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Abstract: In this paper, we are concerned with seeking exact solutions for fractional differential-difference equa-
tions by an extended Riccati sub-ODE method. The fractional derivative is defined in the sense of the modified
Riemann-liouville derivative. By a combination of this method and a fractional complex transformation, the it-
erative relations from indices n to n &= 1 are established. As for applications, we apply this method to solve the
two-component fractional Volterra lattice equations and the fractional m-KdV lattice equation. Some new exact
solutions for the two fractional differential-difference equations are obtained.
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1 Introduction

Nonlinear differential equations (NLDEs) and nonlin-
ear differential-difference equations (NLDDEs) can
find their applications in many aspects of mathemati-
cal physics. In the last decades, research on seeking
exact solutions for NLDEs and NLDDEs has been a
hot topic, and many effective methods have been pre-
sented so far (see [1-28] and the references therein).
Among these investigations, we notice that little atten-
tion is paid to fractional differential-difference equa-
tions (FDDEs).

In this paper, we extend the Riccati sub-ODE
method to seek exact solutions for FDDEs. The frac-
tional derivative is defined in the sense of modified
Riemann-liouville derivative [29-33] as follows.

Ty ot = 7 (F(©) — F(0))de,
0<y<l,
(fMENO™ n<y<n+1,n>1.

Based on a fractional complex transformation, a
given fractional differential-difference equation can
be turned into another differential-difference equation
of integer order, and the iterative relations of which
from indices n to n £ 1 are also established. By this
approach, we will solve two fractional differential-
difference equations: the two-component fractional

Dif(t) =
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Volterra lattice equations

{ Dgun = un(vn - Un—l)y (1)
ngn = Un(un+1 - Un)a

and the following fractional m-KdV lattice equation

Dgun = (05 - U%)(“n+1 - Unfl)a ()
where 0 < v < 1, up, = up(t), vy, = vy(t), n €
Z, and D] denotes the modified Riemann-liouville
derivative of order v with respect to the variable ¢.

When v = 1, Egs. (1) become the known two-
component Volterra lattice equations [34], while Eq.
(2) becomes the m-KdV lattice equation [34].

The following properties for the modified
Riemann-Liouville are known to us (see [30-33]):

Var F(l + T) r—
Dt =iyt " )
Di(f(t)g(t)) = g(t) D} f(t) + f(t) D] g(t), (4)

D] flg(t)] = felg()]D{ g(t) = Dy [g(t)](g’(t))zé)
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2 Description of the extended Ric-
cati sub-ODE method for frac-
tional differential-difference equa-
tions

The main steps of the extended Riccati sub-ODE

method for solving fractional differential-difference

equations are summarized as follows:

Step 1. Consider a fractional differential differ-
ence equation in the form

P(unip, (), ...,

D’Yun-‘rpk (.%‘), DQvun-‘rm (.%‘), )

Untpg (T);5 oo, DV Upgpy (), ..,

D uy, iy, (7),...) =0,

(6)
where the dependent variable u has M components u;,
the continuous variable x has N components z;, the
discrete variable n has () components n;, the k shift
vectors p, € Z has @) components Dsj» D7 denotes
the collection of mixed derivative terms of order k-,
and the order of the derivatives with respect to every
x; are integer multiples of .

Step 2. Using a fractional complex transfor-
v

mation X; = and letting w4y, () =

L)
I'(1+4+7)
Un+p, (X), Eq. (6) can be turned into

Pl (X), et U (), o Ul (X,

Up iy (X), Ul (X), oo, Ul (X)) = 0, (D)

Step 2. Using a wave transformation

Q N
Un+ps (X) = Uners (gn)a én = Zdz’nﬁ'z Cij‘|‘Ca
i=1 j=1

where d;, c;, ( are all constants, we can rewrite Eq.
(7) in the following form

ﬁ(ﬁn-kpl (gn)v e (7”+pk (§N)7 - n+p1 (gn)

0\, (), ffﬁi)pk (€2)) =0. (8)

Step 3: Suppose the solutions of Eq. (8) can be
denoted by

n+pk (gn)

l
= aid' (&), ©)
i=0
where a; are constants to be determined later, [ is a
positive integer that can be determined by balancing
the highest order linear term with the nonlinear terms
in Eq. (8), ¢(&,) satisfies the known Riccati equation:

¢ (&) = 0+ ¢*(&n). (10)
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Step 4: We present some special solutions
1, ..., ¢ for Eq. (10):
When o < 0:
¢1(&,) = —/—0o tanh(v/—c&,, + co),
$2(€n) = —v/—0 coth(v/ =0 + co),
Q
$1,2(6n) — \/TUtanh(\/TUZ dipsi)
¢1,2(§n+ps) = Qi:1
1-— ¢i’/2£7in) tanh(ﬁ;dipsi)
(11)
where cg is an arbitrary constant.
When o > 0:
$3(6n) = Vo tan(y/o&, + co),
¢4(£n) = _\/ECOt(\/Egn + CO)v o
3,4(6n) + VO tan(vo Y dipsi)
$3,4(Entp.) = o :
1= 298 vy Zdzpm
(12)
and
¢5(6n) = Voltan(2y/0&n + co) + | SeC(SﬁEn + co)ll;
68 (n) + Vo tan(2v7 Y dipa)
05 (Entp,) = ) o
1- J@”) tan(2y/o Zdzpsz
&) () sec(2v/o Z dipsi)
Uy &
1- =t 2 dz s
NG tan( \/5;1 Psi)
(13)
where 65(6) = v/atan(2y/a&, + co), 657 (6n) =

Volsec(2y/c&, + cp)|, and ¢ is an arbitrary constant.

When o = 0:

96(6n) =~

Po(nip,) = ——2olenl
1= ¢6(€a) Y dipsi

i=1

(14)

where cg is an arbitrary constant.
Step 5: Substituting (9) into Eq. (8), by use of
Egs. (10)-(14), the left hand side of Eq. (8) can be
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converted into a polynomial in ¢(&,,). Equating each
coefficient of ¢'(&,) to zero, yields a set of algebraic
equations. Solving these equations, we can obtain the
values of a;, d;, c;j.

Step 6: Substituting the values of a; into (9), and
combining with the various solutions of Eq. (10), we
can obtain a variety of exact solutions for Eq. (6).

3 Application of the extended Ric-
cati sub-ODE method to the two-
component Volterra lattice equa-
tions

In this section, we apply the extended Riccati sub-

ODE method described in Section 2 to solve the two-
component Volterra lattice equations denoted by Eqgs.

(1).

Using a fractional complex transformation 7' =
2 .
71*(12— ~E and letting wy,4p, (t) = Upyp, (1), ps =

0,=£1, by (3) we have D?T = 1, and furthermore, by
the first equality in (5), Egs. (1) can be turned into

{ Un(T) = Un(T)Va(T) = Var (T)], 1)

Vé = Vn(T) [UnJrl(T) - Un(T)]a
Letting

Un(T) = ﬁn(En)v Vn(T) = ‘771(571)7
fn :d1n+ClT+C, (16)

where dy, c1, ¢ are all constants, Egqs. (15) can be
rewritten as the following form:

{ 104 (6n) = Un(€) Vi (€n) = Vi1 (€n 1)),

C].qui(g ) (gn)[ n+1(§n+1) Un gn)],
7)
Suppose the solutions for (17) can be denoted by
Iy
n) = aid (&), (18)
i=0
lo )
n) = Z bid' (¢n), (19)

where ¢(&,) satisfies Eq. (10). In Eqgs. (17), by bal-
ancing the order of U ! and U Vn, the order of V’ and
VnUn, we obtain [; = [y = 1. So we have

Up(&n) = ao + a10(&n). (20)
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Vi(€n) = bo + b19(Ey). Q1)

We will proceed to solve Eqgs. (17) in several
cases.

Case 1: If ¢ < 0, and assume (10) and (11) hold,
then substituting (20), (21), (10) and (11) into Egs.
(17), collecting the coefficients of ¢ ,(&,) and equat-
ing them to zero, we obtain a series of algebra equa-
tions. Solving these equations, yields

W= gy = — AV TT
PR tanh(v/—od;)’

by=cy, bp=——Y 2

Pt tanh(yv/—od;)’

dy =di, a1 =c,
or

o tanh(v/—ody) " —a
1 \/_70_ ) 0 0
b — _ag tanh(v/—ody) b — ay
\/jo' Y J
o = _ag tanh(v—ody) di — dy
= = L dy =dy.

So we obtain the following four groups of solitary
wave solutions:

( Un(t) = tanlfll(\/\/?d )

o cit?
+c1v/—0o tanh[y/—o(din + m + () + col,
’Un(t) = tanlcll(\/\/?d )

oo cit”
—clﬁtanh[ﬁ(dln + m + C) + 00]7

(22)
____av—o
un?) ~ tanh(v/—od,)
V=0 - _at?
+c1v/—o coth[y/—o(din + (1 +7) +¢) + <o),
Up(t) = ——ENV T __
" ~ tanh(v/—od;) .,
e /= = _at’
c1v/—o coth[\/—o(din + (1 +7) +¢) + <o),
(23)
where dy, c1, cg are arbitrary constants, and
[ u,(t) = ap — ap tanh(y/—ad) x
— _agtanh(v/ —ody)t”
tanh[\/—o(din V=0T 1 ) + () + col,
vn(t) = ag + ag tanh(y/—ody) x
h(v/—ody)t?
tanhlv/—o(din — 20 tan VL 6+ el
S v sy
(24)
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Fig. 1 The solitary wave solution un( t) in (22) with y=
4/5, 0 =1, £=0, COZO, ¢ = 1, d1 =1

(un(t) = ap — ap tanh(y/—ody)x
ag tanh(y/—ody )t
coth[v/—o(din — Of/_—il(r\(/:?))t +¢) + o),
vn(t) = ap + ag tanh(y/—ody) x
ag tanh(y/—ody )t
\ coth[v/—o(dyn — Of/_—il(r\(/:?))t +¢) + o),

(25
where dy, cg, ag are arbitrary constants.

In Figs 1-2, the solitary wave solutions (22) with
some special parameters are demonstrated.

Case 2: If o > 0, and assume (10) and (12) hold,
then substituting (20), (21), (10) and (12) into Egs.
(17), collecting the coefficients of gf)g, 4(&,) and equat-
ing them to zero, we obtain a series of algebra equa-
tions. Solving these equations, yields

1 — 1,00 — tan(\/gdl)7 1 — C1,
Cl\/(;
bo = T =i\ dy =d ) = €1,
*T Ttan(vedy) T TA
or
ap tan(y/ody) ap tan(y/ody)
ay = ————=—, ap = aop, bl = T =
Vo Vo
t d
bo = ap, C1 = —w\/%/gl), d1 = dl.
E-ISSN: 2224-2880 195
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Fig. 2 The solitary wave solution vn(t) in (22) with y=
4/5, 0 =1, £=0, COZO, ¢ = 1, d1 =1

So we obtain the following periodic wave solutions:

( un(t) = _tanc(l\/\/gdl)
. Cllf7
cl\/Etan[\/E(dln + —F(l ¥ 7) + C) + 00]7
) = Ay
1 _at’
+c14/o tan[y/o(din + T +7) +¢) + o],

(26)

U (t) = __avo
" tan(v/od;) ,
e1v/T cot]/a(din + F(il—fw) +¢) + <o),
vn(t) = __avo
tan(\/gdl) .
\ —c1/o cot[\/o(din + F(il—i,y) +¢) + col,

(27)
where dy, c1, cg are arbitrary constants, and

up(t) = ag + ap tan(y/od;) x

ag tan(y/odp)t?
tan[y/o(din — 0\/51“(1 n ,ly) + () + col,
vn(t) = ag — ag tan(y/ody) x

\ tan[y/o(din — aoj%?((\l/id}y))ﬂ +¢) + col,
(28)
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Fig. 3 The periodic wave solution u”(t) in (26) with y=1/2,6=1, (=0,
cOZO, = 1, dl =1

un(t) = ap — ap tan(y/ody) x .
cotly/a(din — NI 1 () 4]
vn(t) = ap + ap tan(y/ody) x .
corly/a(din — NI 1 () 4]

(29)
where d1, cg, ag are arbitrary constants.
In Figs 3-4, the periodic wave solutions (26) with
some special parameters are demonstrated.

Case 3: If o > 0, and assume (10) and (13) hold,
then substituting (20), (21), (10) and (13) into Egs.

(17, using 657 (€02 = o + [65" (&))"
the coefficients of [ () (&))" [ (fn)]J and equating

them to zero, we obtaln a series of algebra equations.
Solving these equations, we get that

collecting

a; = —ci1, ag =0, by = ¢y,
T
bp=0, d, = ——, c1 = ¢y,
0 1 N 1 1
or

a; = —c1, ap = by, by = c1,

1 2¢1bg\/0
bo = by, di = arcsin , C1 = C1.
0 0, T 2V o (= —i—cla) “ !

So we obtain the following trigonometric function so-
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Fig. 4 The periodic wave solution vn( t) in (26) with y=1/2,6=1, (=0,

cOZO, 01:1,(11:1

lutions:
ua(t) = 1o {tan2y/o(5 o + F(?fv) +0)
eo] | secl2y/T(5T=n + i + O+ eoll),
0a(t) = erv/a{tan(2y/a (5 o + F(?fv) +¢)
o]+ [sec[2y/7 (5= + Sy + ) + ol
where ¢1, co are an arbitrary constants, and .
ua(t) = —e1 /& {tan[2y/7 (5 avcsin(~ zg’ljoc\l/; n
+F<1+ 7 +¢) + col
+]secl2y/7( L aresin - iglioclfa n
+F(§1757) +) + coll} + bo,
onlt) = e ﬁ{tan[Qf( 5z arcsin(— zzlfoclfa n
+F(1 Jw) +¢) + co]
+] sec[24/a( \15 arcsin(— zgljioc\lc)
*r(?i 5+ O+ call} +bo.
(31)

where c1, by, cg are an arbitrary constants.

Case 4: If o = 0, and assume (10) and (14) hold,
then substituting (20), (21), (10) and (14) into Egs.
(17), collecting the coefficients of dé(fn) and equat-
ing them to zero, we obtain a series of algebra equa-
tions. Solving these equations, yields

_d1b07
—d1by.

a1 = dibg, ag = by, b1 =

bo = by, di =d1, c1 =
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Then we obtain the following rational solutions:

un(t) = 4 d1bot” Lot + b,
1 (&)

Un(t) = . 9 + bo,
dim dlbot tite

where dy, by, cg are an arbitrary constants.

Remark 1 In [34, Egs. (46), (47), (51), (52)], Ayhan
and Bekir presented some exact solutions for the two-
component Volterra lattice equations by the (G’/G)-
expansion method. We note that our results (22), (23)
are generalizations of [34, Eqs. (46), (47)], while
(26), (27) are generalizations of [34, Egs. (51), (52)].
In fact, if we let

dp — N2
v=1, co—arth(gi) o= ,u4
or
C Ap — N
v =1, Co—C””COth(C;) o= M4 ,

then our results (22), (23) reduce to [34, Eq. (46),
(47)]. If we let

Cs 4y — N2
v =1, ¢y = arctan( C1> o 1
or
1 4,u - )\2
vy , co = arccot( C’g)’ o T

then our results (26), (27) reduce to [34, Eq. (51),
(52)].

Remark 2 The established results by (30-32) are new
exact solutions for the two-component Volterra lattice
equations so far to our best knowledge.

4 Application of the extended Riccati
sub-ODE method to the fractional
m-KdV lattice equation

In this section, we apply the extended Riccati sub-
ODE method to solve the fractional m-KdV lattice
equation denoted by Eq. (2).
Using a fractional complex transformation 7' =
v .
71‘(1t+ ~E and letting wy,4p, (t) = Upyp, (1), ps =

0,=£1, by (3) we have D?T = 1, and furthermore, by
the first equality in (5), Eq. (2) can be turned into

E-ISSN: 2224-2880
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UL(T) = [o = Up(T)][Uns1(T) = Up—1(T)]. (33)
Letting
Un(T) = Un(&n); &n =din+ T+, (34)

where di, ¢, ¢ are all constants, Eq. (33) can be
rewritten in the following form:

Clﬁrlb(fn) (a— U ,(€n))( n+1(§n+1) Un—l(fn—l)) =0.

_ (35
Suppose the solutions U, (&,) for Eq. (3.3) can be
denoted by

(36)

l
n) = aid (&),
=0
where ¢(&,,) satisfies Eq. (10). By balancing the high-

est order linear term with the nonlinear terms in Eq.
(35) we obtain [ + 1 = 2/, and then ! = 1. So we have

ﬁn(‘fn) =ap + a1¢(§n)

We will proceed to solve Eq. (35) in several cases.

(37

Case 1: If ¢ < 0, and assume (10) and (11) hold,
then substituting (37), (10) and (11) into Eq. (35),
collecting the coefficients of qﬁﬁ’Q(En) and equating
them to zero, we obtain a series of algebraic equa-
tions. Solving these equations, yields

a] = j:\/ftanh(\/—adl), ag =0,

\/2% tanh(yv/—ody).

So we obtain the following solitary wave solutions:

un(t) = £v/atanh(v/—od;)

dy =dyi, c1 =

tarlh[r(d1n+ tanh(rdl)

+C)+COL
(38)

e T

and

un(t) = £v/atanh(v/—ody)

coth[F(dm—&- tanh(v/—ody) =———+()+col,

(39)

= i
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where d;, cg are arbitrary constants.

Case 2: If 0 > 0, and assume (10) and (12)
hold, then substituting (37), (10) and (12) into Eq.
(35), collecting the coefficients of gbé’ 4(&,) and equat-
ing them to zero, we obtain a series of algebraic equa-
tions. Solving these equations, yields

a] = :I:\/Etan(ﬁdl), agp =0,

\2/(; tan(y/ody).

Then we have the following periodic wave solutions:

un(t) = £v/atan(y/ody)

dy =dyi, c1 =

2a tY
tan[ﬁ(dln—i—\ﬁtan(ﬁdl)m—k()—i—co], (40)
and
un(t) = :l:\/atan(\/gdl)
cot[f(danr\ftan(\fdl) 1+ >+C)+co], 41)

where dy, cg are arbitrary constants.

In [34, Eqgs. (32) and (36)], Ayhan and Bekir pre-
sented some exact solutions for m-KdV lattice equa-
tion by the (G’/G)-expansion method as follows:

2

—4

up = /o tanh( 1) %

34 324
ol sinh(@{n) 1+ COSh(Qﬁn)
(

)s
cy cosh(@fn) + s Sinh(@fn))

(42)
where &, = din+ da tanh (Y /\2_4Md1)t+g,
VA — 4y ?
and
dp — N2
Up, = i\/&tan(fdl)x
Ap — N2 A — A2
-y sin(ﬂTgn) + Cs COS(M#&L) )
NZESY 4 — N2 ’
4 cos('u#gn) + Cy Sin(%én))
43)
where &, = din + da > tan (X 4’;_A2 di)t+ .

We note that our results (38) and (40) are solu-
tions of more general forms than Eqs. (42) and (43).

In fact, if we let v = 1, ¢ = arth(%), o =

E-ISSN: 2224-2880 198
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2 2
% orvy = ]_, co = arcoth(%)’ o= %A’
then our result (38) reduces to (42). If we let v =

1, co= arctan(—%), o= T A ory=1, ¢y =

Oy AN ]
arccot( 02) = —F——, then our result (40) re
duces to (43).

Case 3: If 0 > 0, and assume (10) and (13) hold,
then substituting (37), (10) and (13) into Eq. (35), us-
ing [0 (£2)]2 = o + [65" (£4)]2. collecting the coef-
ficients of [ (£,)) (6 (¢,))7 and equating them to
zero, we obtain a series of algebraic equations. Solv-
ing these equations, we get three families of values as

follows:
ap = + ga ag = 07
V o
d T 2c
=——¢C )
et e
a1 = + g, ag = 0,
o
d T 2c
= y C1 = ——,
YTae T e
or
\/Qa — asin?(2v/ody) — 2 cos(2v/ody)
“= Vosin(2y/ody) ’
2a(cos(2v/ody) — 1)

dlzdlv CLO:O) 1= —

Vosin(2y/ody)

So we obtain the following trigonometric function so-
lutions:

20"

() = aftanf2y/7([Ton + 2 Q)

20"
+co]+|sec[2f(4f \fI‘((ylt—i— )+C)+COH},
(44)

20t

() = £aftanf2y/o(~ T =~ )

2
+co]+] sec[2v/a(— 4f fﬁ?lt—i- )+<)+COH}7
(45)

where cg is an arbitrary constant, and
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- \/204 — asin?(2y/od;) — 2acos(2v/ody)

un( sin(2ﬁd1)
2a(cos(2y/ady) — 1)tY
{tan[2y/o(d1n — Vo sin@ved T+ ) +¢) + co]
2a(cos(2v/ody) — 1)t”
+|sec[2v/o(din — Vo sn(2v/ad T+ ) +Q)+ Cﬂ;

where dy, cg are arbitrary constants.

Case 4: If 0 = 0, and assume (10) and (14) hold,
then substituting (37), (10) and (14) into Eq. (35), col-
lecting the coefficients of ¢}(&,,) and equating them to
zero, we obtain a series of algebraic equations. Solv-
ing these equations, yields

ap = i\/adl, ag = 0, d1 = dl, C1 = 2d10¢.
Then we obtain the following rational solution:
++v/ady

26110475’y + C + ’
P E— C
L(1+7) 0

un(t) = (47)

din +

where dy, cg are arbitrary constants.

Remark 3 Our results (44)-(47) have not been re-
ported by other authors so far to our best knowledge.

5 Conclusions

The Riccati sub-ODE method is extended to seek
exact solutions for fractional differential-difference
equations. By this method, we solved the two-
component fractional Volterra lattice equations and
the fractional m-KdV lattice equation successfully,
and as a result, some generalized exact solutions in-
cluding solitary wave solutions, periodic wave solu-
tions and rational function solutions for them have
been found with the aid of mathematical software. Be-
ing concise and effective, we note that this approach
can be applied to solve other fractional differential-
difference equations.
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