — C has a multiple root

borhood ofa. Then We find an approximatedby a o with a given integer multiplicityn > 1 and is ana-
scheme Iytic in a small neighborhood af. Then the function
Tpi1 = g(xn), n=0,1,2 -, (1) h(x) and its d?rlvatlves u.p to f)rder :ic(?n\i?!?j)lteqcat
whereg : C — C is an iteration function andy € C has the following properties with = IRICREAS
is given. Then we find an approximatedusing an N: .
iterative method[5,6,7,8]. The roots of the equation (i) h(a) =0
are obtained using the following scheme: B
(i) b (@) = 7
_ _ )\f(xn - Nh(xn)) 9
g(xn) = Tn f,( ) ( ) 1 2
Ln, (|||) h (a) = —mel
where ) . s
h(z) = { f@)/f (). ifeta (V) h(0) = iy {007 — 202
limg—o f(2)/f'(2), ifr=a Corollary 2 Let f stated in Corollary 1 have a mul-
) (3) tiple root o with a given multiplicitym > 1. Let
For a giverp € N, we suppose that 2(z) = = — uh(x) andh(z) be defined by (3). Then
{ ;;_Ppg(x)(ra =g ()] <1, ifp=1. the following hold:
gm(a):OiforlSigpflandg(p)(a)yﬁo, ifp > 2. dk (Z)
(4) dx*
SN _ fla—ph(@) gj e
Let z(x) = wuh(x) andF(x) ="7w Since 0 Fo<k<m—1
g(zx) is continuous at = «, g(x) is represented by FO (@), ifk=m
= (m) m—1 2 . o
T — \F(z), ifz#a f (0()~91~t (1—t+t), sz—m—f—l
g(x) = { I*)\lil(]’lz)aa F(z), if z = a. () f(m>(a)~tm72~{q19%+q292}, ifk=m+2
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whereq; = 2(;”(;21’1\) (t—1)2{2(m+ 1)t —m + 1},

g = (1 — 2t +2) andt’ = 1 for anyt € C.

In this paper, our aim is to establish some rela-
tionships between\, m, ¢’(«), ¢" () and g’ («) for
cubic order of convergence[8,9] and derive the corre-
sponding asymptotic error constant. Various humeri-
cal experiments are presented to confirm the validity
of the suggested method.

2 Convergence

We analyze the convergent properties of this proposed
scheme (2) and investigate the order of convergence

and the asymptotic error constant[10] in terms of pa-
rameter\ andu. From the definition ofy(x) as de-
scribed in (2), we rewrite

(g — ) f(z) = =Af(2). (7)

wheref = f(z),f' = f'(z),z = x — ph(x) are
used for concise and the symBalenotes the deriva-
tive with respect ta.

Differentiating both sides of (7) with respecttowe
obtain

(9 =1 f'+ (g =) f"(2) = =ALf () (8)
Sinceg’ is continuous atv, we have

Fy (IL'),
limm_,a F1 (1‘),

ifr#«

if r=a,

g'(z) - 1= { (9)

whereF (z) = _(g_x)f//(?_k[f(z)](l)-
Using Corollary 2 andg(«) = «, we have the follow-

ing:

|

(g—2)f"(2)]E,
0, if0<k<m-—2,m>2

(m—1)(¢ —f(a), if k=m—1, 0

0, ifO<k<m-—2 m>2
(m)(a)(l_ }%)mv iszm—l,

(11)

(k)
[f(Z)]“)] =

Substituting (10) and (11) into (9) leads

g(@)=1=—(m=-1)(¢g'(0) =) = A1 = L)
To obtaing’(«) = 0, we get
m= A" (12)
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wheret =1 — £
Differentiate both sides of Eq(8) with respecttove
have

g"+2(g1=1)- "+ (g—z)- f® = =A[f(2)]® (13)

We rewrite

g"(x) = {

whereF (z) — —2(9/—1)~f”—(9}§)~f(3)—/\[f(Z)](Q)'

FQ(x)v
limm_,a F2 (1‘),

ifx#«

if v =a, (14)

Applying L'Hospital’s rule with Corollary 2, the nu-
merator ofF;(z) yields

~2(g' = 1)f" = (g~ 2)fD ~ A[f())?

0, ifO<k<m-—3
£ (@) (m — xt™), ifk=m—2
) Q)0 {(m A4 1) = AT =t )
—g"() (m+2)2(m—1)]’ ifk=m-—1,
(15)
From (14) and (15), we obtain
g// _ m(fnei 1) {(m + 1) o )\(tm+1 My tm_l)}

(16)
From (16), to havey’(a) = 0 we get the following
relation,
m41=\t"T — g™ g gmh (17)

Differentiate both sides of (13) with respectitpwe
get

g g 48 =1 D (g —2) r P = AP (18)

We rewrite
9¥(x) = {

where

if T#a«
if *=aq,
(19)

=3¢ " —3(9' = f® — (g — ) f — A[f(2)]®

Fy(z) = 77

(20)
Using Corollary 2 and the fact thay(a) =
o, g"(a) = 0,¢"(c) = 0 for cubic order of conver-
gence, we have the relation below:

(k)

=«

[=39"-1"=3(g/~1)- S g—2)- DAL (2)] P
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0, ifO<kE<m-—4
! FO™ (@) (m — At™), ifk=m—3
=N 0 (@) {m + 1 — A@m L —¢gm 4 gm—lyy ifk=m—2

2 3 P
FO () {$107 + pp 0y — LM HAmI6) ()3 5 pp = m — 1,

(21)
b1 = {
by = {

a = %(t— 1)2{2(m+1)t—m+1} andgy =

tH(t3 — 2t +1).
From (19) and (21), we have

where
tm2q(t, if m>2
3(t—1)2, ifm=1,

m+2— M""2. go(t), if m > 2
—t(t? — 3), if m =1,

6
(m+1)(m+2)

93 () = - {4165 + pabh}. (22)

Theorem 3 Let f : C — C have a multiple real zero
a with integer multiplicitym > 1 and be analytic in
a small neighborhood of.. Let#;, 6, be defined as
in Corollary and ¢1, ¢o be defined as in (21). Let
be a root ofR(¢). Letz( be an initial value chosen
in a sufficiently small neighborhood of Then this
proposed method stated in section 1 has otland
its asymptotic error constantas follows:

1
m+1)(m+ 2)

9167 + pabs],
(23)

1
provided thatp, 03 + ¢20, # 0.
From (12) and (17), we get
mt? — (2m+ Dt +m =0

Typical cases fol < m < 4 are studied here and
listed in Table 1 to confirm Theorem 2.1.

Table 1:Valuesp andn for1 < m < 4

p(t)
t2—-3t+1=0 :

2t2 —5t4+2=0

o=

[62(4 — 3t) +202(1 — t)]

2 2
5t 2t+44 27t2—2t42
5 +t + + 67 2 + ]

2
3t -7t +3=0 | 3

(N

—7t242¢46 24t3412_6t41
FRES 4 sef A SO

& w N k|3

(62
(62
2 10t—8 230t3 —49¢2428t—9
4t? 9t +4=0 | F5[0,1%=8 ¢ 07 o ]

=)
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3 Conclusion

The symbolic and computational ability bfathemat-
ica[11] leads us to a zero-finding algorithm based on
the convergent behaviour studied in Sections 1 and 2.

Algorithm 3.1 (Zero-Finding Algorithm)

Step 1 Fork € N U {0}, construct iteration scheme
(1) with the given functionf at a multiple zerax as
stated in Section 1.

Step 2 Set the minimum number of precision digits.
With exact zeron or most accurate zero, supply the
theoretical asymptotic error constant Set the error
rangee, the maximum iteration numbet,,,,. and the
initial valuexy. Computef(zg) and|zy — « |.

Step 3 Computer,, 1 in (1) for0 < n < ny,, and
display the computed values of, x,, f(z,), |z, —
al, [eny1/enP| andn.

In these experiments, we chodd# as the minimum
number of digits of precision by assignifiylinPreci-
sion=300in Mathematica to achieve the specified ac-
curacy. We set the error bourdo 0.5 x 107235 for

| £, — a | < e and evaluate the'” order derivative of
the complicated nonlinear functions using the Mathe-
matica comman®[f, {z, n}].

As an example for the convergence, we first il-
lustrate the order of convergence and the asymptotic
error constant with a function

f(z) = (2% — 2+ 3)Y/(2* + sinz)
having a real zerax = % of multiplicity 4. We

choosery = 0.468 — 1.58i as an initial guess. Table
2 verifies cubic convergence apparently.

Table 2:Convergence fof (z) = (z? — = + 3)*/(z* + sinz)
with m = 4, @ = 1=2/11

(t, 1, N) = (24T 256155, 1)

|zn — o enti/en’

0.0845981

Tn
0.468000000000000
- 1.58000000000000i
0.500178290031692
- 1.65834669787011i
0.500000000001344
- 1.65831239517843i
0.500000000000000
- 1.65831239517770i
0.500000000000000
- 1.65831239517770i
0.500000000000000
- 1.65831239517770i

n
0.2554068175

0.000181560 | 0.2998740289

1.52868
x10~ 12
9.12388
x10737
1.93986
><10—109
0.0
><10_299

0.2554204016

0.2554068175

0.2554068175

We choose an analytic functiofi(z) (x —
7) log?(z+1—m) sin® z-e® near a multiple root = 7
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of multiplicity 8. The extra informations regarding cu-
bic convergence are used as a initial vatye= 3.29,

u = —3.37228 and A = 0.479765623518. We select
a complext = % that is approximated as one
of 2 solutions to a polynomial equatigr(t) numeri-
cally. From the lists of Table 3, it can be confirmed

that the computed asymptotic error constant coincides
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[7]1 S. D. Conte and Carl de BooElementary Nu-
merical AnalysisMcGraw-Hill Inc., 1980

[8] Kenneth A. Ross, Elementary Analysjs
Springer-Verlag New York Inc., 1980.

[9] J. Stoer and R. BulirshHntroduction to Numer-
ical Analysis pp.244-313, Springer-Verlag New
York Inc., 1980.

with the investigated one using Theorem 2 and this [10] J. F. Traubjterative Methods for the Solution of

iteration method has cubic convergence.
The current study can be applied to the effiec-
tive variations to develop the higher order numerical

schemes to find the multiple roots of nonlinear equa-

tions[12,13,14].

Table 3: Convergence forf(z) =
m)sin®z-e” withm =8, a =7

(x — m)log?(z + 1 —

(t, 1, A) = (A8 337228, 0.479765623518)

3

Tn [#n —a en+1/‘fns
3.29000000000000|  0.148407

3.14213337664892| 0.000540723
3.14159265360994| 2.01430
x10~11
1.04017
x10733
1.43232

x 10— 100

n
0.1272715659

0.1654278750
0.1274087393

INEE=]

3 3.14159265358979 0.1272715660

4 3.14159265358979 0.1272715659

5 3.14159265358979 0.
X 107299
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