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Abstract: Consider the following convection diffusion equation

N
bi m’ 7t
up = div(] Vu™ P72 Vu™) + Z E)(q;xx)
i=1 v

Supposed that 0 < m < 1,p > 1+ %, using Moser iteration technique, we get the local bounded properties of
the solution of the regularized problem. By the compactness theorem, the existence of the weak solution of the

convection diffusion equation itself is obtained.
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1 Introduction

The objective of the paper is to study the nonnegative
weak solution of the doubly nonlinear diffusion equa-
tions with a convection term as follows

N
abz m’ )
ug = div(| Vu™ [P72 Vu™) + Z (%m:z:)’
i=1 ¢

(1)
where V is the spatial gradient operator, (z,t) € S =
Q x (0,00), 2 C RY is a bounded open domain. The
initial boundary value conditions are as usual.

u(z,0) = up(z), = €,

(2)

u(xz,t) =0, (z,t) € 02 x (0,00), (3)

where, p > 1, m > 0, N > 1, and we assume that

0 < up(z) € LI (Q), (4)
where 3 > ¢ > 1. According to the different expo-
nents of m, p, we have the following classical termi-
nologies about the equation (1).

(i) The case p = 2, m = 1, is the ordinary semi-
linear diffusion equation.

(ii) The case p = 2,m # 1, is the porous media
equation, it is degenerate at v = 0 for m > 1 and
singular at u = 0 for 0 < m < 1.

E-ISSN: 2224-2880

416

(iii) The case p # 2,m = 1, is the p-diffusion
equation, it is degenerate at Vu = 0 for 2 < p < o0
and singular at Vu =0for 1 < p < 2.

(iv) The case p # 2,m # 1, is the doubly non-
linear diffusion equation, singularity and degeneracy
at u = 0 and Vu = 0, respectively, occur in arbitrary
combinations.

V) If m(p — 1) > 1(= 1,< 1), then equation
(1) is called the slow (normal, fast) diffusion equation
respectively.

Equation (1) appears in a number of different
physical situations [1].

For example, in the study of water infiltration
through porous media, Darcy’s linear relation

V=-K(0)Ve,

satisfactorily describes flow conditions provided the
velocities are small. Here V' represents the seepage
velocity of water, § is the volumetric moisture con-
tent, K (6) is the hydraulic conductivity and ¢ is the
total potential, which can be expressed as the sum of
a hydrostatic potential ¢(#) and a gravitational poten-
tial z

6= p(0) + = (5)

However, (5) fails to describe the flow for large
velocities. To get a more accurate description of the
flow in this case, several nonlinear versions of (5) have
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been proposed. One of these versions is
—K(0)Vo, (6)

where « is a positive constant, cf. [2-4] and their ref-
erences. If it is assumed that infiltration takes place in
a horizontal column of the medium, by the continuity
equation

Ve =

o0, oV _,
ot oxr
(5) and (6) give the equation
00 0

= = P p—1
5 = 55 (DO10:°710:)

with - = o and D(f) = K(0)y'(d). Choosing
D(0) = Dof™ ! (cf. [5-6]), one obtains (1) with
bi(s,z,t) = 0, u being the volumetric moisture con-
tent.

Another example where equation (1) appears is
the one-dimensional turbulent flow of gas in a porous
medium (cf. [7]), where u stands for the density, and
the pressure is proportional to u™~!; see also [8].
Typical values of p are 1 for laminar (non-turbulent)
flow and % for completely turbulent flow.

The existence of nonnegative solution of (1) with-
out the convection term va 1 w defined in
some weak sense, is well established (see [9], [10]
etc.). In 2012, Matas-Merker [11] have supplemented
an elementary proof of the existence of weak solutions
of (1) by Faedo-Galerkin method, in which some re-
strictions on the convection term are given, and the
initial value ug(z) € L™ (Q), m > 1, m' = e
is the conjugate number of m. Recently, the second
author of the paper also have studied the existence of
nonnegative solution of (1) with the convection term

as ZN (%T in [12]. Other related results had
been deeply studied in the tremendous amount of ref-
erences, for examples, one can refer to [13-19] etc.
By the way, the second author has studied the rele-
vant problem for a long time, see [10],[12] and [20-
22] please.

2 Some Lemmas and main result

In what follows, we assume that the convection term
N 0b;(u™,x,t) isfi
Dim1 o gg satisfies
(A): For any given i € {1,2,---, N}, b;(s,z,1)

is a C' function, and there exist constants ¢ such that

1
|b7;(s,x,t)| S C|S|R7 (7)
ob; t
(s, 1)) = | 22T gt (g)
0s
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and

0b;(s,x,t)

oz, 9)

1
[bia (5,2, 2)| = | | < cls|m

As usual, the constants ¢ here and in what fol-
lows may be different from one to another. If one
compares the condition (A) with the corresponding
condition which is posed on the convection term as

ZjV , ) in [12], he will find that the exponent

= in (7)( or = — 1 in (8)) is replaced by a general
constant Q, which means that bi(s) in [12] has more
general choices compared to b;(s, x,t) in this paper.
In other words there are essent1a1 differences between

N 9b( N Obi(u™ )
Yoict 823 and ) ;" | =“5—=". By the way, the
condition (9) 1s naturally neglected in [12], the imply-
ing condition m < 1 in (8) is also not needed in [12].

Now we quote the following definition.

Definition 1 A nonnegative function u(x,t) is called
a weak solution of (1)-(3) if u satisfies

(i)
u € Lig,(0,00; L=(92)), (10)
up € Lo (0,005 L*(Q)), (11)
u™ € Lloc(ov 005 W()Lp(Q))a (12)
(ii)
//[usot_ | Vu™ P72 V™ - Vg
S
N
=Y (™, t) -y )dadt = 0, Vo € C3(S);
i=1
(13)
(iii)
hm/uxtuo()|dx—0 (14)

We need some important lemmas in order to get
our results.

Lemma 2 [23] (Gagliardo-Nirenberg) If 1 <1 < N,
1+8<q 1<r<qg<(1+4+p)NI/(N —1), suppose
that u 8 € WHH(Q), then

0 0/(1+8
< M/ OBy || 10 o145 071

[[ullq ,

where 0 = (8 + 1)(r~
1)r=1).

g )/(NTH =T (B
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Lemma 3 [24] Let y(t) be a nonnegative function on
(0,T). If it satisfies

Y (O)+AN L0 ) < Bt Ry +Ct0,0 < t < T,
where A,0 >0, A0 > 1, B,C >0,k < 1, then
y(t) < A=8(2X + 2BT F)a¢ A
+20(\+ BTV Ry 410 0 <t < T.

Lemmad4 Let y(7) be a nonnegative function on
[1, 00]. If it satisfies

y' (1) + AT“yHe(T) <Br F 7> 1,

where A, B, 4, k > 0, then there are constant C > 0
and v = min{(1 + u)/0, (u + k)/(1 + 0)} such that

y(r) < Cr 7,7 > 1.

Lemma 5 Suppose Ly > 1, r,R,M > 0, \;y > 0.
Forn=2,3,---, let

Ln,=RLp 1 — M,
0, =NR(1— L, L)Y (N(R—-1)+7r)"},
Bn = (Ln + M)>97:1 - Lna
Ap = (1 + )‘n—l(ﬁn - M))Bﬁl
Then

Lidir+ N

lim A\, = .
B ™ T L MN

The proof of lemma 4-lemma 5 is easy, one can
refer to [25].

In what follows, we assume that

1
p>14+—0<m<1,
m

which means that equation (1) is a doubly degenerate
parabolic equation. We will consider the regularized
problem, use Moser iteration technique, prove the lo-
cal bounded properties of its solution and obtain the
local bounded properties of the LP-norm of the gradi-
ent. By the compactness theorem, we can prove the
existence of the solution of the convection diffusion
equation itself. At last, the following theorem is ob-
tained.

Theorem 6 If (A) andp > 1+ %,0 <m<10<L
uo(z) and

up(z) € LT (Q),3> ¢ > 1,
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then (1)-(3) has a unique weak solution, which satis-

fies

u™ € L5, (0, 003 L9175 () () LS

loc(oa 005 W()Lp(ﬂ))7
(15)

and

[ Bllse < e(1+ (146701 1> 0,
(16)
where X = N(pq + (p — 1 — L)N)~L. Moreover,

Vu™[lp < c(l+t7#)(1+8)77,¢ >0,  (17)

m— _ plm(2a+41)—1]4+m
where =1+ Sy, 0 = ﬂn(z(a—l)—)l](p]—n'

By the way, we would like to point again that the
condition (A) implies that m < 1, and so that p >
2byp > 1+ % However, in [12], p > 2 is an
independent condition to assure that (17) is true.

3 The L™ estimation of the solution
Consider the regularized problem

1 _
wp = div((|[Vu™|? + E)¥vum)

N
Ob;(u™, x,t)
_— 1
+ ; G (18)
u(z,0) = upg(z) + s, ¢ € Q, (19)
u(z,t) = s,x € 00, t >0, (20)

where 0 < ugg(z) is a suitable smooth function such
that

Jim ol = ol 1
By [14], we know that (18)-(20) has a unique nonneg-
ative classical solution ugs. Let s — 0. By a similar
way as [9], we are able to prove that

Ugs — Uk, in C(S),
Vugy — Vui', in LP(S),
Ukst — vukzta in LQ(S)>
Vufi P2 Vg, =
IV P2Vl weakly star in LS,(0, 00; L1 (52)),

and uy is the solution of the following problem

1 pe
wr = div(([Vu™ 2 + %)¥vum)
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N
Ob;(u™, x,t)
+ 2; — (21)
u(z,0) = ugr(z),r € Q, (22)
u(z,t) =0,z € 0Q,t > 0. (23)

In what follows, in the proof of the related lemmas,
we only denote uy as u for simplicity.

Lemma 7 [f uy is the solution of (21)-(23), then
uf € L5, (0,005 L1715 (Q))

and

1
o lyopr Sec(l+8) 7 =m,t>0.  (24)

Proof: Let A, = (¢ —2)n3"9, B, = (3 — ¢)n*74,
and

Fuls) = P
"I Aps® 4 Bys, if0§3<%

The assumption 3 > ¢ > 1 assures that f,, > 0 and
f1(s) > 0 when s > 0. Suppose that n > k, multiply
(21) by f,(u™) and integral over 2. Then

/ Fo(™)div([Va™ 2 + 252 ) da
Q k
_ / (Va2 + )55 [vum 2 ) (u™) e
o 2
- / VU P £ () e
[ [

Using the second integral mean value theorem, by (9),
we have

Pds P dz. (25)

:_Z/ Ox;
+§;/Q/Oum biz, (8, 2,t) fl(s)dsdx

E-ISSN: 2224-2880 419
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N um
:; /Q biz; (§,2,1) /0 fl(s)dsdx

S c/ (q 1+7n)d X, (26)
Q
By(25), (26), we have
/fn utdzv+/ |V/ Pds [P dx
< c/ um(q_H%)daL’,
-~ Ja
by Poincare inequality, we have
/ (W™ updz + c/ / pds [P dx
<c/ / WM ) (27)
QJa

Let

Qlt:Qﬂ{l“W | < E]UQ%:QH‘W:‘U | > ﬁ}

Then
/ / Pds [P dx
/ | / Veds Pz (28)
Q1 U Qas
On Qy4,
\/ ds\pq/ 1245 + By |7 ds P
< (2lg =2+ [3 —g[)n' (29)
On Qy,
| / ))rds [P= g P mipa-2)
(p+q—2)P
(30)
In addition,
nh_)ngo fn( ™Yupdz
1 d
_ I m(q71)+1d ) 1
m(q—l)—f—ldt/gu v (31)

From (27)-(31), let n — oo. Then

d
“ m(g—1)+1
7 Qu dx + C/Qu

< c/ um(q_H%)d:c.
Q
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By Jessen inequality, from (32) we get

d u m”q 14X q— 1+ +p 1-1

dt’ q— 1+

1
< c/ um(q_Hﬁ)da:,
Q

then by Lemma 3, we have

Tl

1

1 <e(l+ t)_P*I*% .

"™ g1

Lemma 8 If uy is the solution of (21)-(23), then

UM oo < et 0< t <1, 33
k
1
oo = L)
[uptlloe < c(1+1t) P m t>1,  (34)
_ N
where \ = = DN+q

Proof: Multiply (21) by «™(~1), and integral over €2,

then
/um(l_l)utdx
Q
. mi2 , 1ye=2 m
= dw(|Vu | +%) z Vu
2/ b;(
—(1— 1)/(\vum| +E)p%2|vum|2um(l*2>dx
—(1—-1) Z/ 3,
N um
+( — 1)2// bi, (s, z,t)s" "D dsdx
i=1 /270

1 _
(- 1)/(\wm| + ) VU P g
Q

N ™
+1-1)) /Q bix, (€, 7, 1) /0 s dsdz,
=1

by (9), we can deduce that

)um(l_l)daj

m(l— l)dl'

(=2) gsda

sa:t

dH m”l 1+L
dt I-1+1

1

1., m?“‘“m—l—%
+c(l—1+)_p/Vu P
m 9)

</um(l_1+vln)d:1:.
—Ja

E-ISSN: 2224-2880
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Set L =1—1+ L. Then

Ltp—1-4
[ dz < ||u™| 7,

(35)

d
e [ vae
Q

where c is a constant independent of [.
Now, if we choose L1 = ¢, and let

1
Ln :an—l - (p_l_ 7)7
m

1
r>1+(p-1——),
m
n=2,3,---. By Lemma 3, we have

a5, < /P10

HumHl—GnHvu (Ln+p— 1—— /pHP9 n/(p— 1_*+Ln)

Ln 1
(36)
If we choose L = L,, in (35), by (36), we have
d _ _ —pin
™ e PO L2 e
<m0 <t< 1 (37)

We will prove that there exist two bounded se-
quences {&, }, {\,} such that

[u™ |, < &, 0 <t <1, (38)
If n =1, by Lemma 7, A\; = 0,

1 =sup|[u™@®)] .1,
& =sup [0, 1. 2

then (38) is true. If (38) is true for n — 1, from (37),

d

L
™

_,_c—p/OnL%—pHumH£:+ungp:1*E*“nt—(p—l—i—un)Anq

< [lu™|E 0 < ¢ < 1. (39)

we can choose

1
A= An1(pn —p+1+ )+1)Mn )

fn = fn—l(cp/en[’g_l)\n)l/un7 n = 27 37 Tty

by Lemma 3 and (39), we know (38) is also true for n.
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N
—1- DN+
Itis easy to see that {&, } is bounded. Thus, by Lemma
5, (33) is true.
To prove (34), we set 7 = log(1 + t),t > 1, and
set

Moreover, as n — 00, A, — A =

w(r)=(1+ t)p‘ll‘% u™ ().

By (35), we have

d i Ebemiok

()l + e

7—

< cllw(n)|f, 7> log2. (40)
By the lemma 3.1 in [26], we have
_1_1y-1

sup [[u™(£)(1+ )P~ 7w o = sup Jw(7)]
t>1 T>log 2

gcmax{l, sup Hw(7—)||q71+ia sup ’w(7)|00}
7>log 2 ™ 72>log2
= cmax {1, [[u"(1)]|cc,

1
sup |[(1 +¢ =™ ()] 1}
sup (175w (O, 11

< 090,

which means (34) is true. O

4 The estimate of the gradient

We will get the estimate of the gradient V.
Lemma 9 If uy is the solution of (21)-(23), then

m—1
VU, < et Tme0=1) 0<t<1,  (41)

7m(p71)

Proof: Multiply (21) by u;", and integral over §2, then

m / u™ () da
Q

- / div((|Vu™ 2 +
Q

N
ob;(u™, x,t) ,,

i=1 v

—)%Vum)u?dx
(43)

1

/ div((|Vu™)? + %)¥Vum)u;”dx
Q

E-ISSN: 2224-2880 421
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1 _
- —/Q(ywm\ + %)¥wmvu;ﬂdw

1 1. 0=
= =5 [(vanP + D [vum s

[Vum™|? 1 peo2
:_/dt/ s—i— 2dsda:

= —iarkﬂvu | )-

By the assumption of (A), using Young inequality,

N ob;(u™, x,t) .,
;|/anl Ut
<Z/ A
+Z/ [bia, (u

(44)

dz |

") gy | ug* | dee

t)||uy|dx

SE/ uml(ut)Qda;—i—c/ ]um\ifl\Vudex
Q Q

+c/ uldz.
Q

By (43)-(45), we have

(45)

d
/um—l( D2de + ~ L1 (vum?)
0 m dt

< c/ \um\rln_l\Vum]zd:U+c/ wldr.  (46)
Q Q
Multiply (21) by u™

1 / d
m+1 dt
N
Lie=2 i m Ob;(u™, z,t)

1 o
—/(\wm|2+k)”f|wm|2dx.
Q

, and integral over €2, then

m+1dx/div(]Vum2
Q

"dx

and

1 p—
L(VarP) < [ (VP 4 )'F [V
Q

1 /d
T oom+1 ) dt

u U U
iy 1 t112,

m+1d$
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SO

1d
Ealphady m|2
o k(IVu™ %) +

m+1

(m+1)%lu=" [|3°TR (| Vu™?)

< c/ |um|7}w_1|Vum|2dx+c/ uide.  (47)
Q Q

By Poincare inequality,

/u2dx < c/ |um|%71|Vum|2dx.
Q Q

Set 2y = L — 1, for Va € [0, 2],

/Q\um\2“\Vuml2dw < [lu™(®l5

)p pT?Q 2
. /Q|u -2 dx [Vu™][5. (48)
If2y > (p—2)(N+1)/N,leta= (2y—(p—2)(1+
+))*. By Lemma 2,
p—2
m (v— )p
(foria)”
< el ()| GO 272, (49)
where
0= (s = (1= D) 2y—a) /(NI —p 457,
p
s=2y-p+2-a)N/(p-2)
when 2y > (p — 2)(1 + ¢/N), and
s=gq
when

(P=2)1+ N <2y < (p—2)(L+g/N).

By Lemma 7 and Lemma 8, from (48), we have
[ peivun s < o vy
Q

< et T (IVu™?). 0 <t < 1. (50)

If we choose ¢ = 2 in Lemma 7, we have

_m_

1 _

s = ([ wmtde )™ <o owED
1+m Q

and

L-H
w2 Hz

/um+1da: <t TmEDT. (51)
Q
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By (47), we have
/ —mil o
[ (t) + ctme=D-1T¢(t)

< ct™MDL(E), 0 <t <1, (52)
If2y < (p—2)(N+1)/Nandp—2 < 2a < 2+,

/ ‘um|2a‘vum|2dx < CHVUm’ﬁa(l_e)”vum”§a9+2
Q

< [ Vup < cDp(|Vu™?). 0 <t < 1. (53)
If2y<(p—2)(N+1)/Nandp—2 > 2a >0,
when 0 <t <1,
/’um2a’vum‘2dx
Q

<1+ [Vu™B) < e(1+Tw([Vu™?).  (54)
(53) and (54) mean that (52) is still true when 2y <
(p—2)(N +1)/N. Using Lemma 4,

m—1
Tp(t) <t TaoD1) o<t <1

which means (41) is true. Now, we will prove (42).
Fort > 1, by (34)

/wm%wmwm<¢WW\M<ﬂmWa

e(146) /P2t > 1 (55)

) |Vum™|? 1 p-2
S N
0

t>1.

LH m
lu u—(/ +w)
Q
>

<c(l41)" Pl ¢
by (47), using (55)-(57)

< | Vump = c(IVa™ )%, (56)

1. (57)

(1) + (1 + )~ P12 ' T2 ()

< (1 + 62/ Ty (1),

using Young inequality,

T (1) + (1 + )" P22 7' T2 ()

—m(2yp+1)

c(l + t) (m(p—1)-1)(p—1)

p—m(p—1)

=c(1+1t)” me-D-Do-1 (58)

By Lemma 4, we know that (42) is true.
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Lemma 10 If uy, is the solution of (21)-(23), then

[ L

A(1—m)

+ct (355

Lupg)2dwds < ct™ + e =T)

m—1

+m(p 1)—1)

LO<t<T. (59)

Proof: From (33), (41), (47) and (50), we have

T
/ /uml(ut)dedsgfk(t)
t Q
T 1
—|—c/ /]um]m_1]Vum2dxds
t Q

T A
SFk(t)—l—c/ 572G UL (s)ds
t

_ m—1 A(1l—m)
S ct (1+m(p—1)—1) —+ ct ( 2m

m—1

+m(p71)71 ) .

(60)

The lemma is proved. a

5 The main result and its proof

Now, we are able to prove the main theorem, which
has been quoted before as Theorem 6, and we restate
it here as follows.

Theorem 11 If (A) and p > 1 + %,0 < m <1,
0 < up(z) and

ug(z) €

then (1)-(3) has a unique weak solution, which satis-

fies

u™ € Li2.(0, 00; LY m (Q

L m(Q),3> ¢ > 1,

) () Lis.(0, 00; Wy (),
(15)
and

[0 (1) oo < (14t (14 8)~ P15 ¢ > 0,

(16)
where X = N(pq + (p — 1 — L)N)~L. Moreover,
IVu™|l, <ec(1+tH)(14+t)"7,t>0, (17)
o m—1 _ plm(2a+1)—1]+m
where 1= 1+ iy, o = BTG

Proof: From Lemma 7, Lemma 8, Lemma 9 and
Lemma 10, using the compactness theory (cf [13]),
there is a sequence (still denoted it as {uy}) of {uy}
such that when & — oo, we have

wy, —u, weakly star in L, (0, oo; L™ D+1(Q)),
(61)
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uge — ug, weakly in L*(0,00; L*(R)),  (62)
Vup — Vu™, weakly in L}, (0,00; LP(Q)) (63)
V' P2V, =,
weakly star in Ly, (0, oo; LT (Q)), (64)
where x = {x; : 1 <i < N} and every Y; is a func-
tion in LS

% (0,00; L7-1(1)). (61)-(63) are clearly
true. In what follows, we only need to prove that
X = [Vu[P720u™, in LjS, (0, 00; L7 (52)). (65)

By the definition of the weak solution of (21)-(23), let
k — oo. We have

//S(usot—x-vso

_Zb

for Vo € C§°(S). So, if we are able to prove that

/ / | Vu™ P72 Vu™ - Vpdadt
S
://X'Vgoda:dt,
S

then (65) and (13) are true.
Now, let’s prove this fact. For any ¢ € C5°(5),

0<y<1;vmel? (O,T;Wol’p(Q)),wehave

) - @z, )dzdt = 0, (66)

(66)

loc

/ /S (| VU 2 T

— | Vo™ P72 V™) - V(ult — v™)dzdt > 0, (67)

If we multiply with u}*+) on two hand sides of (21),
then we have

p—2
1\ 2
//w<|w;”|2+k> |Vl [*dxdt
S
- +1 / / Y dzdt
m
N7
—//u;: <|VU;”|2+k> V' - Vepdadt

S

N
_; / /S bi(ug', w, t) (ufl, Yp4uj iy, )dedt. (68)

Noticing that p > 2, then

1. p—2
(Vg ? + )7 [V * > [Vuf P,
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(Va2 + )= [Vu| < (Fu P~ + 1),

by (67), (68), we have

m+1//¢tuk ldzdt

p—2

1\ 2
—//Sukm <|vu$|2+k> V' - Vepdadt

N
S50 vt ) dade
i=1 S

1 p—2
2 mes§)

—//WVU?VDZV%”-VUmdxdt
S

—//¢|va|p2va~V(u2”
S

Since

—v"™)dzdt > 0.
(69)

2 1 %

1 —
— |V P2V P2 o (]Vu?!2+%)p74d3Vu?,
0

. p—2 ! m S, p—4
klgr;ok//s/o (|IVuy \2—1—%) 2 ds

Vuy' - Vypuy'dedt = 0,

if we let kK — oo in (69), we have

mil / /S ™ dadt
2 [ foe

—//¢VX-vad:cdt

S

//¢|va|p_2VUm-V(um
S

in (66),

and

(g + u" g, )dwdt

Now, we choose ¢ = u™

m—+1
m+1//wu dxdt

z,t) - (Yo, u™ + Yuy, )dxdt
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—//umx-vwd:vdt

S

—// Yy - Vu™dxzdt = 0.
S

From this formula and (70), we have
/ fovo

Let v™ =

] fyet

Let A — 0. We obtain

| [ vt

Moreover, if we choose A < 0, we are able to get

| [t

Now, if we choose v such that suppy C suppi),
and on suppy, ¥ = 1, then from (72)-(73), we can
get (65), and so (13) is true.

Next, we are to prove (14).

For small » > 0, denote 2, = {z € Q :
dist(xz,0) < r}. For any n > 0, let

— |V PTEV™) - V(0™ —

> 0.
— A, A >0, € C§°(S). Then

— V(™ = Ap) P72 (U™ = Ap), ), ddll

> 0.

- |Vum|p*2uZ:)cpxidmdt >0. (72)

— VU P2 ) o dadt < 0. (73)

1, if s>mn,
sgn,(s) = w0 if |s| <,
-1, if s<—n.

For any given small r > 0, large enough &, [, we
declare that

/ (2, 8) — wy(, £)|da
QQ'I’

< /QT lug(z,0) — w(x,0)|dz + cr(t), (74)

where ¢, (t) is independent of k, [, and lim; o ¢, (t) =

0. By 21)
/ / (ugr — uge)dxdr

" / Vel(Vu? + 3) " Vg
0 Q.
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1, -
—(|Va[? + 7)T2Vu}”]dxd7-

N ¢
+> /0 /Q [bs (Ui, @, t) — bi(ul™, 2, )|V pdadr
=1 ™

=0, (75)

for Vo € LP(0,T; Wol’p(Q)). Suppose that £(x) €
C2(9,) such that

0<¢<1; o =1,

and choose ¢ = sgn, (up’ — u;") in (75), then

e
v [ e = v

Vul [VEsgn, (uy"

up — u) (uge — uy)dxdr

(T + 1)

! m|2 L p=2 m
+/ / [(IVug' "+ )2 Vg,
0 Ja. k

1 p—2 m m m
7) 2 V"IV (ug' —ui™)

—uy")dzdr

—(@|Vu"* +

Esgny (upt — u)dxdr

N t

Vésgn, (ug' — w")drdr

N
Y / /Q o, 2, )~ bi(uf®, 2, O]V (i — )
=1 s

(76)

If we notice that the third term and the fifth term in the
left hand side on (76) tend to zero when p — 0, then
we have

Esgny (upt — u")dzdr = 0.

lim o= ) (uge — ug )dadr

774)0 0 Qr

[ m2 . L2220 m

up)dxdr

Esgn,, (u

L2 m
~(Vu? + )7 Vi VEsgn, (uf
— bi(u", z, )]V

)" )dzdr = 0. (77)
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At the same time,

lim

— ") (uge — wye)dadr
77—)0 Qr

fsgn

- / Esgn(uf? — ") (ue — wr)dodr
0 JQ,

/ / Esgn(ug — up) (ke — wyp)dxdr

lim/ / §sgn ug — up)(uge — uy )dxdr

n—0

U — Uy

:%11}%/0 /QT f(/o sgn, (s)ds)-dxdr
t Uk —Uy .

= lim sgn, (s)ds |y dx
HO/O/Q;/O g, ()ds [

:/ §|Uk—uz\d$—/ Eluok, — ugr|dw.  (78)
Q, Q,

By (77)(78), we have

Elug — w|dx < / |uok — ug|dx
Qo Q.

t 1. o 1. o
+c/ / (Il P+2) 5 (| VP4 2) ' | ddr
0 Ja. k l

N -t
+CZ/O/Q b (U}, 2, t) — bs(u]", x, t)|dadr,
=1 T

which means (74) is true.
Now, for any given small r, if k,[ are large
enough, by (74), we have

/QQT. lu(z,t) —up(x)|dx < /QT lu(z,t) —ug(z, t)|de
+ /Qgr luok () — ugy(x)|dx
+/er |Ul($at)—u()l($)’d$+/g2r luor(z) —up(z)|dx

letting ¢ — 0, we get (14).

At last, we are to prove the uniqueness of the so-
lutions. For any positive integer n, let g, (s) be an odd
function and

1, if s>4,

s) = .
9n(s) { n25261_”252, if s S%

Let ui,us be two solutions of (1)-(3) with the ini-

tial value ug; (), up2(x) respectively. Multiplying (1)
with gy, (u}* —u5") and making integral on 2, we have

/ g (" — ) (un; — zg)d
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4 / [V P2 [V — |V |l 72 V]
Q
V() ghda
N
Y / s(u?, 3, ) — bi(u, 7, £)]
i=1 79
(W' — u) o, gl

=0, (79)

lim
n—oo Q

d
gn(u]" —uy") (u1y —ug)dr = £||U1—U2||1,
/Q[V|u{”|7’2Vu§” — |V]ug' P72 Vg x

V(ul® — u5')gpdz
> 0,

N

D

i=1

lim
n—oo

/ s (W 2, )bl 7, 1)) x
Q

(W' ~u5")z, g do|

N
<6 lim
- n—)ooZ;
1=

/

1
Qn{luf™~ug'|< 5}

=0,

’b;(& xz, t) ‘ ’ (UT_ugn)% ’dw

due to 0 < ¢/(s) < 6s~! when |s| < 1, and using the
fact of that b}(0, 2, t) = 0.
Let n — oo in (79). We have

d
@HM —uzl[1 <0, (80)

which implies that

/Q|u1(x,t)u2(:p,t)|d:v§/g|u01(x)uog(x)\dx,

is true for V¢ > 0.
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