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Abstract: This paper is concerned with the existence and exponential stability of anti-periodic solutions of a class
of shunting inhibitory cellular neural networks with continuously distributed delays and time-varying delays in

the leakage terms.
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simulations are carried out to illustrate the theoretical findings.
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1 Introduction

The shunting inhibitory cellular neural networks
(SICNNs) which were introduced by Bouzerdoum
and Pinter [1-3] have been extensively applied in
psychophysics, speech, perception, robotics, adap-
tive pattern recognition, vision, and image processing.
During the past decades, there have been intensive re-
sults on the problem of the existence and stability of
periodic and almost periodic solutions of SICNNS, for
example, Fan and Shao [4] considered the positive al-
most periodic solutions of shunting inhibitory cellular
neural networks with time-varying and continuously
distributed delays, Li and Huang [5] addressed the ex-
ponential convergence behavior of solutions to shunt-
ing inhibitory cellular neural networks with delays
and time-varying coefficients, Cai et al. [6] analyzed
the positive almost periodic solutions for shunting in-
hibitory cellular neural networks with time-varying
delays. For more related work, on can see [7-14].
Many scholars [15-18] have argued that the existence
of anti-periodic solutions plays a key role in charac-
terizing the behavior of nonlinear differential equa-
tions. However, only very few results are available
on a generic, in depth, existence and exponential sta-

Aizicoviciet al. [20] discussed the anti-periodic so-
lutions to nonmonotone evolution equations with dis-
continuous nonlinearities, Gong [21] focused on the
anti-periodic solutions for a class of Cohen-Grossberg
neural networks. In details, one can see [22-47]. In
recent years, there are some papers which focus on
the existence and stability of anti-periodic solutions
for neural networks with delays. In 1992, Gopalsamy
[48] pointed out that in real nervous systems, time de-
lay in the stabilizing negative feedback terms has a
tendency to destabilize a system (This kind of time
delays are known as leakage delays or “forgetting” de-
lays). Moreover, sometimes it has more significant ef-
fect on dynamical behaviors of neural networks than
other kinds of delays. Hence, it is of significant im-
portance to consider the leakage delay effects on dy-
namics of neural networks. However, due to some the-
oretical and technical difficulties, there has been very
little existing work on neural networks with leakage
delays [49-53]. Motivated by the above arguments,
In this paper, we will investigate a shunting inhibitory
cellular neural network with continuously distributed
delays and time-varying delays in the leakage terms
which takes the form

bility of anti-periodic solutions of SICNNs, for ex- ij (t) —a ()2t — 7 (t))
ample, Aftabizadeh et al. [19] investigated a class of — C’fl / fap(t —u))du
second-order anti-periodic boundary value problems, Cme No(i,5)
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xa:ij(t) +Lij(t), (1

where ¢ = 1,2,...,m,j = 1,2,...,n, Cj; denotes
the cell at the (¢,7) position of the lattice, the r-
neighborhood N,.(, ) of Cj; is given by

Ni (i, j) = {Cpr : max([k — |, |l = j|) <,

1<k<m,1<Il<n}.

xi; acts as the activity of the cell Cj;, L;;(t) is the ex-
ternal input to Cj;, the constant a;; > 0 represents the
passive decay rate of the cell activity, ijl > 0 is the
connection or coupling strength of postsynaptic activ-
ity of the cell transmitted to the cell C;;, and the activ-
ity function f(.) is a function representing the output
or firing rate of the cell C;, and «(.) is a continuous
function, 7;;(t) > 0 correspond to the transmission
delays and t — 7;;(¢) > 0 for all £ > 0.

The purpose of this paper is to present sufficient
conditions of existence and exponential stability of
anti-periodic solution of system (1). Some new suf-
ficient conditions ensuring the existence, unique and
exponential stability of anti-periodic solutions of sys-
tem (1) are established. Our results not only can be
applied directly to many concrete examples of cellular
neural networks, but also extend, to a certain extent,
some previously known ones. In addition, an example
is presented to illustrated the effectiveness of our main
results.

The rest of this paper is organized as follows. In
Section 2, we give some notations and preliminary
knowledge. In Section 3, we present our main results.
In Section 4, we present an example with its numer-
ical simulations to illustrate the effectiveness of our
main results.

2 Preliminary Results

A continuous function g : R to R is said to be T-anti-
periodic on R, if
g(t+T)=—g(t),forall te R.

Define ij € Q = {11,12,...,1n,...,ml,m2,...,
mn} and let

L = sup | Li;(t)], a;’;’ = sup a;;(t),
teR teR

i =sup(t), Cff =supCl().
teR teR

We consider (1) under the following assumptions:
al-j,CZ-j : R — [0,+OO),KZ‘]' : [0,+OO) — R and
a, L;j : R — R are continuous functions and

aij(t + T)o(u) = —ai;j(t)o(—u),
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Lij(t+T) = —Lij(t), 7i;(t+T) =15
Cij(t+T) = —Cy(t), f(-u)=f(u),
(or Cij(t +T) = Cy(t), f(u) = —f(-u)),

for all ¢, € R. In order to obtain our main results in
this paper, we make the assumptions as follows:

(H1) There exist constants L. > 0 and M > 0
such that for all u,v € R,

[f(u) = f()| < Llu— v, | f(w)] < M.

(H2) There exist a constant v > 0 such that for
allt > 0,

— Q4 (t)v + |aij (t)‘Tij (t) {a;;’)/

v Y O[T IR ldu(zy + £0))y

Cri€Nr(i,) 0

TR SR (O) RSO
Cri€Nr(i,5)

X(Ly -+ |£O) )y + L <.

(H3) There exist constants > 0 and &;; >
0,45 € €, such that for all ¢ > 0,

—aij(t)&ij + aij ()&, [a?;&j +

< S cH /0 | ()| Léadu

Cri€Nr(3,5)

+ ) ijl/o |Kij(U)|M€ide]
Cri€Nr(4,5)
B )
+’Y Z Czk]l/o |KU(U)|L§kldu
Cri€Nr(4,5)

+ X O Ky |MEydu < —n,
CklENT(ivj) 0

Definition 1 Let z*(t) = {zj;(t)} be an anti-
periodic solution of (1) with initial value ©* =
{¢7;(t)}. If there exist constants X > 0 and My, > 1
such that for every solution x(t) = {x;(t)} of (1)
with an initial value ¢ = {p;;(t)},

i (1) — 23] < Myl — @*lle™, V>0,

where ij € () and

sup - max |pi;(s) — ¢j;(s)]-

— * —
e — ¢ _Sup_ max

Then x*(t) is said to be globally exponentially stable.
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Next, we present two important lemmas which
are used in proof of our main results in Section 3.

Lemma 2 Let (H1) and (H2) hold. Suppose that
z(t) = {7 (t) } is a solution of (1) with initial condi-
tions

Zij(s) = @ij(s), |@i(s)] <, s €[—00,0].
(2
Then
|Z35(t)| < y,forallt >0, 3)
where ij € €.

Proof. For the given initial condition, the assump-
tion (H1) guarantees the existence and uniqueness,
it follows from the theory of functional differential
equations that the interval of existence of solution is
(0,400). By way of contradiction, we assume that
(3) does not hold. Then there must exist 75 € €2 and
o > 0 such that

‘fij(O')‘ =, and ’fw(t)‘ < nyt S (—7‘, O’). (4)

From system (1), we have

iii(t) = —ai(t)wii(t —75())
_ CZl(t) > KW(U)
Ckzé%;(ivj) /0

X f@r(t — w))duz(t) + Lij(t)
= —a;i(t)zi;(t) + aii(t)[zij(t)

—zg(t— Ty - >

Cri€Nr(4,5)
< Hat

+L;;(t)
= —ai(t)zii(t) + aij(t) / i

t Tij(t)
- Y o K@
Cra €N (i) 0
Xf(xkl(t — u))duxw (t) + LZ‘j (t) 5
Computing the upper left derivative of |Z;;(t)|, to-

gether with the assumptions (H1) and (H2) and (4)
and (5), we deduce that

ki
Cij (1)

l'kl (t — u))du:cw (t)

x;j(s)ds

0 <

< D™ (|Zi(0)])
< —aij(0)|fl‘ij(o')|+

-

Cri€Ny (1,5

xf(xkl(a — u))dux”(a) + Lij(O')‘

aij(a)/ ( )ZL';]-(S)CZS
o—Tij(o

CH (o) /OOO Kij(u)
)
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IN

—aij(o)|zij(o)| + |aij(0)|/ . \x;j(s)|ds
o—Tij(o
+ |CH (o |/ 1K (u

CkleNT('L:J
X(|f(zgi(o —u)) — fO)] + | f(0))dulz;(o)|
+|Lij (o)

—aij(0)|zij(0)] + lai(o)]
X/G 7—”(0) ’ — aij(s)xij(s — Tij(s))

B Ckl / K (u

CkZGNr(w
xf(:z:kl(s —u))duxi;(s) (s)|ds

+ Ckl |/ (u)

CkZENr(ZJ
<(1f (@nlo =) = FO)] +1£(0)dulay (o)
+|Lij ()]
—a35(0)]aiy ()] + [ais ()
. )raij<s>\|xij<s—nj<s>>|

ij

- ICH (s)| / | K ij(u

CkZENr('L]
X(f(rr(s —u)) —
+[Lij(s)|ds +

IN

IN

FO)+1£(0)dulzij(s)]
>, ICH)

Cr1€Nr(4,5)
< [T @l — ) - 7(0)
HFO)Ddulij0)] + | Lis(o)
—aij(0)y + |ai; (0) 735 (0) |y
+ C*ZZ/OOO\KM(UWU(LV

Cri€Nr(4,9)

IN

+HFO) )y + L]

+ Z ijl(g) /Ooo | K

Cri€Nr(i,5)
+£(0))y + L35 <0, (6)

(u)|du(Lry

which is a contradiction and implies that (3) holds.
This completes the proof. g

Lemma 3 Suppose that (H1)-(H3) hold. Let T(t) =
{Z;j(t)} be the solution of (1) with initial value ¢* =
{¢5;(0)}, and x(t) = {z:;(t)} be the solution of (1)
with initial value ¢ = {¢;j(t)}. Then there exists a
constant M, > 1 such that

i (1) —

z5(1)] < Myllo—@*[le™, Vi > 0,ij € Q.

Volume 13, 2014



WSEAS TRANSACTIONS on MATHEMATICS

Proof. Let y(t) = {yi;(t)} = {zi;(t) — 2};(t)} =
x(t) — *(t). Then

y;j(t) = —a(t )ym( — 75(1))
B Ckl o Ky (u
CszNr(w) 0
X[flzr(t —u) = f(ag(t — u))ldu
X [z45(t) — x35()], @)

where ¢ € (2. By Lemma 2, it follows that
2] <7, V>0,

Define continuous functions p;(6) as follows:
pi(0) = (9 — a;(t)e’T (t)> &ij + aij (£)e" g

(0 + a;;eeﬁ) fij

+7y Z C_’ijl /0 \Kij(u)|L69“§kldu

Cri€Ny(4,5)

+ > CF /0°°|Kij(u)|M@jdu]

Cri€ENy(1,5)

Y cg«;/o K

CriENr(1,9)

Cri€N-r(i,5)

(u)\Leeu&ddu

where > 0,and t > 0,45 € Q2. Then

pi(0) = —aij(t)fij+az’j(t)§iﬂ§[afj&j

+y Z C’zk;l /0 |Kij(u)|L§kldu

Cri€Nr(4,5)

+ ) ijl/()oo\Kij(U)!M&jdu]

Cri€Nr(4,5)

Y é@l/“|

Cri€NL(i.d) 0

+ > ijl/o | Kij(u)|ME&;jdu,

Cri€Nr(4,5)

Kij(u)|LEkidu

where t > 0,75 € . In view of the continuity of
pi(6), we can choose sufficiently small \ satisfying
a;j(t) > A > 0and o > 0 such that

—o > pi(A)
= (A= ay®)e O a0 g,
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(9 + a;;eeﬁﬂr) &ij

_ [o¢]
+7 Z CZIZZ / ’Kij (u)]Le)‘ufkldu
CueN.(ig) 70

+ > éfjl/ooo!ffij(U)!M&jdul

Cri€Nr(3,5)

+y Y /0 |Kij(u)| LeM Eydu

Cri€Nr(4,5)

+ Z CZZ /0 ’KZ](U)’MEUdU,

Cri€Nr(4,5)

where t > 0,45 € €.
Next, we define a Lyapunov functional as

Vij(8) = yi(t)e™, ij € Q. ®)
It follows from (7) that
V;/](t) = )‘Vij(t) a”( )e yw(

>, i /0 b Kij(u)

Cr1€Nr(i,5)
X fap(t —u))duzi(t) — > CH(t)
Cr1€Nr(4,5)

< [T K it — w))duay(0)|

0
= AVig(t) — ai (VS OVi (1) + agg ()X 0
x[Vij(t) = Vig(t — 75(t))]

k‘l
C / Kij(u
CMENT

x f(ap(t — U))dwz’j( )— >,

Cri€Nr(i,)
|7 @il - w)duaty(o)|
= V(1) = agy (D™ OV (1)

7ij ()

+

+

kl
ch()

+a;; (t)e)‘nj ®
t—’Tij (t)

k‘l
C / Kij(u
CMENT

x f(ap(t — U))dwz’j( ) —

Vij(s)ds

+

>, o

CHENr(i,j)
|7 @il - w)duaty(o)|
0
= AVij(t) = aij (D)X OVij(t) + ayg(t) X

) /tiﬁ'j(t) {M‘j () — aij(8)e™*yis (s = 7is(5))
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+

Ckl / Ky (u
CszNr

X f(zp(s — U))deL’ij(S) -

> Gl

Cri€Nr(4,5)

< [T Ky ws - w)duaiy <s>} e“}ds

k‘l
C / Kij(u
CMENT

x [zt — U))dmij( ) —

A

where ¢j € ().
Define a positive constant M as follows:

[Vij (s)[}-

+

> Gi®

Cri€Nr(4,5)

>>duw;}<t>] M, ©)

flap(t

M = max { sup
ST s$€(—00,0]

Let K be a positive number such that

Vij(t)| < M < K¢;jforall ¢ € (—o0,0],4j € Q.
(10)
We claim that

Vij(t)| < K&yforall t>0,ij €Q. (1)

Otherwise, there must exist 75 € €2 and ¢;; > 0 such
that one of the two cases occurs.

(1) Vij(tiz) = K&j, [Vii (t)| < K&ij,

(2) Vij(tij) = —K&;j, Vi (£)| < K&,

where t € [—o00,t;;),ij € (2.

We discuss the two cases.

Case 1. If (12) holds, then from (9) and (H1)-
(H3), we get

(12)
13)

0 < Vj(tis)

= AVij(tij) — (i)™ Vi (ti5)
ti;
—I—aij(tij)e’\ﬁj(tij)/ ’ {)\Vij(s)
tij—Tij (tiz)
—aig(s)eMyii(s = m(s)) + [ >0 CH(s)
Cri€Nr(4,5)
/ Kig(0) f(wpa(s — w)dusy (s)
Ckl / Kij(u) f(xg(s —u))du
CMENT
xxz‘j(s)}e)‘s}ds—i—{ Sy
Cr1E€Ny(i,5)
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/ Ky

kal t” ))duxw (t)

k:l
C tZ] / KZ]
CkLENr

il i = u))duazij@m] Mo
AVij(tig) = aiy(tiy) e 1) Vi (8i)
ti
aj(tig)e o) / J {/\Via‘(S)
tij—7ij(tij)

—ai()eMyy(s—mi(s) + | D Cll(s)
Cri€Nr(1,5)
<), Kt

- > CZZ(S)/OOOKM(U)

Cri€Nr(4,5)

X f(xy;(s — u))du%( )]e)‘s}ds

xkl S_U))duxm( )

+[ Mty / Kij(u

Cri€Nr(4,7)
Xf(xkl( ij — w))duzi;(t)

kl
- c (tij) / Kii(u
CMENT

il i = u))duxijw] Mo

AVij(tig) — agj(ti) ™ ) Vi (t5)

ag (ti)e ) / {/\Vij(s)
tij—ij(tij)

—aij(s)e™yij (s — 7ij(s))

+[ Ckl / Kij(u

Cri€Nr(i,9)
X f(xp(s —u))duxj(s)

B [ Ckl / K (u

Cri€Nr(4,5)

> e

Cri€Nr(4,5)

X f(y(s = w)duz(s) + [

7 Kt ials = w)duay(s)
- Y e [ Ky

Cri€Nr(4,5)
X f(xy(s — u))du:zw( )]eAS}ds
LD SRR (ChY Ay H
CriENr(1,5)
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X fap(tij—u))duz;;(t)— [ Z C’fjl(tij) and (H1)—(H3), using a similar argument as in case 1,
Cl€N-(3,5) we can show that (13) is not true. Thus (13) holds.
Consequently, we know that
| K ity = w)du 0
[ [Vij ()] = |yijle™ < K&, forallt > 0,5 € Q.
+ CH(t / Kij(u
Cri€Nr(i,5) Then
Xf('rkl( ij ))duxw ‘.%ij(t) — xij(t)] < K{ije_At,fOI‘ all t > 0,15 € Q.
— C’fl ) [ K :
() i This completes the proof of Lemma 3. O
CkleNr
Xf(xkl(tij — u))duz}; (tij)] eMis Remark 4 [f 2*(t) = {x};(t)} is the T-anti-periodic
M () solution of (1), it follows from Lemma 3 and the Defi-
< AVi(tig) — aig(tig)e” ™ Vi (i) nition 1 that x*(t) is globally exponentially stable.
tij
+a;; (tij)e)‘”j(tij)/ ’ {/\Vij(s) )
tij =i (tij) 3 Main results
+aieX O Vig (s — 7ij (5)) . .
o In this section,we present our main result that there
+y Z C’fjl / | Kij(u)] LeM exists the exponentially stable anti-periodic solution
Cri€Nr(i,5) 0 Of(l)
Akl
X| Vi (s — u)|du + Z B Cij Theorem 5 Assume that (H1)-(H3) are satisfied.
Cr€Nr(ing) Then (1) has exactly one T-anti-periodic solution
100 . x*(t). Moreover, this solution is globally exponen-
[ ol
- oo .
+y > ijl/ | K (u)| Proof. Letv(t) = (vi1(t),v12(t), ..., vmn(t)) isa
CrEN(i)) 0 solution of (1) with initial conditions
Au o ..
XL Via(s = w)ldu 0ij(5) = @l (5), [l ()] < 7.5 € (—00,0],ij € .
n Gkl / K MV () d (15)
2 "o B3 (| MV (5)ldu Thus according to Lemma 2, the solution v(t) is
Cri€Nr(i,5)
bounded and
(- )\Tz t;
= { (A = as(tig)eX™ 1)) & lvi;(t)] < v, forall t€ RijeQ.  (16)
(s + i
+aij(tij)e)\ﬂj(t”)fijTg ()\ i ajje’\Tij) & From (1), we obtain
Akl [ A (1) oy (¢ + (k+ )T
.. u
+ Z N Cij/o | Kij(w)|Le™ Eprdu — (-1 )k+1 S+ (k+1)T)
Cri€Nr(i,5) -
3ol [Tl = COR a4 s 1)
Cuengy 0 Y & v (t+ (k + 1)}5 —7ij(t+ (k+1)7T))
_ o0 — Cij(t+ (k+1)T)
iy ijl/ | Kj(u)| Le & du Ckzg\/:r (i)
Cri€Nr(i,5) 0
_ 00 / sz Ukl(t + (k + 1)T - u))du
Cuemiy) 70 wvi;(t+ (k + 1)T) + L (t + (k+1)T)}
which is a contradiction which implies (12) do not xvij(t+ (k+1)T — TZ]( )
hold. - Y i+ (k+1)T)
Case 2. If (13) holds, then, together with (9) Crit €N (1))
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< [T K f(-) e+ b+ )T
0

—u))dux (—1)" v (t 4+ (k +1)T)

where ij € Q. Thus (—1)**1v;; (¢ + (k+1)T) are the

solutions of (1) on R™*" for any natural number k.
Then, from Lemma 3, there exists a constant X > 0
such that

(=1 oyt + (k + DT) = (=1)Fvy(t + KT))|
= |’Ul'j(t + (k‘ + 1)T) + Uij(t + k‘T)|
= v (t + kT) — (—vij(t + kT + T)|

1 k
1)

Thus, for any natural number ¢, we have

S Ké-ije—)\(t-i-kT K{z] —)\t<

forall t + kT > 0,15 € Q. (18)

(—1)Q+1U1’j(t + (q + 1)T)

Dt + (k4 1)T)

= v;;(t) + Z
—(-1)F vw( +KT)]. (19)
In view of (18) and (19), we know that {(—1)%v(¢ +

¢T)} uniformly converges to a continuous function
z* (t) = (af{l(t% xTQ (t)v s 7$:11n(t))T on any com-
pact set of R™*™,

Now we show that x*(¢) is T-anti-periodic solu-
tion of (1). Firstly, z*(¢) is T-anti-periodic, since

(t+T) = qlLI&(—l)qv(t+T+qT)
T _1)a+l
= (q_i_lgri)oo( DTt + (¢ +1)T)
= —a*(b). (20)

In the sequel, we prove that 2*(¢) is a solution of (1).
Because of the continuity of the right-hand side of
(1), (17) implies that {((—1)7"v;;(t + (¢ + 1)T))'}
uniformly converges to a continuous function on any
compact subset of R. Thus, letting ¢ — oo, we can
easily obtain

i’?j(t) = —a;j(t)xy;(t — Tz‘j(t))

B Ckl / K (u

Ck:lENT (4,3)
xx;(t) + Lij(t),

where ij € Q. Therefore, x*(t) is a solution of (1).
Finally, by applying Lemma 3, it is easy to check that
x*(t) is globally exponentially stable. This completes
the proof. O

flag(t —u))du

2
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4 An example

In this section, we give an example to illustrate our
main results obtained in previous sections. Consider
the shunting inhibitory cellular neural network with
delays

i () = —ai;(t)wij (t — 735(t))
o0
e 1) / K (u) f (et — u))du
ClEN:(i.]) 0
xxij(t) + Lij(t), (22)
where
a1 a2 a3
a1 Qg as3
azr as2 as3
1+ |cost| 24 |cost| 3+ |cost|
= | 1+]cost| 2+ |cost| 3+ |cost| |,
1+ |cost| 2+ |cost| 34 |cost|
Ci1 Ci2 Ci3
Co1 O Ca3
C31 c32 Cs3
0.01|sint| 0.01|sint| 0.01]|sint|
= | 0.01|sint| 0.01|sint¢| 0.01|sint| |,
0.01|sint| 0.01|sint| 0.01]sint|
Li1w Li2 Li3
Loy Loy Los
L3y L3p Lss
0.05sint 0.05sint 0.05sint
= | 0.05sint 0.05sint 0.05sint
0.05sint 0.05sint 0.05sint

Setr = 1, f(z) = 55|sinz|, 7;;(t) = 0.02sin2t,
K;j(u) = e~ * cosu. Then

>oolen > lewl Y Iod
Cr€N1(1,1) Cri€N1(1,2) Cri€N1(1,3)
kl kl kl
Z |C31] Z (&5 Z |Ca3
Cri€EN1(2,1) Cri€N1(2,2) Cri€N1(2,3)
DN (€| B S ¢ TR W (@
L CrieN1(3,1) CrieN1(3,2) Cri€N1(3,3)
0.03|sint| 0.06|sint| 0.04]sint|
= | 0.06|sint| 0.09|sint| 0.04]sint|
0.06|sint| 0.04|sint| 0.04]sint|

and L/ = 0.05, M = 0.05, L;; = 0.05.
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Letn =1.9,§;; = 3,7 = 2. Then

by

Cri€Nr(4,5)

x [ )T+ £0) )y + 1
0

LD DR O R O e

Cri€Nr(i,7)
+FO) )y + L
< —=1x2+4(4x%x0.02)[4 x2+0.09 x 0.05
x2 +0.05] 4+ 0.09 x 0.05 x 2 4 0.05
= —1.29628 < 0

—agg(t)y + laij(t)|7i; (1) | a5y +

and
—aij(t)&ij+aij ()&% lafj&frv >, CcH
Cri€Ny(1,5)

« /O Ky (u)| Legdu+ Y CM

Cri€Nr(4,5)

2.

Cri€Nr(4,5)

« / K ()| MEssdu| + cH
0

X A |KU(U)’Lfkldu + Z C_'zl

CkZENr(i,j)
< —1x34(4%x0.02)[4 x3+2x0.09
x3 % 0.05 4 0.09 x 0.05 x 3] + 2 x 0.09

x0.05 x 34 0.09 x 0.05 x 3
= —1.99818 < —1.9 <0,

which implies that system (22) satisfies all the con-
ditions in Theorem 5. Thus, (22) has exactly one 7-
anti-periodic solution which is globally exponentially
stable. The fact is verified by the numerical simula-
tions in Figures 1-4.
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Figure 1: The time response of state variable x11 ()
of system (22)
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Figure 2: The time response of state variable x12(t)
of system (22)
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of system (22)

Volume 13, 2014



WSEAS TRANSACTIONS on MATHEMATICS

||| f
I
||| |

%0

o 10 20 30 40 50 B0 70 &0

Figure 4: The time response of state variable zo9(t)
of system (22)
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