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Abstract: Cuckoo search (CS) has been recently proposed as a population-based optimization algorithm and it is
has so far been successfully applied in a variety of fields. An efficient hybrid cuckoo search algorithm (HCSA)
based on Powell direct search method is proposed for solving constrained engineering design optimization prob-
lems. The inertia weight of Levy flights is introduced to balance the ability of global and local search. The Powell
local search technique is used to improve the best approximation found by the cuckoo search algorithm. The hy-
bridization of cuckoo search algorithm and Powell search method may provide a more effective trade-off between
exploitation and exploration of the search space. The proposed hybrid method is tested based on three widely used
benchmark constrained functions and three well-known constrained engineering design optimization problems,
which shows that HCSA is of better or competitive performances when compared with several existing algorithms.
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1 Introduction
Many real-world design optimization problems in en-
gineering are constrained optimization problems, such
as welded beam design [1], pressure vessel design [2],
and tension/compression spring design [3] and so on.
The general constrained optimization problem with
equality, inequality is defined as

min f(x⃗), x⃗ = (x1, x2, ..., xn)
s.t. gj(x⃗) = 0, j = 1, 2, ..., p,

gj(x⃗) ≤ 0, j = p+ 1, ...,m,
li ≤ xi ≤ ui, i = 1, 2, ..., n.

(1)

where f(x⃗)is an objective function, gj(x⃗) = 0 and
gj(x⃗) ≤ 0 are known as equality and inequality con-
straints, respectively. p is the number of equality con-
straints and m − p is the number of inequality con-
straints, li and ui are the lower bound and the upper
bound of xi, respectively.

The constrained optimization problem (1) is of-
ten highly nonlinear, involving many different de-
sign variables under complex constraints. Therefore,
classical gradient-based optimization approaches have
difficulties to handle problem (1). Compared
with gradient-based optimization approaches, modern
meta-heuristic algorithms are population-based global
search techniques, not sensitive to the characteris-
tics of the problems and easy to implement. Due

to these advantages, meta-heuristics algorithms have
been widely applied to solve constrained optimization
problems during the two last decades [4-6].

Cuckoo search (CS) algorithm has been recently
developed by Yang and Deb [7] as a meta-heuristics
population based optimization method. This algo-
rithm is based on the obligate brood parasitic behavior
of some cuckoo species in combination with the Levy
flight behavior of some birds and fruit flies. The pre-
liminary studies show that the CS algorithm is very
promising and could outperform existing algorithms
such as genetic algorithm (GA) and particle swarm
optimization (PSO) [7]. Moreover, CS algorithm has
shown good performance both on benchmark uncon-
strained functions and real-world problems [8-9].

Although the CS algorithm is good at exploring
the search space and locating the region of global
minimum, it is slow at exploiting the solutions [10].
Recently, hybridization of meta-heuristic search al-
gorithms with either deterministic or random local
search has appeared in the literature [11]. The hy-
bridization way provides a more effective trade-off
between exploitation and exploration of the search
space. To the best of our knowledge, the hybridiza-
tion of CS algorithm and Powell direct search method
has not been attempted yet. In this paper, an effective
hybrid CS algorithm based Powell search approach
is proposed to solve constrained numerical and engi-
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——————————————————
Algorithm 1. Cuckoo search algorithm
—————————————————-
Objective function f(−→x ), x = (x1, x2, · · · , xn)
Generation t = 1;
Initial a population of n host nests xi,(i =
1, 2, · · · , n);
While (t < Maximum Generation) or (stop criterion)

Get a cuckoo (say i) randomly by Lévy flights;
Evaluate fitness for cuckoo F ;
Choose a nest among n (say j) randomly;
If ( Fi > Fj) then
Replace j by the new solution;
End if
Abandon a faction (Pα ) of worse nests and build

new ones;
Keep the best solutions (or nests with quality so-

lutions)
Rank the solutions and find the current best;
Update the generation number t = T + 1 ;

End while
————————————————————–

Figure 1: Pseudo code of the cuckoo search algorithm.

neering design optimization problems. The proposed
algorithm is applied to three classical benchmark con-
strained functions and three benchmark problems in
engineering, reported in the specialized literature. The
performance of the proposed algorithm is further com-
pared with various approaches, state of the art repre-
sentatives in this area.

2 Cuckoo Search Algorithm
In CS algorithm, a potential solution corresponds to a
cuckoo egg. CS algorithm is introduced in three ide-
alized rules [7]: 1) Each cuckoo lays one egg at a time
and dumps it in a randomly chosen nest. 2) The best
nest with high quality of eggs (solutions) will carry
over to the next generation. 3) The number of avail-
able host nests is fixed, and a host can discover an
alien egg with a probability . If cuckoo egg is dis-
closed by the host, it may be thrown away, or the host
may abandon its own nest and commit it to the cuckoo
intruder.

Based on these three rules, the basic steps of CS
can be summarized as the pseudo code shown in Fig.
1.

When generating new solution for x⃗t+1, say
cuckoo i , a Levy flight is performed

x⃗t+1
i = x⃗ti + α⊕ Levy(λ) (2)

where α > 0 is the step size which should be re-
lated to the scales of the problem of interest. The
production ⊕ means entry-wise multiplications. Levy
flights essentially provide a random walk while their
random steps are drawn from a Levy distribution for
large steps

Levyu = t−λ (3)

where 1 ≤ λ ≤ 3. Here the consecutive jumps/steps
of a cuckoo essentially form a random walk process
which obeys a power-law step-length distribution with
a heavy tail.

3 Hybrid CS Algorithm
3.1 Inertia Weight

In general, in nature, the foraging path of an animal
is effectively a random walk because the next move
is based on the current location/state and the transi-
tion probability to the next location. Thus, in CS al-
gorithm, Levy flights are a random walk whose step
length is drawn from the Levy distribution. To bal-
ance the global and local ability of CS algorithm, in
this work, when generating new solution x⃗t+1 for, say
cuckoo i , a Levy flight integrating with the inertia
weight, witer , which controls the search ability is per-
formed

x⃗t+1
i = witer · x⃗ti + α⊕ Levy(λ) (4)

While introducing the concept of inertia weight witer,
Abdul-Rani et al. [12] observed that a reasonable
choice for witer should linearly decreased from a rel-
atively large value to a small value through the course
so that the CS algorithm had a better performance
compared with fixed witer settings. Technically, the
larger witer has greater global search ability whereas
the small witer has greater local search ability. In this
study, based on (4), the inertia weight witer as a non-
linear function of the present iteration number (iter) at
each time step. The proposed adaptation of witer is
given as [13]:

witer = winitial × u−iter (5)

where winitial is the initial inertia weight value se-
lected in the range [0,1] and u is a constant value in the
range [1.0001,1.005]. In the experiments conducted
in [13], u is set to 1.0002 and the performance of the
algorithm is evaluated for different values of winitial.
A larger inertia weight facilitates global exploration
and a smaller inertia weight tends to facilitate local
exploration to fine-tune the current search area.
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3.2 Powell search method

Powell’s search is an extension of basic pattern search
method. It is based on conjugate direction method and
is expected to speed up the convergence of nonlin-
ear objective functions. A conjugate direction method
minimizes a quadratic function in a finite number
function; it can be minimized in few steps using Pow-
ell’s method [14].

In Powell’s method [15], the initial step is to set
search coordinate directions.

Shg =

{
1, g = h
0, g ̸= h

(g, h = 1, 2, ..., n) (6)

A step length is randomly generated by implying
Eq. (7) to minimize function.

λ∗g = λmin
g + (λmax

g − λmin
g )rand (g = 1, 2, ..., n) (7)

The decision variable Xg is modified once along
the coordinate direction (h) as

Xg = Xg + λ∗gS
h
g (g = 1, 2, ..., n) (8)

Decision variable is updated only if the new value
of decision variable optimizes the objective function.
This process continues for all ”n” coordinate direc-
tions. For next cycle of optimization, pattern search
direction is obtained as

Shg = Xg − Zg (g, h = 1, 2, ..., n) (9)

In addition one of the coordinate directions dis-
carded in favor of the pattern direction as

Smg = Shg (g = 1, 2, ..., n ; h = n+ 1) (10)

This process continues until all the coordinate di-
rections have been discarded and whole procedure
will restart again along one of the coordinate direc-
tion. Finally, updating process continues until the
Powell’s method has been reached to maximum set
iterations.

The flow chart of the Powell’s search method is
shown in Fig.2.

3.3 Constraint Handling Method

It is necessary to note that cuckoo search algorithm
is unconstrained optimization methods that need addi-
tional mechanisms to deal with constraints when solv-
ing constrained optimization problems. Coello [16]
provided a comprehensive survey of the most popu-
lar constraint-handling techniques currently used with
evolutionary algorithms and grouped them into five
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Figure 2: Flow chart of the Powell’s search method.

categories: 1) penalty functions; 2) special represen-
tation and operators; 3) repair algorithms; 4) separate
objective and constraints; and 5) hybrid methods.

One of the most popular constraint handling tech-
niques used with meta-heuristics algorithms has been
Stochastic Ranking (SR) [4]. SR adopts a rank se-
lection mechanism that tries to balance the influence
of considering either the objective function value or
the degree of violation of the constraints (a parameter
called pf is adopted for this sake). Thus, the constraint
handling technique adopted in this work is the set of
SR proposed by Runarsson and Yao [4].

3.4 The Framework of Proposed algorithm

After explaining the main elements of hybrid CS algo-
rithm, the framework of HCSA is clearly illustrated as
follows. Firstly, randomly generation an initial popu-
lation of size from the decision space. In each genera-
tion, it exploits the property of CS algorithm, and then
Powell’s pattern search method has been used further
enhance the performance, by examining neighboring
solutions. The procedure is repeated to update the
population in every iteration. Detailed steps of the hy-
brid CS algorithm are given in the following:

Step 1: Randomly generate an initial population
from the decision space.
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Step 2: Run modified CS algorithm to generate
new solutions.

Step 3: Evaluate the population based on SR tech-
nique, rank the solutions and find the current best of
the CS population (best solution so far).

Step 4: Apply the Powell’s search method on the
current best to improve and update this solution.

Step 5: Check convergence condition. If not sat-
isfied, go to Step 2.

4 Experiments and Comparisons

In this section, the proposed method, HCSA is tested
on three classical constrained functions and its per-
formance is compared with the representative meta-
heuristics algorithms. Subsequently, it is applied to
three benchmark constrained engineering design opti-
mization problems.

For each testing problem, the parameters of the
HCSA are set as follows: population size N = 50,
α = 1, Pa = 0.25, winitial = 0.3, Pf = 0.45. For test
functions and engineering design problems, the max-
imum number of iterations is set to 3000 and 1000,
respectively. For each problem, 30 independent runs
are carried out.

4.1 Constrained Test Functions

In order to validate the performance of our proposed
approach, we adopted three standard test functions
form the specialized literature on evolutionary cons-
trained optimization [4].

4.1.1 The First Constrained Function

The first constrained function is a minimization prob-
lem with five design variables and six inequality con-
straints, and this function can be stated as

min
f1(x⃗) = 5.357854x23 + 0.8356891x1x5+
37.293239x1 − 40792.141

s.t.
g1(x⃗) = 85.334407 + 0.0056858x2x5+
0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5−
0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(x⃗) = 80.51249 + 0.0071317x2x5+
0.0029955x1x2 + 0.0021813x23 − 110 ≤ 0

g4(x⃗) = −80.51249− 0.0071317x2x5−
0.0029955x1x2 − 0.0021813x23 + 90 ≤ 0

g5(x⃗) = 9.300961 + 0.0047026x3x5+
0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(x⃗) = −9.300961− 0.0047026x3x5−
0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where 78 ≤ xi ≤ 102, 33 ≤ x2 ≤ 45, and 27 ≤ xi ≤
45(i = 3, 4, 5). The optimum solution is

x∗ = (78, 33, 29.9953, 45, 36.7758)

where the optimal objective function value f(x∗) =
−30665.539.

This function was previously solved using mine
blast algorithm (MBA) [17], particle swarm op-
timization (PSO) [17], differential evolution (DE)
[18], changing range genetic algorithm (CRGA) [19],
cultural algorithms with evolutionary programming
(CAEP) [20], harmony search (HS) [21], and genetic
algorithm (GA) [22]. The statistical results of opti-
mization for seven algorithms including HCSA are
shown in Table 1. Table 2 compares the results for
HS, GA and HCSA with optimal solution.

Table 1: Comparison of statistical results for various
optimizers for first constrained function.

Method Best Mean Worst St.dev
SR -

30665.539
-
30665.539

-
30665.539

2.00E-05

PSO -
30663.856

-
30570.929

-
30252.326

8.10E+01

MBA -
30665.539

-
30665.518

-
30665.330

5.08E-02

DE -
30665.539

-
30665.536

-
30665.509

5.07E-03

CRGA -
30665.520

-
30664.398

-
30660.313

1.60E+00

CAEP -
30665.500

-
30665.200

-
30662.500

9.30E+00

HCSA -
30665.539

-
30665.538

-
30665.537

1.65E-07

As shown in Table 1, with respect to PSO,
CRGA and CAEP, HCSA finds better ”best”, ”mean”,
”worst”, and ”standard deviation” values for first con-
strained function. Compare with MBA and DE,
HCSA provides similar ”best” results and better
”mean”, ”worst”, and ”standard deviation” values for
first constrained function. Figure 3 shows the function
values versus the number of iterations for first con-
strained function. By observing Fig. 3, HCSA con-
verged to near optimum point in the early iterations.

4.1.2 The Second Constrained Function

The second constrained function is a minimization
problem with seven design variables and four inequal-
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Table 2: Comparison of the best solution given by dif-
ferent algorithms for first constrained function.

HS GA HCSA

x1 78.0 80.39 78.000000
x2 33.0 35.07 33.000000
x3 29.995 32.05 29.995256
x4 45.0 40.33 45.000000
x5 36.776 33.34 36.775811
g1(x⃗) 4.34E-05 -0.343809 -2.29E-07
g2(x⃗) -92.000043 -91.656190 -92.000000
g3(x⃗) -11.15949 -10.463103 -11.159500
g4(x⃗) -8.840510 -9.536896 -8.840500
g5(x⃗) -5.000064 -4.974473 -5.000000
g6(x⃗) 6.49E-05 -0.025526 2.7798E-07
f(x⃗) -30665.500 -30005.700 -30665.539
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Figure 3: Function values versus number of iterations
for first constrained function.

ity constraints, and this function can be stated as small

min
f2(x⃗) = (x1 − 10)2 + 5(x2 − 12)2 + x43

+3(x4 − 11)2 + 10x65 + 7x26 + x47
−4x6x7 − 10x6 − 8x7

s.t.
g1(x⃗) = −127 + 2x21 + 3x42

+x3 + 4x24 + 5x5 ≤ 0
g2(x) = −282 + 7x1 + 3x2 + 10x23

+x4 − x5 ≤ 0
g3(x⃗) = −196 + 23x1 + x22 + 6x26

−8x7 ≤ 0
g4(x⃗) = 4x21 + x22 − 3x1x2

+2x23 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10(i = 1, 2, ..., 7). The optimum
solution is

x∗ =
(2.330499, 1.951372,−0.4775414, 4.365726,
−0.6244870, 1.038131, 1.594227)

where the optimal objective function value f(x∗) =
680.6300573.

This function was previously solved using SR,
PSO, MBA, DE, CRGA, and GA. The statistical op-
timization results for different algorithms are given in
Table 3. Table 4 compares the results for HS, MBA
and HCSA with optimal solution.

Table 3: Comparison of statistical results for various
optimizers for second constrained function.

Method Best Mean Worst St.dev

SR 680.630 680.656 680.763 3.40E-02
PSO 680.6346 680.9711 684.5290 8.10E-01
MBA 680.6322 680.6620 680.7882 3.30E-02
DE 680.144 680.503 680.771 6.71E-01
CRGA 680.726 681.347 682.965 5.70E-01
GA 680.6303 680.6381 680.6538 6.61E-03
HCSA 680.6300 680.6300 680.6300 4.59E-05

Table 4: Comparison of the best solution given by dif-
ferent algorithms for second constrained function.

MBA HS HCSA

x1 2.326585 2.323456 2.330493
x2 1.950973 1.951242 1.951380
x3 -0.497446 -0.448467 -0.477547
x4 4.367508 4.361919 4.365712
x5 -0.618578 -0.630075 -0.624490
x6 1.043839 1.038660 1.038155
x7 1.595928 1.605348 1.594233
g1(x⃗) 1.17E-04 0.208928 9.68E-05
g2(x⃗) -252.400363 -252.878859 -252.561695
g3(x⃗) -144.912069 -145.123347 -144.878051
g4(x⃗) 1.39E-04 -0.263414 -4.49E-05
f(x⃗) 680.6322202 680.6413574 680.6300

From Tables 3 and 4, compare with PSO, MBA,
DE, CRGA, and GA, HCSA reached better ”best”,
”mean”, ”worst”, and ”standard deviation” results
for second constrained function. With respect to
SR, HCSA provided similar ”best” values and better
”mean”, ”worst”, and ”standard deviation” results for
second constrained function. Figure 4 illustrates the
function values with respect to the number of itera-
tions for second constrained function. As shown in
Fig. 4, the HCSA algorithm reached close to the opti-
mum value in the early iterations of the algorithm.
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Figure 4: Function values versus number of iterations
for second constrained function.

4.1.3 The Third Constrained Function

The third constrained function is minimization prob-
lem with two design variables and one equality con-
straints, and this function can be stated as

min f3(x⃗) = x21 + (x2 − 1)2

s.t. h(x⃗) = x2 − x21 = 0
(11)

where −1 ≤ xi ≤ 1 (i = 1, 2). The optimum solu-
tion is x∗ = (−0.70721, 0.50000) where the optimal
objective function value f(x∗) = 0.749900.

For this minimization problem, HCSA is com-
pared with six optimizers: SR, PSO, MBA, DE,
CRGA, and cultured differential evolution (CDE)
[23]. The comparison of statistical results for third
constrained function is given in Table 5. Table 6 repre-
sents the comparisons between optimal solutions and
related design variables for three methods.

Table 5: Comparison of statistical results for various
optimizers for third constrained function.

Method Best Mean Worst St.dev

SR 0.750 0.750 0.750 8.00E-05
PSO 0.750000 0.860530 0.998823 8.40E-02
MBA 0.750000 0.750003 0.750011 3.29E-06
DE 0.74900 0.74900 0.74900 NA
CRGA 0.750 0.752 0.757 2.50E-03
CDE 0.749900 0.757995 0.796455 1.71E-02
HCSA 0.749900 0.750000 0.750000 9.98E-07

As can be seen from Tables 5 and 6, compare with
SR, HCSA found better ”best” and ”standard devia-
tion” results and similar ”mean” and ”worst” results
for third constrained function. With respect to PSO,

Table 6: Comparison of the best solution given by dif-
ferent algorithms for third constrained function.

MBA CDE HCSA

x1 -0.706958 -0.707036 -0.707210
x2 0.499790 0.500000 0.500240
h(x⃗) 8.82E-15 1.94E-04 9.40E-05
f(x⃗) 0.750000 0.749900 0.749900
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Figure 5: Function values versus number of iterations
for third constrained function.

MBA, and CRGA, HCSA provided similar ”best” re-
sults and better ”mean”, ”worst”, and ”standard devi-
ation” results for third constrained function. Compare
with CDE, HCSA reached similar ”best” results and
better ”mean”, ”worst” and ”standard deviation” val-
ues. Figure 5 depicts the function values versus the
number of iterations for the third constrained function.
By observing Fig. 5, HCSA reached the near optimal
solution in the early iterations of the algorithm.

4.2 Engineering Design Problems

4.2.1 Welded Beam Design

This design problem, which has been often used as a
benchmark problem, was firstly proposed by Coello
[1]. In this problem, the objective is to find the min-
imum fabricating cost of the welded beam subject to
constraints on shear stress (τ ), bending stress (σ) in
the beam, buckling load on the bar (Pb), end deflec-
tion of the beam (δ), and side constraints. There are
four design variables including x1(h), x2(l), x3(t) and
x4(b) as shown in Fig. 6.

The optimization approaches previously applied
to welded beam design problem include self adaptive
penalty approach (SAPA) [1], MBA, DE, CAEP, ge-
netic algorithms 2 (GA2) [24], and co-evolutionary
particle swarm optimization (CPSO) [25]. Table 7
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Figure 6: Welded beam design.

presents the results obtained by HCSA and other al-
gorithms. The comparison for the best solution given
by SAPA, CPSO and HCSA is shown in Table 8.

Table 7: Comparison of statistical results for various
optimizers for welded beam design problem.

Method Best Mean Worst St.dev

SAPA 1.748309 1.771973 1.785835 1.12E-02
MBA 1.724853 1.724853 1.724853 6.94E-19
DE 1.733461 1.768158 1.824105 2.21E-02
CAEP 1.724852 1.971809 3.179709 4.43E-01
GA2 1.728226 1.792654 1.993408 7.47E-02
CPSO 1.728024 1.748831 1.782143 1.29E-02
HCSA 1.728452 1.724852 1.724852 2.48E-16

As it can be seen in Tables 7 and 8, with re-
spect to MBA, HCSA found a little better result for
welded beam design problem. Compare with SAPA,
DE, GA2, and CPSO, HCSA provided better ”best”,
”mean”, ”worst”, and ”standard deviation” values.
Figure 7 shows the function values versus the number
of iterations for welded beam design problem.

4.2.2 Pressure Vessel Design

In the pressure vessel design problem, firstly proposed
by Sandgren [1], the objective is to minimize the total
cost, including the cost of the material, forming and
welding. There are four design variables (see Fig. 8):
x1(Ts), x2(Th), x3(R) and x4(L).

This problem has been used as a benchmark prob-
lem for testing differential optimization methods, such
as SAPA, cuckoo search (CS) [8], PSO, MBA, GA2,
and CPSO. The obtained statistical results by the con-
sidered approaches and HCSA are given in Table 9.
The comparison of best solution among several algo-
rithms is given in Table 10. From Tables 9 and 10,

Table 8: Comparison of the best solution given by
GA2, CPSO and HCSA for welded beam design prob-
lem.

GA2 CPSO HCSA

x1 2.326585 2.323456 2.330493
x2 1.950973 1.951242 1.951380
x3 -0.497446 -0.448467 -0.477547
x4 4.367508 4.361919 4.365712
g1(x⃗) 1.17E-04 0.208928 9.68E-05
g2(x⃗) -252.400363 -252.878859 -252.561695
g3(x⃗) -144.912069 -145.123347 -144.878051
g4(x⃗) 1.39E-04 -0.263414 -4.49E-05
g5(x⃗) -252.400363 -252.878859 -252.561695
g6(x⃗) -144.912069 -145.123347 -144.878051
g7(x⃗) 1.39E-04 -0.263414 -4.49E-05
f(x⃗) 1.728226 1.728024 1.724852
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Figure 7: Function values versus number of iterations
for welded beam design problem.
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Figure 8: Pressure vessel design.
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HCSA outperforms all other algorithms in terms of
best solution.

Table 9: Comparison of statistical results for various
optimizers for pressure vessel design problem.

Method Best Mean Worst St.dev

SAPA 6288.7445 6293.8432 6308.4970 7.4133
CS 6059.7143 6447.7360 6495.3470 502.69
MBA 5889.3216 6200.6476 6392.5062 160.34
PSO 6693.7212 8756.6803 14076.324 1492.57
GA2 6059.9463 6177.2533 6469.3220 130.93
CPSO 6061.0777 6147.1332 6363.8041 86.45
HCSA 5885.3328 5895.6407 5912.5280 13.20

Table 10: Comparison of the best solution given by
SAPA, CPSO and HCSA for welded beam design
problem.

SAPA CPSO HCSA

x1 0.8125 0.8125 0.7781686414
x2 0.4375 0.4375 0.3846491626
x3 40.3239 42.0913 40.319618724
x4 200.000 176.7465 200.00000000
g1(x⃗) -3.42E-02 -1.37E-06 1.1080E-13
g2(x⃗) -5.28E-02 -3.59E-04 -9.5479E-14
g3(x⃗) -304.4020 -118.7687 -1.9907E-08
g4(x⃗) -40.0000 -63.2535 -400.000000
f(x⃗) 6288.7455 6061.0777 5885.3328

Figure 9 shows the function values versus the
number of iterations for pressure vessel design prob-
lem. As shown in Fig. 9, HCSA converged to near
optimum solution at early iterations.

4.2.3 Tension/compression spring design

The tension/compression spring design problem is de-
scribed in Belegundu [3] for which the objective is to
minimize the weight of a tension/compression spring
design (see Fig. 10) subject to constraints on mini-
mum deflection, shear stress, surge frequency, limits
on outside diameter and on design variables. The de-
sign variables are the wire diameter d(x1), the mean
coil diameter D(x2) and the number of active coils
P (x3).

This problem has been solved using SAPA, MBA,
DE, CAEP, GA2, CPSO, and improved harmony
search (IHS) [26]. The comparison of the statistical
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Figure 9: Function values versus number of iterations
for pressure vessel design problem.
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Figure 10: Tension/compression spring design.

results by such algorithms is presented in Table 11.
The comparison of best solution obtained by HCSA
with previous methods is given in Table 12.

Table 11: Comparison of statistical results for various
optimizers for spring design problem.

Method Best Mean Worst St.dev

SAPA 0.012705 0.012769 0.012822 3.94E-05
MBA 0.012665 0.012713 0.012900 6.30E-05
DE 0.012670 0.012703 0.012790 2.70E-05
CAEP 0.012721 0.013568 0.015116 8.42E-04
GA2 0.012681 0.012742 0.012973 5.90E-05
CPSO 0.012675 0.012730 0.012924 5.20E-04
HCSA 0.012665 0.012677 0.012714 1.77E-05

As can be seen from Tables 11 and 12, compare
with SAPA, DE, CAEP, GA2, and CPSO, HCSA finds
better ”best”, ”mean”, ”worst”, and ”standard devi-
ation” results for tension/compression spring design
problem. With respect to MBA, HCSA provides sim-
ilar ”best” results and better ”mean”, ”worst”, and
”standard deviation” results. Figure 11 depicts the
function values with respect to the number of itera-
tions for tension/compression spring design problem.
By observing Fig. 11, the function values are reduced
to near optimum point at the early iterations.

Based on the aforementioned experimental and
comparison results validate that HCSA has the sub-
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Table 12: Comparison of the best solution given by
three algorithms for spring design problem.

IHS CPSO HCSA

x1 0.051728 0.05115438 0.051599189
x2 0.357644 0.34987116 0.354559500
x3 11.244543 12.0764321 11.41663523
g1(x⃗) -8.25E-04 -0.0521995 -6.6481E-07
g2(x⃗) -5.28E-02 -3.59E-04 -1.5521E-08
g3(x⃗) -4.051306 -3.860150 -4.04949845
g4(x⃗) -0.727085 -0.7326496 -0.72922754
f(x⃗) 0.012675 0.012887 0.012665
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Figure 11: Function values versus number of itera-
tions for spring design problem.

stantial capability in handling various constrained nu-
merical and engineering design problems and its so-
lution quality is quite stable. So, it can be concluded
that HCSA is a good alternative for constrained opti-
mization.

5 Conclusion
In this paper, an effective hybrid cuckoo search algo-
rithm based on Powell’s search is proposed to solve
constrained numerical and engineering design prob-
lems. The performance of the proposed algorithm has
been investigated by a number of experimental stud-
ies. The obtained results show that the proposed algo-
rithm generally offers better solutions than other opti-
mizers considered in this research in terms of objec-
tive function values for some problem and the number
of iterations for almost every problem.
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