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Abstract: This paper demonstrates the capability of curve fitting using Artificial Neural Network (ANN), not only
for a moderate set of input data but also for a coarse set of input. When appropriate number of neurons is chosen
for the training purpose, accurate graphs can be obtained, despite having a coarse data. The effect of number of
neurons used for curve fitting and the accuracy obtained is also studied. This aspect of ANN has been illustrated
through 2 examples, Weibull distribution and another complex sinusoidal system. This curve fitting technique has
been applied to a real world problem i.e. mechanism of a deep drawing press, for both slider displacement and
slider velocity.
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1 Introduction the accuracy required.

But, in the present day scenario, many curve fit-
ting techniques have come into picture, which are ca-
pable of fitting highly complex functions and non-
linear plots, out of which some require less inputs
and others may need a huge data entry. Some of
the attempts include [1 -12]: According to mark and
David (1985), Global curve fitting using rational frac-
tion polynomial method [2] can handle very noisy data
because it works on the principle of least squared er-
ror formulation. But if the parameters are varying by
a large amount, accurate results may not be obtained.

Curve fitting is a process of generating a curve which
best represents the characteristics of a system using
the input data set. It is the basis of any analytical,
comparative or growth related statistics. The objec-
tive [1] of curve fitting is to select parameter values
which minimize the total error over the set of data
points being considered. Curve fitting finds its appli-
cations in image processing, company growth related
graphs, prediction statistics, finance, pattern recogni-
tion and many more.

Earlier, due to insufficient methods of exact curve Genetic algorithm [1] approach is used by by Gulsen
fitting, a system characterization was being reduced et al. (1995) for curve fitting which can solve opti-
to that of a straight line equation for simplicity, us- mization problems, wherein each solution is encoded
ing minimum data to develop a plot. For example, an as a vector of real valued coefficients. Curve fitting
exponential or a power law expression was converted with Bezier cubics [3] by Lejin and Hao (1996) uses
into a semi-log or a log-log graph respectively, to fit piecewise approximation approach consisting of cu-
an approximate straight line. Polynomial expressions bic curve pieces, connected end to end, to get a good
were introduced with various constants to obtain bet- representation of an image outline. But, this method
ter representations, yet this method could not suffice does not work in fitting the curve when there are many
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points of inflexions. Ilaria et al. (2001) Bayesian
method [4] uses probability and probability distribu-
tion concepts for curve fitting rather than using the bi-
nary logic. Aris Spanos [5] discusses the curve-fitting
problem using the reliability of inductive inference as
a primary criterion for the fittest curve. Frisken [6]
proposes a method for fitting a piecewise paramet-
ric curve to a sequence of digitized points such as
those acquired computer mouse or digitizing pen. The
method uses vector distance fields, to represent the in-
tended input path of the digitized points in order to
achieve its quality and performance. The local linear
regression method [7], by Desmet and Gijbels (2011)
discusses the procedure of parameter selection con-
sidering target functions with an unknown number of
irregularities of unknown type. The method of arbi-
trage smoothing [8], by Paul and Kees (2009) is an
empirical method which gradually imposes arbitrage
restrictions in fitting a sequence of yield curves. It
controls arbitrage errors that arise while fitting curves.

According to Christopher and Roach (1992) Ar-
tificial neural network (ANN) [9] is typically much
faster than any other conventional iterative approach.
Works of Barbosa et al., (2006) show that ANN is
capable of fitting calibration curves to a multivari-
ate system [10] and to describe physical responses of
an input to a UAV system [11] with a good detail.
In paper [13] the problem with the introduction of a
large quantity of wind generators on the electric grid
is presented. A method based in artificial neural net-
works (ANN) is used to predict the average hourly
wind speed. Mohammadi et al.’s [14] shows an ap-
proach developed for prediction deformation of up-
setting processes. The approach combines the finite
element method and Neural Network to view the re-
sultant deformation changes in upsetting. The perfor-
mances of the NARX model [15] are verified for sev-
eral types of chaotic or fractal time series applied as
input for neural network, in relation with the number
of neurons, the training algorithms and the dimensions
of his embedded memory ANN is a tool used for com-
puting complex relations between the input and the
output parameters or entries. Using the input values,
the artificial neurons train themselves to produce the
initially given output values, thereby developing a pat-
tern. The connection so established, is then applied
on another set of interpolate values to give the desired
output to the user.

The above methods have succeeded in generating
accurate plots, provided the input data is sufficient.
But none have discussed the issue of how number of
inputs affect curve fitting. The accuracy of the plot has
been concentrated upon, whereas, minimizing the in-
put parameters so as to achieve the same, is untouched
(has not been worked on).
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In this paper, we are showcasing the capability
of ANN to fit accurate curves even with coarse data
input. And meanwhile, develop a pattern between the
number of input entries and the number of neurons to
be used. This saves the user from entering large set of
data to generate an accurate graph.

2 Methodology

In order to illustrate the above, we have used the
Weibull distribution curve (section 2.1) and a complex
trigonometric sinusoidal system (section 2.2), and ar-
rived at a limit to the minimum number of input en-
tries i.e. a coarse data that yields an accurate trend.
Making a similar application to the mechanism used
for deep drawing press, a complex real world prob-
lem (section 3), ANN proves to be a simple method of
curve fitting.

2.1 Weibull Distribution Curve

Weibull Distribution is a continuous probability dis-
tribution, found most likely in the field of probabil-
ity theory and statistics. It is far more likely to be
discussed and used in works dealing with experimen-
tal results, particularly reliability. It is a chameleon
distribution, asymmetrical, containing a good approx-
imation of both normal as well as an exact rep-
resentation of exponential distribution. There are
2 forms of Weibull, the three- parameter and two-
parameter(zg = 0) distributions. We have used the
three- parameter Weibull for our example. The ex-
pression is:

R(z) = e_(x_xo)/(t_xo)b,a: > 10,

where,

xo = guaranteed value of x (zg > 0)

t = a characteristic value (¢t > xq)

b = a shape parameter (b > 0)

The variate serves a role similar to the mean and
represents a value of x below which lie below 63.2
% of the observations. The shape parameter b con-
trols the skewness of the distribution. In the range
3.3 < b < 3.5, approximate symmetry is obtained
along with a good approximation to the normal distri-
bution.

To find the probability function, we note that

F(z) = [1 = R(z)]

Differentiating the above with respect to x and solving
it results in the final expression:
(z—=zq)

9 b T—x 1), =
O = L) Ve o
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The nature of the plot for the above expression
varies with the value b. For larger values of b, the
curve skews to the right and for smaller values it
skews to the left. In our analysis, the value assumed
for the different constants are:

20 = 0.98; t = 2.53; b=1.7;

For the above assumed values, we have developed
a curve and used the concept of ANN to fit a curve for
a given set of coarse input data(x).

2.1.1 ANN Graph for coarse data

In the Figure 1, the curve is obtained as a result of the
entered coarse set of points (15 points). The data is as
follows: (z,y)

X axis: 1.00 1.08 1.15 1.46 1.55
Y axis: 0.0522 0.1595 0.2281 0.4213 0.4536
X axis: 2.05 2.20 2.6 3.10 35
Y axis: 0.4968 0.4767 0.3844 0.2487 0.1569
X axis: 3.84 4.0 4.40 4.68 5.0
Y axis: 0.0991 0.0782 0.0410 0.025 0.0136

Theoreteal phot
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Figure 2: Graph for Weibull curve with coarse input
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As it can be seen from Figure 2, values at the
peaks are insufficient to plot a perfect Weibull curve,
corresponding to the given conditions. In order to ob-
tain an accurate plot through ANN, selection of num-
ber of neurons is an important factor. For a partic-
ular range of data entered, there exists an optimum
number of neurons which best fits the same. This has
been shown through the following set of graphs for
different number of neurons (4-6 neurons), keeping
the peak value and the average error of the ANN graph
as parameters of comparison. Since the initial rise and
dip in the graph are more or less traceable, predicting
the peak accurately in this curve holds the main de-
termining factor for finding the appropriate number of
neurons. Graphs for different number of neurons has
been shown below which also indicate the dependence
of the same on accuracy of the plot.

A.) 4 NEURONS: See Figure 3 and Table 1

i I I I I i 1
15 2 &5 3 is L] 45 5
x

Figure 3: ANN predicted curve for 4 neurons

Table 1: ANN predictions and errors with 4 neurons

X Y(ANN) | y(theoretical) | Error (%)
1.00 | 0.0758 | 0.0621 -22.0399
1.26 | 0.3153 | 0.3135 -0.5742
1.40 | 0.3973 | 0.3944 -0.7353
1.60 | 0.4645 | 0.4678 0.7054
1.70 | 0.4813 | 0.4887 1.5142
1.90 | 0.4915 | 0.5042 2.5188
2.10 | 0.4792 | 0.4913 2.4629
2.20 | 0.4668 | 0.4767 2.0768
240 | 04316 | 0.4358 0.9637
2.60 | 0.3850 | 0.3849 -0.0260
3.00 | 0.2713 | 0.2750 1.3455
3.20 | 0.2165 | 0.2236 3.1753
340 | 0.1746 | 0.1776 1.6892
3.80 | 0.1054 | 0.1049 -0.4766
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B.) S NEURONS: See Figure 4 and Table 2
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Figure 4: ANN predicted curve for 5 neurons

Table 2: ANN predictions and errors with 5 neurons

X Y(ANN) | y(theoretical) | Error (%)
1.00 | 0.0651 0.0621 -4.7297
1.26 | 0.3163 | 0.3135 -0.8931
1.40 | 0.3976 | 0.3944 -0.8114
1.60 | 0.4667 | 0.4678 0.2351
1.70 | 0.4859 | 0.4887 0.5729
1.90 | 0.5019 | 0.5042 0.4562
2.10 | 0.4917 | 0.4913 -0.0814
2.20 | 0.4767 | 0.4767 0.0000
2.40 | 0.4338 | 0.4358 0.4589
2.60 | 0.3849 | 0.3849 0.0000
3.00 | 0.2756 | 0.2750 -0.2182
3.20 | 0.2232 | 0.2236 0.1789
340 | 0.1771 0.1776 0.2815
3.80 | 0.1049 | 0.1049 0.0000

C.) 6 NEURONS: See Figure 5 and Table 3
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Figure 5: ANN predicted curve for 6 neurons
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Table 3: ANN predictions and errors with 6 neurons

X Y(ANN) | y(theoretical) | Error (%)
1.00 | 0.0604 | 0.0621 2.8314
1.26 | 0.3270 | 0.3135 -4.3062
1.40 | 0.4123 | 0.3944 -4.5385
1.60 | 0.4467 | 0.4678 4.5105
1.70 | 0.4613 | 0.4887 5.6067
1.90 | 0.4777 | 0.5042 5.2559
2.10 | 0.4803 | 0.4913 2.2390
2.20 | 04776 | 0.4767 -0.1888
2.40 | 0.4553 | 0.4358 -4.4745
2.60 | 0.3840 | 0.3849 0.2338
3.00 | 0.2412 | 0.2750 12.2909
3.20 | 0.2360 | 0.2236 -5.5456
340 | 0.1928 | 0.1776 -8.5586
3.80 | 0.0994 | 0.1049 5.2431
RESULT:

Table 4: Effect of number of neurons on ANN

predictions
No of neurons 4 5 6
Average error (%) -0.53 -0.3 0.75
Maximum error (%) | -22.04 | -4.72 12.3
Peak value

(Theoretical) 0.5042 | 0.5042 | 0.5042
Peak value

(ANN) 0.4915 | 0.5019 | 0.4777

Table 4 shows the effect of number of neurons on
the predictions using ANN. We can see that the aver-
age error for all the curves is considerably low, but the
actual crux of the problem lies in obtaining the accu-
racy of the plot at sensitive parts(e.g. peaks, valleys
etc) which can otherwise be easily missed while plot-
ting. Taking the above into consideration, the results
have been consolidated. When the number of neu-
rons is 4, the peak value predicted is only 0.4915 (in-
dicating 2.518% error) and the maximum error in the
prediction is -22.04%. When 5 neurons are used for
predictions, the peak value is 0.5019 (0.4562% error)
and the maximum error is -4.73%. When the number
of neurons is increased to 6, the peak value is 0.4777
(5.255% error) and the maximum error is 12.29%.

Therefore, we observe that for a specified range of
inputs, there is an optimum value for number of neu-
rons which yields the correct graph. Deviating from
this number, leads to distortions in the plot. Thus, it
is clear that, for the coarse input (15 points), accurate
plot is obtained for 5 neurons (Fig. 4).
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2.2 Complex curve with varying Amplitude.
[y = x x sin(3z — 2)]:

The same concept as performed above has been ex-
tended to another example- a complex trigonometric
curve having varying amplitude. This complex curve
consists of various inflexion points and continuously
changing amplitude, which may not be plotted accu-
rately in case of missing points at the peaks and val-
leys. By applying the concept of ANN, we can show
the ability of the same to fit a curve for the given
coarse data in spite of the complexity of the curve.

2.2.1 ANN Graph for coarse data

Following the same approach, as that of Weibull,
we find similar connections between the number of
neurons required and the input data entered.

Xaxis:  0.25 0.50 0.75 1.00 1.25
Y axis:  -0.2372 -0.2397 0.1856 0.8415 1.2300

Xaxis: 1.50 1.75 2.00 2.50 2.5
Y axis: 0.8977 -0.1893 -1.5140 -1.7640 -0.0912

Xaxis: 3.00 325 350 375 4.00
Y axis: 1.9710 3.2320 2.7950 0.6521 -2.1760

As we can see from Fig.7, a lot of points are miss-
ing at the peaks and valleys which are important char-
acteristics of the curve. Depending on the selection
of the suitable number of neurons, an accurate fit for
the above incomplete curve can be obtained. Here the
parameter of comparison between the graphs is the
accuracy of prediction of the inflexion points in the
different plots corresponding to different number of
neurons.

Theoredicsl Piol

W s Jx=2 )

1 | 1 | Al Il

0 05 i 15 2 25 3 35 4

x

Figure 6: Theoretical plot for complex curve
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Figure 7: Graph for complex curve with coarse input

A.) 4 NEURONS: See Figure 8 and Table 5

4 MeeUrons

Wu g =2}

Figure 8: ANN predicted curve for 4 neurons

Table 5: ANN predictions and errors with 4 neurons

X Y(ANN) | y(theoretical) | Error (%)
0.20 | -0.2932 | -0.1971 -48.7570
0.60 | -0.1593 | -0.1192 -33.6409
0.80 | 0.1535 | 0.3115 50.7223
1.05 | 0.8608 | 0.9584 10.1836
1.30 | 1.1940 1.2300 2.9268
1.65 | 0.4895 | 0.3142 -55.7925
2.00 | -1.1360 | -1.5140 24.9670
2.30 | -1.9580 | -2.2600 13.3628
2.70 | -0.4724 | -0.4918 3.9447
3.00 | 1.9880 1.9710 -0.8625
3.30 | 3.1460 | 3.2970 4.5799
3.50 | 2.6750 | 2.7950 4.2934
3.70 | 0.9598 1.1810 18.7299
3.90 | -1.2850 | -1.0600 -21.2264
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B.) S NEURONS: See Figure 9 and Table 6

5 neurons

xsin{ =2 )

Y=

Figure 9: ANN predicted curve for 5 neurons

Table 6: ANN predictions and errors with 5 neurons
X Y(ANN) | y(theoretical) | Error (%)

0.20 | -0.2179 | -0.1971 -10.5530
0.60 | -0.0991 | -0.1192 16.8624
0.80 | 0.3145 | 0.3115 -0.9631
1.05 | 1.0060 | 0.9584 -4.9666

1.30 | 1.2210 | 1.2300 0.7317

1.65 | 0.3425 | 0.3142 -9.0070
2.00 | -1.6090 | -1.5140 -6.2748
2.30 | -2.2790 | -2.2600 -0.8407
2.70 | -0.4803 | -0.4918 2.3383

3.00 | 1.9770 | 1.9710 -0.3044
3.30 | 3.2400 | 3.2970 1.7288

3.50 | 2.8010 | 2.7950 -0.2147
3.70 | 1.2080 | 1.1810 -2.2862
3.90 | -1.0860 | -1.0600 -2.4528

C.) 6 NEURONS: See Figure 10 and Table 7

B newnns

== coarse data

i =2 )

Y=

Figure 10: ANN predicted curve for 6 neurons

E-ISSN: 2224-2880

C. Balasubramanyam, M. S. Ajay, K. R. Spandana,
Amogh B. Shetty, K. N. Seetharamu

Table 7: ANN predictions and errors with 6 neurons

X Y(ANN) | y(theoretical) | Error (%)
0.20 | -0.2027 | -0.1971 -2.8412
0.60 | -0.1394 | -0.1192 -16.9463
0.80 | 0.3332 | 0.3115 -6.9663
1.05 | 0.9135 | 0.9584 4.6849
1.30 | 1.0350 1.2300 15.8537
1.65 | 0.3986 | 0.3142 -26.8619
2.00 | -1.5140 | -1.5140 0.0000
2.30 | -2.7280 | -2.2600 -20.7080
2.70 | -0.7961 | -0.4918 -61.8747
3.00 | 2.6700 1.9710 -35.4642
3.30 | 3.2250 | 3.2970 2.1838
3.50 | 2.7950 | 2.7950 0.0000
3.70 | 1.1870 1.1810 -0.5080
3.90 | -0.5968 | -1.0600 43.6981

From the above plots, though there are many
points of inflexion in the graph, for means of com-
parison we have chosen a point at x = 2.3. The
trough value predicted for the corresponding abscissa
is noted for different plots given by different neurons
and results are tabulated to determine the best fit.

RESULT:

Table 8: Effect of number of neurons on ANN
predictions

No of neurons 4 5 6
Average Error (%) -1.89 | -1.15 | -7.55
Maximum Error (%) | -55.79 | -10.55 | -61.87
Trough value
(Theoretical)
Trough value
(ANN)

-2.26 | -2.26 | -2.26

-1.95 | 227 | -2.72

From Table.8 we can observe that for the chosen
abscissa (x = 2.3), the plots corresponding to 4 and
6 neurons show a large deviation from the theoretical
value (y = —2.26), whereas the graph produced by 5
neurons proves to be the required best fit. Also com-
paring the overall error, we see that the plot produced
by 4 neurons has a value of -1.8977% and that of 6
neurons has a value of -7.5536%. Whereas the plot
for 5 neurons contains the minimum deviation from
the theoretical plot with a value of -1.1572%. Also the
maximum error posed is very high for 4 and 6 neurons
as compared to that of 5 neurons. Here too we observe
that for a specific number of neurons (5 in this case),
an accurate fit for any complex curve can be obtained.

Similarly, by applying the above concept to sev-
eral other examples we have arrived at a relation be-
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tween the number of inputs used and the correspond-
ing number of neurons required to obtain the required
best fit. We observe that, depending on the complexity
of the curve, for a higher number of inputs, the num-
ber of neurons required for the best fit also increases.
The final relation has been consolidated in conclusion
section.

The above examples and results shown validate
our idea of simplicity of curve fitting through ANN.
So, this approach can now be applied to real world
problems.

3 Application of ANN to Real Life
Problem:

DEEP DRAWING PRESS and its Mechanism:
Deep drawing press is a metal forming operation in
which blank is radially drawn into forming die by the
mechanical action of punch. Deep drawing is a shape
transformation process with material retention. The
mechanism used for this, comprises of three 4 bar
chains which link the crank to the sliding press. The
technological process requires that the die approaches
the work piece with medium-high velocity and moves
with almost constant low velocity during the operation
and thereafter returns quickly [12]. The methodology
of curve fitting through ANN has been applied to the
link mechanism of a deep drawing press (Fig 11) to
generate plots of slider displacement and velocity us-
ing coarse data.

Figure 11: Mechanism used for deep-drawing press
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3.1 Displacement graphs:

By applying loop equations to the 4 bar chains and
reducing them, we arrive at a final relation between
slider displacement (I;) and crank angle (62) which
helps in generating the displacement graph. The
table below shows the coarse input data collected for
displacement for various crank angles.

X axis: 0.00 60.0 90.0 120 150
Y axis: 46.902 53.787 58.527 61.453 63.302

X axis: 180 220 270 313 320
Y axis: 65.824 68.436 64.256 53.727 51918

Theoretical plot
70 T o

& Z &

HSPLACEMENT (inches)

=

liE'I:I 5:0 11IJ{J 1.'I'.-ﬂ E'EI.'ID E;HJ ".-III:D 3%0 A0
CRANK ANGLE (dagrees)
Figure 12: Theoretical Graph of displacement v/s

crank angle

- DISPLACEMENT va CRANK ANGLE

& Z i

DISPLACEMENT(inches)

]

on.
i

i

50 100 150 200 250 300 350
CRANK ANGLE (degress)

Figure 13: Graph of displacement v/s crank angle
(coarse input)

Generating the required graph through ANN:
A.) 4 NEURONS: See Figure 14
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DISPLACEMENT vs CRANK ANGLE

1]

DISPLACEMENT(inchas)

50 100 150 200 250 300 350
CRANK ANGLE(degress)

Figure 14: ANN predicted curve for 4 neurons

B.) S NEURONS: See Figure 15

55 DISPLACEMENT vs CRANK ANGLE

| == Coarse dala
P

[=:]
o

i

=

DISPLACEMENT (inches)
o
o

8

451 i i i ] 1 i

0 50 100 150 200 250 300 2350 400
CRAMNK ANGLE (degrees)

Figure 15: ANN predicted curve for 4 neurons

RESULT:

In accordance with the relation obtained between
the number of inputs and the number of neurons from
the previous examples and extending the same to the
displacement characteristics, we observe that for 4
neurons, an accurate graph is obtained. The number
of inputs used in this case is only 11.

Table 9:ANN predictions and errors with 4 neurons

(ng) Y disp(in) | Actual disp(in) | Error (%)
1 53.26 53.477 0.400
16 47.97 50.122 4.293
31 46.30 47.855 3.250
46 46.59 46.921 0.705
61 47.80 47.295 -1.067
76 49.44 48.754 -1.407
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(Djig) Y disp(in) | Actual disp(in) | Error (%)
91 51.26 50.960 -0.588
106 53.15 53.525 -0.700
121 55.06 56.080 1.818
136 56.92 58.327 2.412
151 58.72 60.088 2.276
166 60.42 61.349 1.514
181 62.00 62.284 0.456
196 63.45 63.200 -0.395
211 64.76 64.340 -0.652
226 65.92 65.686 -0.356
241 66.94 67.007 -0.099
256 67.80 68.084 0.329
271 68.41 68.480 0.102
286 68.56 68.151 -0.600
301 67.65 66.865 -1.174
316 64.69 64.545 -0.224
331 59.78 61.283 2.452
346 55.37 57.409 3.551

Average error= 0.77%

3.2 Velocity graphs:

Assuming a specific RPM for the crank, values of ve-
locity can be found for corresponding crank angles to
obtain the velocity plot.

The following table shows the coarse input:

X axis:
Y axis:

X axis:
Y axis:

X axis:
Y axis:

X axis:
Y axis:

X axis:
Y axis:

X axis:
Y axis:

X axis:

10
0.918

70
3.017

100
2.070

150
1.212

230
0.664

270
2.936

318

15
1.298

75
2.920

110
1.638

160
1.360

235
0.683

311
4.522

320

20

25

30

1.710 2.072 2.363

80
2.763

120
1.133

170
1.650

240
1.070

312
4.486

325

85
2.585

130
1.180

180
1.670

245
1.472

314
4.436

330

90
2.382

140
1.064

190
1.593

250
2.145

316
4.327

335

Y axis: 4.079 4.050 3.785 3.345 2.860

X axis:

340

345

350

360
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Y axis: 2.230 1.905 1.236 0.000
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Figure 16: Graph of velocity v/s crank angle for
coarse data
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Generating the required graph through ANN:
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Figure 17: ANN predicted curve for 8 neurons

RESULT

Accurate graphs are obtained for multiple points
of inflexion for both displacement and velocity plots
corresponding to correct number of neurons (here,
correct number of neurons is 8).

Table 10: ANN predictions and errors with 8 neurons

X (deg) | Vel (ANN) ( A:It(:llal) Error (%)
4.5 -0.4402 -0.4000 | -10.0500
28.5 -2.2900 -2.2630 | -1.1931
52.5 -2.9170 -3.1180 | 6.4464
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X (deg) | Vel (ANN) ( Azz:llal) Error (%)
76.5 -2.8340 -2.8590 | 0.8744
100.5 -2.0030 -1.9700 | -1.6751
124.5 -1.1760 -1.1380 | -3.3392
148.5 -1.2040 -1.2110 | 0.5780
172.5 -1.5930 -1.6440 | 3.1022
196.5 -1.6430 -1.5032 | -9.3002
220.5 -1.1490 -1.4345 | 19.9024
244.5 1.5960 1.4220 -12.2363
268.5 3.7720 3.1150 -21.0915
292.5 4.4270 4.6000 3.7609
316.5 4.2330 4.2800 1.0981
340.5 2.2940 2.2900 -0.1747

Average Error= 1.5532%

Though a maximum error of 21% is obtained at
a point, we can see that the average error is low and
thereby succeeds in tracing the curve quite accurately
at almost all of the intervals. It is also successful in
predicting the peaks quite effectively.

We, therefore, conclude from Table 10 that, even
for such a highly non-linear plot containing ridges and
valleys at different parts of the graph, ANN is very
much capable of providing the best fit, in spite of a
coarse data, corresponding to the optimum number of
neurons.

4 Educational Value:

While conducting experiments, results are recorded
at particular intervals. Graphs are plotted with these
records to analyze the system. Hence, it is necessary
that the plot obtained is accurate enough. But the data
is insufficient to characterize the system between the
intervals, especially in indicating the points of inflex-
ions. In such a situation, ANN succeeds in generating
the best representation of the intermediate (missing)
data. This methodology can be utilized widely in un-
derstanding the behavior of any system. Therefore,
it can be incorporated as a part of the experimental
procedures in laboratories, to get better and accurate
results.

5 Conclusion:

An attempt has been made in this paper to fit curve for
coarse data using ANN. The effect of number of neu-
rons on the accuracy of the prediction is illustrated for
2 examples of Weibull distribution curve and a com-
plex trigonometric sinusoidal curve. This methodol-
ogy is successfully extended to an 8-bar mechanism
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used in deep drawing press, for obtaining both dis-
placement and velocity plots.

From the analysis, the following can be con-
cluded for relating the number of inputs to the number
of neurons for obtaining the required best fit.

o For a coarse input set consisting of up to 10 to 15
entries, the number of neurons required to get the
desired graph is 3 or 4.

o For a relatively bigger set of inputs of around 30-
40 entries, optimum number of neurons is 7 or 8 (as
shown in the velocity plot of the deep drawing press
mechanism).

-Use of more than 10 neurons is undesirable, as the
graph generated tends to distort and fails to predict
correctly the trends of the system.

o For a very large input data there is no need to use
ANN to fit a curve as the input points joined together
itself proves sufficient to plot the required graph.

Therefore we are able to show that in experi-
ments/ studies requiring a huge number of inputs and
calculations to be entered in order to produce an ap-
propriate graph, ANN reduces that burden and proves
to be a simple tool for efficient curve fitting even for
insufficient or coarse data.
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