WSEAS TRANSACTIONS on MATHEMATICS

Rita Choudhury, Bandita Das

Three dimensional visco-elastic flow with heat and mass transfer
past a vertical porous plate in presence of variable suction

RITA CHOUDHURY
Gauhati University
Department of Mathematics
Guwahati,Assam
INDIA
rchoudhury66 @yahoo.in

BANDITA DAS
Gauhati University
Departmaent of Mathematics
Guwahati,Assam
INDIA
banditadas1234 @ gmail.com

Abstract: An analysis is carried out to study the unsteady three -dimensional flow of a visco-elastic fluid past a
vertical porous plate in presence of variable suction .The effects of heat and mass transfer are taken into account
.The fluid is characterized by Rivlin-Ericksen second - order fluid model .The analytical expressions for the velocity
stemperature and species concentration have been obtained .The non -dimensional shearing stress, rate of heat
transfer in terms of Nusselt number and the rate of mass transfer in terms of Sherwood number at the plate have
been demonstrated graphically in possible cases. It is found that the flow field is significantly affected by the
visco-elastic parameter in combination with other flow parameters.
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1 Introduction

In recent years, progress has been considerably made
in the study of heat and mass transfer in visco-elastic
fluid flows because of its possible applications in di-
verse fields of science and technology such as Soil
sciences, Astrophysics, Geophysics, Nuclear power-
reactor etc. The effects of different arrangements and
configurations of the suction holes and slits on the
drag have been discussed by various scholars. Hy-
dromagnetic effects on three dimensional flow past a
porous plate has been discussed by Singh [1]. Singh
[2] has also studied the three -dimensional viscous
flow and heat transfer along a porous plate. Later,
this idea has been extended by applying fluctuating
flow and heat transfer along a plate with suction by
Singh et al.[3]. Singh et al.[4] have also analyzed the
three dimensional free convective flow and heat trans-
fer along a porous plate. Guria et al. [5] have studied
the hydromagnetic effect on three dimensional flow
past a vertical porous plate. Three dimensional free
convective Couette flow with transpiration cooling has
been studied by Jain et al.[6]. Ahmed et al.[7] have in-
vestigated three dimensional free convective flow and
mass transfer along a porous plate. The application of
non-Newtonian fluid flow mechanism in modern tech-
nology and industries have attracted the researchers
in a large scale. Authors like Vajravelu et al. [8],
Hayat et al. [9], Rajagopal et al. [10], Soundalgekar et
al.[11], Choudhury et al. [12-17] etc. have contributed
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their efforts in this line for analyzing the characteris-
tics of visco-elastic fluid flows. Visco-elastic MHD
free convective flow past a semi infinite porous plate
with variable suction is a study which has many appli-
cations such as purification of crude oil in petroleum
industries, polymer technology, arodynamic heating
and accelaterators. Meteorologius can use this study
to understand dynamics of meteorology and air pol-
lution. In the light of above fact, this study will be
useful to welfare of mankind. The objective of this pa-
per is to analyze the visco-elastic effects of buoyancy
forces and time dependent periodic suction on three-
dimensional flow past a vertical porous plate. The
visco-elastic fluid is characterized by Rivlin-Ericksen
second-order fluid model. The constitutive equation
for the second-order fluid is taken in the form

o = —pl + Ay + p2As + ps(Ar)* (1)

where o is the stress tensor, A,, are the kinematic
Rivlin-Ericksen tensors; 1 ,uo, ps are the mate-
rial coefficients describing the viscosity, elasticity and
cross-viscosity respectively. From thermodynamic
consideration, it is noticed that the material coeffi-
cients p; andus are positive and pg is negative [Cole-
man and Markovitz [16]]. The equation (1) was de-
rived by Coleman and Noll [18] from that of simple
fluids by assuming that stress is more sensitive to the
recent deformation than to the deformation that oc-
curred in the distant past. It is reported that solu-
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where p is the density, p is the fluid pressure, g is the
acceleration due to gravity , (3, is the coefficient of
thermal expansion, [3,, is the coefficient of mass ex-
pansion, k is the coefficient of heat conduction , C,
is the specific heat at constant pressure, 7' is the fluid
temperature, C'is the fluid concentration and v; = &
where 1=1,2,3 .

2

The boundary conditions are:

y=0:u=0,
v=—-W[l+ cos(ﬂuooz —ct)]
%1
w=0,T="T, C=C,
Y — 00 U= Uso,
v ="V, w = 0,P = Poo,
TZTOO, = Cx ©)

We now introduce the following dimensionless quan-
tities:

Ul Uoo - D
Yy = ) :77t_6t7p_727

v 131 Pl

a 7 o , T-Tx
uw= —,01v= — w = — =

Uso Uso Uoo Ty —Ts'’

Cyw — Coo ud,
Gr — Q/BT(Tw - oo) Ccr1

u3, ’ u)’
v1C v

P=2"2 5.=% (10)

where Gm is the Grashof number for mass transfer,
Gr is the Grashof number for heat transfer, w is the
frequency parameter, Pr is the Prandtl number, Sc
is the Schmidt number, T, is the temperature at the
plate, T is the temperature outside the boundary
layer, C), is the concentration at the plate, C' is the
concentration outside the boundary layer.
Substituting (10) into the equations (2)-(8) we obtain
the following dimensionless equations:

ov Ow
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where o; = Vzlj‘l‘”, B = % are visco-elastic pa-
rameters.

The modified boundary conditions are

y=0: u=0w=0,0=1,C=1
v=—S[l+ecos(mz —t)],
y—oo:u=1,w=0,0=0, C=0,
v=-5, a7

where S = IY—O is the suction parameter.
o0

3 Method of Solution

We assume the solutions of (11) to (16) to be of the
forms

u(w,y) = uo(y) +eur(y, z,t) +o(e?)  (18)
v(z,y) = vo(y) + ev1(y, 2, t) + o(e?) (19)
w(z,y) = woly) +ewi(y, 2,t) + o(e®)  (20)
p(a,y) = po(y) +epily, z,t) +o(e?) (21

O0(z,y) = Oo(y) +ebi(y, z,t) +0(c?)  (22)
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C(z,y) = Co(y) +eCi(y, 2,t) +o(e*)  (23)

Substituting these in the equations (11) to (16) and
equating the coefficients of like powers of ¢ and ne-
glecting €2 and higher powers, we get the following
differential equations:

Zeroth-Order equations

vh =0 (24)

ajvoug + ug” — voug’ + Gréy + GmCy =0 (25)

po — (4a1 + 2B1)ug'up” =0 (26)
96’ — vopr% =0 27
Cy —v9ScCi =0 (28)

The relevant boundary conditions are:

y:O:uon,voz—S,H():O,Co:O
y—oo:tug=1lvyg=-560=0,Co=0 (29)

The solutions of (24), (27) and (28) under the bound-
ary condition (29) are given by

vo(y) = =5,00(y) = 7", Co(y) = e (30)
To solve (25), we use multiparameter perturbation

scheme following Nowinski and Ismail (1965) as
a1 << 1 for small rate of shear. Then we consider

uo(y) = uoo(y) + arugi (y) + o(a?i) (€2))
Substituting (31) in (25) and comparing the like terms

we obtain the following ordinary differential equa-
tions:

ugy — voupy + Gréy + GmCy = 0 (32)

n 1 li
voUgy + gy — vougy =0 (33)

subject to boundary conditions:

y:02uO0:0,U00:—S,90: 1,
Co = 1,u091 = 0,v91 = 0;
Yy — 00 :ugy = l,vg0 = —=5,00=0
C() = 07U()1 = 077)01 =0. (34)
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Solving (32) and (33) under the boundary conditions
(34) we obtain

up(y) =1 - +

(S-S
* (PGrrfIy e S 4 (ssccfnf)z esscy> (35)

for Pr # 1,5¢ # 1.
First-order equations:
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90, 90y 00,
“or YU, %%, T

1 (0%, 0%
PT(@yQ + 022 (40)
301 800 301 _
w@t +v1ay _Say =
1 (0%°Cy  9*Cy
Sc< o2 | 92 “h

where 1 = —2cq (with the assumption pj, = 0 in the
equation (26)) The relevant boundary conditions are:

y=0:u; =0,v1 =—Scos(mz —t),
w1:O,91:0,C’1:0
y—oo:u =0,v1 =0,w =0

01 =0,C1 =0 (42)

We assume the velocity components:

ui(y, z,t) = ugy (y)e' ™"
v1(y, z,t) = vi1(y)e' ™)
Z
wl(yv Zat) ;U l(y)el e t)
pi(y, z,t) = pr1(y)e’ =Y
01(y, 2, t) = 911(@/)6’1 m2=1)
Ci(y, z,t) = Cy1(y)e’ ™ 43)

Substituting (43) in (36) to (41), we get following dif-
ferential equations:

1 / 2 . /
v + Svy; — (77 —iw)vi = pig +
o1 (zwvu — iwopm? — STl + Sv ”’)

(44)

" " 2 . / 2

'Ull + S'Ull — (7T — ZCU)'Ull = T P11

+ay <iwv11"' — dwvy T — 5’7T2v’1'1 + Svlv>
(45)

/1/1 + SPT’QIH - (71’2 - iPrw)Qn = P?“’Ulle(l) (46)

Oy + 8Sch); — (n? — iSew)Chy = Scv1Cly (47)
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" ! 2 . !
uly + Suyy — (77 —iw)ur = vy
—Groi; — GmCh1 + aq (iwull”

2

—twrT U1l + S'LLH/” — Unug’ — Sﬂ'zulll

+2vu11 " + u6vll" — 7r2v11u0'> (48)

subject to boundary conditions:

y=0:u11 =0,v11 =-5,011 =0,C11 =0;
Yy — OO U1l :O,Ull 20,911 :O,CU =0. (49)

On eliminating p/; from equations (44) and (45), we
get

v " 2 : "
vi] + Svir — (77 — iw)vl;

—n?vyy” — 72Svy + 7P (r? — iw)un

=1 (iwvlllv — inv/lllﬂ'z — 28720 +

SviV + Svilw‘*) (50)
Again, we consider

u11(y) = ui10(y) + cruiii (y) + o(a?) (5D

v11(y) = v110(y) + v (y) + o(ad) (52)
011 (y) = O110(y) + 16111 (y) + 0(0F)  (53)

C11(y) = C110(y) + a1C111(y) + o(a3)  (54)

Substituting these into (48), (49) and (50) and com-
paring the like terms we get the following differential
equations:

ullll() + Suno’ — (7T2 — iw)uno
= vi10uy — Gréiig — GmCiip  (55)

ufyy + Subyy — (7% = iw)un

= vinuy — Groin — GmChiy + iwuqig”
—iw7r2u110 + Suno’” — Ullougl — Srr2u110'
+2v110"uo” + uév'{w — 7r2v110u6 (56)
vﬂ/o + Svi10” — (7r2 —iw)viip — 7r2v£'10 —
28] + 72 (72 — iw)vire =0 (57)
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1V " 2 . " 2 "
v +Sv1 — (7 —iw)vy — T
2 / 2/ 2 . . 3%
—me SV + (7T — iw)vi = dwuy —
2iw7r21/1'10 — 25’7‘(21}110,” + S’UHOV

+S7to110’ (58)
The corresponding boundary conditions are:

y=0:u1p =uin1 = 0,v110 = =S, v111 =0,
110 = vi11 = 0,0110 = 6111 =0,
Cr10=C111 =0
y — 00 : Uy = ui11 = 0,v110 = v111 = 0,
V19 = v11; = 0,0110 = 6111 =0,

Cr10 = C111 =0 (59)

The solutions of the equations (46) to (48), (51) to
(58) with relevant boundary conditions are:

V110 = A1e™ ™ — Age™"Y (60)

vinn = Aze” ™ 4+ AgemY
+Asye™ ™ 4+ Agye Y (61)

9110 _ A7€fr2y+A8€f(r1+SPr)y
+A96—(W+SP7‘)y (62)
6111 = Awe Y 4 Ape P
_._A12ef(7r+SPr)y_’_Algyef(ﬂJrSPr)y
+A14y67(r1+SPr)y (63)

Chio = A1se™™Y + Agge” (S5
A17€—(7r+55'c)y (64)

Ci11 = Age Y+ A1967(T1+Ssc)y +
AQOG—(w-‘rSSC)y + A21y6—(7r+55'c)y
_A22y€—(T1+SSC)y (65)

urlg = Agge "WV 4 Agge (THO

4 Agse~ (MHSPIY 4 A o~(rSPr)Y
—Agre™"?Y + Agge=(TTSN

— Aggye~ T 4 Agpem (THSSey

T Az e~ (S8 _ o, Tsy

+Agge (T (66)
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uiny = Agge " 4 Agze”(THW
+A36e*(T1+SPr)y + A37y€(7r+SPr)y
+A3867(r1+5)y +A39y67(r1+SPr)y
+A40ye—(r1+5')y o A41y26—(7r+5)y
+Age” Y + Ayge™Y
+A44y67(7r+5)y +A4567(7r+55c)y
+A4667(r1+SSc)y + A47y67(7r+SSc)y
+A486—(w+SPr)y + A49y6—r1y
+A50y2e—(r1+5)y +Amye—(7”1—i-SSC)y

(67)

Uyl = A526_T1y + A53€_(W+S)y
+A54e(7r+SP7")y + A55e—(r1+SP7")y
+Asge ™Y + Agpye” (TS
+A5ge*(’“1+s)y + A59y6*(ﬁ+5)y
_|_A606—(7T+SSc)y + A61y6—(r1+SSc)y
+Ag2e ™" + Aggyel™ TSP
+A64ye—(7r+SSc)y + A65ye—(r1+SPr)y
+Aggye” TIN — Agrye 1Y
+A68y26—(r1+5)y - A69y26—(7r+3)y

(68)
v11 = Aqe ™+ Ane Y + Apoye™ ™
+Azgye” Y (69)
01 = Apge " 4 Agge” (TSP
+A7667(W+SPr)y +A77y67(ﬂ'+SPr)y
+ Aqgye (+SPy (70)
Cii = Agge ™V 4 Aggye (1 +55)

_|_A81e—(7r+SSc)y + A82y€—(7r+55’c)y
+Aggye” (TS5 (71

Thus the respective velocity, temperature and concen-
tration are given by

u=1-e5+ SQPT(CZT —y (e*Sy — e*SP’"y)
+SZSCC(;S772_1)(esy — e~SSey)

—mesy — S3ye™ 4 Sc(b;in_ll)yesy
4 (PGTT_P:)Qe—SPry (chiSlC)Qe—sysc>
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" <A52€_T1y + Asge” (T

+A54€(7r+SPr)y + A55e—(7"1+SPr)y
+Asge ™Y + Agrye” (TTS
_|_A586*(7’1+S)y + A59ye*(7"1+5)y
+A606—(w+556)y + A61€—(T1+SSc)y

+Agoe "3V + AgayemTSPTY
+A64y€—(7r+SSc)y + A65ye—(r1+SPr)y
+Agsye” MHSSW — Agryem1y

+A68y2e—(r1+3)y . A69y2€—(ﬂ'+5)y> ei(ﬂ'z—t)

(72)

v =

—S+e (A7067Ty + Appye™ ™

+A7e” Y 4 A73y€”y> ™1 (73)

9 — eSPry +8<A746_r2y +A75e—(T1+SPr)y
_|_A766—(7T+SPr)y _|_A77y6—(7r+SP'r)y

+A78y€—(r1+sp7‘)y> ei(ﬂ'z—t) (74)

C = e—SScy + €<A796—r3y + Asoye—(r1+SSc)y
+A81€f(ﬂ+550)y +A82yef(7r+SSc)y
+A83y6(r1+350)y> ei(ﬂ’zft) (75)

w =

1€
— <A846_7ry + A856_T1y + Ag(;ye_m/
T

+A87ye—“y> el(m==t) (76)

The non-dimensional shearing stress at the plate (y =
0) is given by

I L R STt
77 oy ) N0t~ oy oy
y:
Pu_duou | P ovon
U@yQ Oy 0z wc?y(")z 0z 0z .
y:
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= Agg + Agg + (wf‘lgo — 3(Ags + Agg) Ag1

+v(Aga + Ag3) — AgaAgs + wAgs — 2A97A98)

(77)

Again, the non-dimensional heat flux coefficient at the
plate in terms of Nusselt number Nu is given by

= —SPr+ce¢ (Agg + Aioo + A7 + A7g) !(m=1)

(78)

The mass transfer coefficient in terms of Sherwood
number Sh is given by

dy
y=0

+Ai03 + Ag2 + ASS) eilm==t)

—SSc+¢ (Au)l + Aqp2

(79)

4 Result and Discussion

In this analysis, we discuss the unsteady three-
dimensional visco-elastic flow with heat and mass
transfer in presence of variable suction. The visco-
elastic effect is exhibited through the non-dimensional
parameter o;;. The corresponding results for Newto-
nian fluid are obtained by setting ov; = 0. The non-
zero values of «v; = 0 characterize the visco-elastic
fluid flow phenomenon. The real part of the solutions
is implied throughout the discussion. To get phys-
ical insight into the problem, the fluid velocity and
the shearing stress at the plate have been illustrated
graphically by assigning some specific values to the
parameters involved in the problem and the effects of
the visco-elastic parameter on the governing flow have
been discussed in detail. The values of the parameters
e = 0.3, z=0.2, w = 10, t=0.2 are kept fixed through-
out the discussion.

The figures 1 to 6 demonstrate the fluid velocity
u against y for different values of Prandtl number Pr,
Grashof number for heat transfer Gr, Grashof number
for mass transfer Gm, Suction parameter S , Schmidt
number Sc and visco-elastic parameter |a|. In all the
cases, the fluid velocity accelerates near the plate but
shows uniformly away from the plate in both Newto-
nian and non-Newtonian cases. The variation of the

E-ISSN: 2224-2880

721

Rita Choudhury, Bandita Das

1.6
14 Wiemmnlia
1.2 F
1 4
0.8 - oy=0
Wooe 1§ s oy =-0.05
0.4
————— oy =-0.1
0.2
y —
u T T
[u] 2 4 &

Figure 1: Fluid velocity u against y for Pr = 2,5 =
1,5¢=0.6,Gm =0.5,Gr =2
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Figure 2: Fluid velocity u against y for Pr = 3,5 =
1,5¢=0.6,Gm =0.5,Gr =2
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Figure 3: Fluid velocity w against y forPr = 2,5 =
2,5¢=0.6,Gm =0.5,Gr =2

Volume 13, 2014



WSEAS TRANSACTIONS on MATHEMATICS

2
jl__l ) ‘.131:.1: i
1.5 ,:": =N
1 4 =
— ay=0
u 1
--------- at,=-0.05
=y a,=-0.1
y —_—
ﬂ T T
1] 2 3

Figure 4: Fluid velocity u against y for Pr = 2,5 =

1,5¢=0.6,Gm =0.5,Gr =5
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Figure 5: Fluid velocity u against y for Pr = 2,5 =

1,5¢=0.9,Gm =0.5,Gr =2

Figure 6: Fluid velocity u against y forPr = 2,5 =

1,5¢=0.6,Gm =0.7,Gr =2
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Figure 7: Cross velocity w against y forPr = 2,5 =

1,5¢=0.6,Gm =0.5.Gr =2
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Figure 8: Cross velocityw against y for Pr = 3,5 =

1,5¢=0.6,Gm =0.5,Gr =2
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Figure 9: Cross velocity w against y for Pr = 2,5 =

2,5¢=0.6,Gm =0.5,Gr =2
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Figure 13: Shearing stress against Prandtl number Pr
for §=1,5¢=0.6,Gm =0.5,Gr =2

Figure 10: Cross velocity w against y for Pr =
2,5=1,5¢=06,Gm =0.5,Gr =5
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Figure 14: Shearing stress against suction parameter
S for Pr =2,5¢=0.6,Gm = 0.5,Gr = 2

Figure 11: Cross velocity w against y for Pr =
2,5=1,5¢=09,Gm=0.5,Gr =2
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Figure 15: Shearing stress against Grashof number for
mass transfer with Pr = 2, S¢=10.6,5 = 1,Gr =2

Figure 12: Cross velocity w against y for Pr
2,5=1,5¢=06,Gm =0.7,Gr =2
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Figure 16: Shearing stress against Grashof number for
heat transfer with Pr = 2,S¢ = 0.6,5 = 1,Gm =
0.5
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Figure 17: Shearing stress against Schmidt number

for Pr=2,Gr=2,5=1,Gm=0.5

physical parameters like Pr, Gr, Gm, S, and Sc do
not alter the pattern of the profiles. But in all the cases,
the growth of absolute value of the visco-elasticity en-
hances the fluid velocity in comparison with Newto-
nian fluid flow phenomenon.

The cross velocity w against y has been depicted in
the figures 7 to 12. In all the figures, it is noticed
that the cross velocity w in both Newtonian and non-
Newtonian cases first diminishes and then boost up
to considerable amount. The rising values of visco-
elastic parameter|c;| show a decelerating trend in
speed.

Figures 13 to 17 illustrate the variations of shearing
stress against the Prandtl number Pr, Suction param-
eter S, Grashof number for mass transfer Gm, Grashof
number for heat transfer Gr, and the Schmidt number
Screspectively with fixed values of other physical pa-
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rameters viz. Pr = 2,5 =1, Sc = .6, Gm = 0.5
and Gr = 2. With the enhancement of Gr and Gm
the shearing stress shows a diminishing trend in both
Newtonian and non-Newtonian fluid flows but depict
rising trends with the variation of Pr, .S and Sc. In all
the cases, the rising values of |« |diminish the shear-
ing stress in the fluid flow region in comparison with
simple Newtonian fluid.

From the expressions (77) and (79), it can be observed
that the rate of heat transfer and rate of mass transfer
are not noticeably affected by the visco-elastic param-
eter.

S Conclusion
The investigation leads to the following conclusions:

1. The velocity field is significantly affected at ev-
ery point of the fluid flow region by the visco-
elastic parameter in combination of other flow
parameters.

2. The shearing stress exhibits an accelering trend
in both Newtonian and non-Newtonian cases
with the increase of Prandtl number, suction pa-
rameter and Schmidt number but reverse trend is
observed with the increase of Grashof number
for mass transfer and Grashof number for heat
transfer. In all the cases, the absolute value of
visco-elastic parameter diminishes the shearing
stress in comparison with Newtonian fluid.

3. The rate of heat transfer in the form of Nus-
selt number and the rate of mass transfer in the
form of Sherwood number are not significantly
affected by the visco-elastic parameter.
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