
On Construction Third Order Approximation
Using Values of Integrals

I. G. BUROVA, T. O. EVDOKIMOVA
Faculty of Mathematics and Mechanic

Saint-Petersburg State University
Universitetsky prospekt, 28, Peterhof, St. Petersburg

RUSSIA
burovaig@mail.ru, i.g.burova@spbu.ru, t.evdokimova@spbu.ru

Abstract: Sometimes results of experiments contain values of integrals of a function over sub-intervals however
one needs to construct a continuous approximation of the function on the interval. This problem may be solved by
the polynomial or by the trigonometrical integro-differential splines that are constructed in this paper. The integro-
differential splines are useful for construction the approximation of the function on each sub-interval separately.
We use the values of the integrals of the function over sub-intervals and construct a continuous approximation
of the function on the interval by the polynomial integro-differential spline, and by the trigonometric integro-
differential spline in two steps. First we obtain discontinuous third order approximation of the function in form
of the polynomial integro-differential spline, or the trigonometrical integro-differential spline. Approximation on
sub-interval uses only the values of the integrals of the function to be approximated over three intervals and basic
functions which we obtain here. Then we construct continuous approximation of the function on the interval by
solving the system of equations. After that we compare the properties of solutions in form of the polynomial and
in form of the trigonometric integro-differential splines. One can see that for trigonometric function sometimes
the trigonometric integro-differential spline gives better approximation then the polynomial integro-differential
spline. Finally we construct approximation of the function in case we use quadrature formula of the third order
instead of the value of the integral over sub-interval.

Key–Words: interpolation, splines, polynomial splines, trigonometric splines, polynomial integro-differential
splines, trigonometric integro-differential splines, approximation, error of approximation

1 Introduction

Nowadays it is impossible to solve many different
problems without help of splines [1–5].

Sometimes the results of experiments contain
values of function by intervals and it is necessary
to have approximation of the function. In this
case we can construct approximation with integro-
differential splines. Integro-differential smooth poly-
nomial splines were invented by Kireev [6].

Nonpolynomial integro-differential splines were
regarded in [7]. They may use the values of a function
and its derivatives. We construct approximation by
basic integro-differential splines on each interval sep-
arately. Integro-differential polynomial splines of the
fifth order and approximations by them with different
properties were presented in [8, 9]. Nonpolynomial
splines without values of integrals were constructed
in [10–14].

In this paper we consider approximation of
functions by polynomial and trigonometric integro-
differential splines. The approximations use only the
values of the integrals of the function to be approxi-
mated. First we obtain discontinuous approximation,
then we show how to construct continuous approxi-
mation, and construct approximation in case we ap-
proximate integral by quadrature formula.

2 Construction of polynomial splines
Let a, b be real numbers, n positive integer, n ≥ 2.
Suppose that X : a = x0 < . . . < xk−1 <
xk < xk+1 < . . . < xn = b is a uniform grid
of nodes in the interval [a, b] with step h = b−a

n .
We assume that φi(x), i = 1, 2, 3 is Chebyshev
system on [x0, xn], φi ∈ C3[x0, xn]. Let function
u be such that u ∈ C3[a, b] and we have the val-
ues of

∫ xk

xk−1
u(τ)dτ , k = 1, . . . , n. We construct
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an approximation of function u(x) on each interval
(xk, xk+1) in the form:

ũk(x) =

( xk∫
xk−1

u(t)dt

)
ω<−1>
k (x)+

( xk+1∫
xk

u(t)dt

)
ω<0>
k (x)+

( xk+2∫
xk+1

u(t)dt

)
ω<1>
k (x), (1)

where ω<−1>
k (x), ω<0>

k (x), ω<1>
k (x) are deter-

mined from conditions:

ũk(x) = u(x) for u(x) = φi(x), i = 1, 2, 3.

Let φi = xi−1, i = 1, 2, 3. On interval
(xk, xk+1) the basis splines ω<s>

k (x), s = −1, 0, 1,
are obtained from the system of equations:

hω<−1>
k (x) + hω<0>

k (x) + hω<1>
k (x) = 1,

−1

2
h2ω<−1>

k (x) +
1

2
h2ω<0>

k (x) +
3

2
h2ω<1>

k (x) = x,

1

3
h3ω<−1>

k (x) +
1

3
h3ω<0>

k (x) +
7

3
h3ω<1>

k (x) = x2.

If t ∈ (0, 1), x = xk + th, then:

ω<−1>
k (t) =

1

6h
(2− 6t+ 3t2), (2)

ω<0>
k (t) = − 1

6h
(−6t+ 6t2 − 5), (3)

ω<1>
k (t) =

1

2h
t2 − 1

6h
. (4)

From (2)–(4) we find:

|ω<−1>
k (t)| ≤ 1

3h
, |ω<0>

k (t)| ≤ 13

12h
, |ω<1>

k (t)| ≤ 1

3h
.

Let us put:
∥f∥ = ∥f∥X(a,b) = max

k
sup

x∈(xk−2,xk+2)
|f(x)|,

∥f∥(xk,xk+1) = sup
x∈(xk−2,xk+2)

|f(x)|.

Let us take Ũ(x), x ∈ (a, b), such that:

Ũ(x) = ũk(x), x ∈ (xk, xk+1), k = 0, . . . , n− 1.

Theorem 1 Let u ∈ C3[a, b], ũk(x), defines by for-
mulas (1), (2) – (4). Next relation is true:

|ũk(x)− u(x)| ≤ Kkh
3∥u′′′∥(xk−2, xk+2), (5)

where Kk ≤ 0.44, x ∈ (xk, xk+1).

Proof: Using a Taylor formula to represent u(t) at
the xk and taking into account formulas (2) – (4), one
obtains for x ∈ (xk, xk+1):

|ũk(x)−u(x)| ≤ 0.44h3 sup
x∈(xk−2,xk+2)

|u′′′(x)|. (6)

Now we have (5) from (6) with Kk ≤ 0.44. ⊓⊔

Corollary 2 Next relation is true:

∥Ũ − u∥(a+2h,b−2h) ≤ Kh3∥u′′′∥(a,b), K ≤ 0.44.

Proof: It follows from (5). ⊓⊔
The maximums of absolute values of actual and

theoretical errors of approximation by polynomial
splines are defined by (1), (2)–(4) on interval [−1, 1]
with step h = 0.1 are presented in table 1.

Table 1: The maximums of actual and theoreti-
cal errors of approximation by polynomial integro-
differential splines.

u(x) Actual err. Theoret. err.
1 1/(1 + 25x2) 0.32 · 10−1 0.257
2 sin(x) 0.83 · 10−4 0.44 · 10−3

3 x3/3! 0.83 · 10−4 0.88 · 10−3

4 x5/5! 0.38 · 10−4 0.53 · 10−2

3 Construction of trigonometrical
splines

Let φ1 = 1, φ2 = sin(x), φ2 = cos(x). On interval
(xk, xk+1) the basis splines ω̃<s>

k (x), s = −1, 0, 1,
are obtained from system of equations:

hω̃<−1>
k (x) + hω̃<0>

k (x) + hω̃<1>
k (x) = 1, (7)

xk∫
xk−1

sin(t)dt ω̃<−1>
k (x) +

xk+1∫
xk

sin(t)dt ω̃<0>
k (x) +

xk+1∫
xk

sin(t)dt ω̃<1>
k (x) = sin(x), (8)

xj∫
xj−1

cos(t)dt ω̃<−1>
k (x) +

xk+1∫
xk

cos(t)dt ω̃<0>
k (x) +

xk+1∫
xk

cos(t)dt ω̃<1>
k (x) = cos(x). (9)
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Let t ∈ (0, 1) x = xk + th. From the system
(7)–(9) we obtain:

ω̃<−1>
k (t)=

−h cos(th−h)+sin(h)

−h sin(2h) + 2h sin(h)
, (10)

ω̃<0>
k (t)=

h cos(th−h)− sin(2h) +h cos(th)

−h sin(2h) + 2h sin(h)
,

(11)

ω̃<1>
k (t) =

− cos(th)h+ sin(h)

−h sin(2h) + 2h sin(h)
. (12)

Taking into account that t ∈ (0, 1) we find:

|ω̃−1
k (t)| ≤ h cos(h)− sin(h)

2h(cos(h)− 1) sin(h)
, (13)

|ω̃<0>
k (t)| ≤ h

√
2− s1 sin(2h)

−(s1h sin(2h) + 2s1h sin(h))
, (14)

where s1 =
√

1/(cos(h) + 1)),

|ω̃<1>
k (t)| ≤ −h cos(h) + sin(h)

−h sin(2h) + 2h sin(h)
. (15)

We construct an approximation of function u(x) on
each interval (xk, xk+1) in form:

˜̃uk(x) =
(∫ xk

xk−1

u(t)dt

)
ω̃<−1>
k (x)+(∫ xk+1

xk

u(t)dt

)
ω̃<0>
k (x)+(∫ xk+2

xk+1

u(t)dt

)
ω̃<1>
k (x), (16)

where ω̃<−1>
k (x), ω̃<0>

k (x), ω̃<2>
k (x) are determined

by (10) – (12).

Theorem 3 Let u ∈ C3[a, b], ˜̃uk(x), defined by for-
mulas (16), (10) – (12).

Next relation is true:

|˜̃uk(x)− u(x)| ≤ K̃kh
3∥u′ + u′′′∥(xk−2,xk+2), (17)

where x ∈ (xk, xk+1), K̃k ≤ 1/8.

Proof: The function u(x) in trigonometric case (as
was shown by the author at the conference in Gdansk,
May 15–17, 2014) on interval (xk, xk+1) can be rep-
resented in the form:

u(x) =
1

2

∫ x

xk

((sin(x/2− t/2))2dt+

c1 + c2 sin(x) + c3 cos(x),

where c1, c2, c3 are arbitrary constants. We have∫ xk

xk−1

u(x)dx = (−1/2+(1/2) cos2(h/2)+h2/8)+

(cos(xk−1)− cos(xk))c2+

(− sin(xk−1) + sin(xk))c3 + c1h,

∫ xk+1

xk

u(x)dx = (−1/2+(1/2) cos2(h/2)+h2/8)+

(cos(xk)− cos(xk+1))c2+

(− sin(xk) + sin(xk+1))c3 + c1h,

∫ xk+2

xk+1

u(x)dx = (−(1/2) cos2(h/2) + 3h2/8+

(1/2) cos2(h)) + (cos(xk+1)− cos(xk+2))c2+

(− sin(xk+1) + sin(xk+2))c3 + c1h.

Taking into account formulas (13) – (15) we find (17)
with constant K̃k ≤ 1/8. ⊓⊔

Let us define Ũ(x) x ∈ (a, b), by relation:

˜̃
U(x) = ˜̃uk(x), x ∈ (xk, xk+1), k = 0, . . . , n−1.

Corollary 4 Next relation is true:

∥ ˜̃U − u∥(a+2h,b−2h) ≤ Kh3∥u′′′ + u′∥(a+2h,b−2h),

K ≤ 1/8.

Proof: It follows from (17). ⊓⊔
The maximums of absolute values of actual and

theoretical errors of approximation by trigonometri-
cal integro-differential splines are defined by (16),
(10) – (12) on interval [−1, 1] with step h = 0.1 are
presented in table 2.

Table 2: Actual and theoretical errors of approxima-
tion by trigonometrical integro-differential splines.

u(x) Actual err. Theoret.err.
1 1/(1 + 25x2) 0.33 · 10−1 0.73 · 10−1

2 sin(x) 0. 0
3 x3/3! 0.12 · 10−3 0.38 · 10−3

4 x5/5! 0.42 · 10−4 0.16 · 10−2
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4 Construction of continuous
polynomial approximations

Let us take φi = xi−1, i = 1, 2, 3. Let Ck+1, Ck be
real numbers, N = n − 2. Let us take ω<i>

k (x) in
form (2) – (4).

We construct an approximation for u(x) on
(xk, xk+1) in form:

ũCk (x) =

(∫ xk

xk−1

u(t)dt

)
ω<−1>
k (x)+(∫ xk+1

xk

u(t)dt

)
ω<0>
k (x) + Ck+1 ω

<1>
k (x). (18)

On (xk−1, xk) we take another approximation for
u(x) in form:

ũCk−1(x) =

(∫ xk−1

xk−2

u(t)dt

)
ω<−1>
k−1 (x)+(∫ xk

xk−1

u(t)dt

)
ω<0>
k−1 (x) + Ck ω<1>

k−1 (x),

From the condition ũCk−1(xk−) = ũCk (xk+) we ob-
tain the system of equations:

Ck+1 + 2Ck = fk, k = 2, . . . , N − 1, (19)

fk =

xk−1∫
xk−2

u(t)dt− 3

xk∫
xk−1

u(t)dt+5

xk+1∫
xk

u(t)dt,

2CN = fN , (20)

fN =

xN−1∫
xN−2

u(t)dt− 3

xN∫
xN−1

u(t)dt+

5

xN+1∫
xN

u(t)dt−
xN+2∫

xN+1

u(t)dt.

Solving (19)–(20) we obtain:

CN = fN/2,

CN−i−1 = −(CN−i − fN−i−1)/2,

i = 1, . . . , N − 1.

5 Construction of continuous
trigonometrical approximations

Let φ1 = 1, φ2 = sin(x), φ2 = cos(x), C̃i be real
numbers. Let us find ω̃<i>

k (x) from (10)–(12). On
(xk, xk+1) approximation for u(x) we take in form:

˜̃uCk (x) =

(∫ xk

xk−1

u(t)dt

)
ω̃<−1>
k (x)+(∫ xk+1

xk

u(t)dt

)
ω̃<0>
k (x) + C̃k+1 ω̃

<1>
k (x). (21)

On (xk−1, xk) we take an approximation for u(x) in
form:

˜̃uCk−1(x) =

(∫ xk−1

xk−2

u(t)dt

)
ω̃<−1>
k−1 (x)+(∫ xk

xk−1

u(t)dt

)
ω̃<0>
k−1 (x) + C̃k ω̃<1>

k−1 (x),

From relation ˜̃uCk−1(xk−) = ˜̃uCk (xk+) we find:

dk+1C̃k+1 + dkC̃k = 6hfk, k = 2, . . . , N − 1,

dN C̃N = 6hfN ,

where

dk =
6h(sinh− h cosh)

2h sinh(1− cosh)
,

dk+1 = − 6h(sinh− h)

2h sinh(1− cosh)
,

fk = A(h)

(∫ xk−1

xk−2

u(t)dt

)
+

B(h)

(∫ xk

xk−1

u(t)dt

)
+ C(h)

(∫ xk+1

xk

u(t)dt

)
;

dN =
6h(sinh− h cosh)

2h sinh(1− cosh)
,

fN = A(h)

(∫ xN−1

xN−2

u(t)dt

)
+B(h)

(∫ xN

xN−1

u(t)dt

)
+

+C(h)

(∫ xN+1

xN

u(t)dt

)
−A(h)

(∫ xN+2

xN+1

u(t)dt

)
,

A(h) =
sin(h)− h

2h sinh(cosh− 1)
,

B(h) =
2h cosh− sinh− sin 2h+ h

2h sinh(cosh− 1)
,

C(h) =
sin 2h− h cosh− h

2h sinh(cosh− 1)
.
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6 Some results
Lemma 5 1) In polynomial case next relation is true:

|Ck −
∫ xk+1

xk

u(t)dt| ≤ K1h
4∥u′′′∥(xk−2,xk+2),

K1 =
3

2
. (22)

2) In trigonometrical case next relation is true:

|C̃k−
∫ xk+1

xk

u(t)dt| ≤ K2h
4∥u′+u′′′∥(xk−2,xk+2),

K2 = 9/4. (23)

Proof: In the system of equations: (19) – (20) we
make a change of variables. We put Sk = Ck −∫ xk+1

xk
u(t)dt. Now we have the system of equations:

Sk+1 + 2Sk = Fk, k = 2, . . . , N − 1,

Fk = fk −
∫ xk+2

xk+1

u(t)dt− 2

∫ xk+1

xk

u(t)dt,

FN =

∫ xN−1

xN−2

u(t)dt− 3

∫ xN

xN−1

u(t)dt+

3

∫ xN+1

xN

u(t)dt−
∫ xN+2

xN+1

u(t)dt.

In polynomial case using Taylor formula and the-
orem of the mean for integrals one obtains:

|Fk| ≤ h4K1 max
[xk−2,xk+2]

|u(3)|, where K1 =
3

2
.

As known (see [13]) |Sk| ≤ maxi |Fi|. Thus, the
inequality (22) is proved with K1 = 3/2.

In trigonometrical case, by using u(t) =
1
2

∫ t
xk
(u′+u′′′) sin2 t−τ

2 dτ+c1+c2 sin(t)+c3 cos(t),
we obtain |Fk| ≤ h4K2∥u′ + u′′′∥(xk−2,xk+2), where
K2 = 9

4 . Thus, the inequality (23) is proved with
K2 = 9/4. ⊓⊔

Theorem 6 Let u ∈ C3[a, b].
1) Let ũCk (x), x ∈ (xk, xk+1) defined by formula

(18) and polynomial splines (2)–(4), then the next re-
lation is true:

|ũCk (x)− u(x)| ≤ Kh3∥u′′′∥(xk−2,xk+2), K ≤ 0.94.

2) Let ˜̃uCk (x), x ∈ (xk, xk+1) defined by formula
(21) and trigonometrical splines (10)–(12), then the
next relation is true:

|˜̃uCk (x)−u(x)| ≤ Kh3∥u′+u′′′∥(xk−2,xk+2), K ≤ 0.87.

Proof: For polynomial splines

|ũC(x)− u(x)| ≤ |ũC(x)− ũ(x)|+ |ũ(x)− u(x)|,
we have the same for trigonometric splines and then
we use (5), (17), (22), (23). ⊓⊔

In tables 3 and 4, the maximums of the absolute
values of actual and theoretical errors of approxima-
tion by continuous polynomial splines are defined by
(18), (2)–(4) and continuous trigonometrical splines
are defined by (21), (10)–(12) on interval [−1, 1] with
step h = 0.1 are presented.

Table 3: Actual errors of approximation by continu-
ous polynomial and trigonometric splines (in Maple,
Digits=15).

u(x) Actual err. Actual err.
pol. spl. trig.spl.

1 1/(1 + 25x2) 0.21 · 10−1 0.21 · 10−1

2 sin(x) 0.40 · 10−4 0.16 · 10−14

3 x3/3! 0.80 · 10−4 0.12 · 10−3

4 x5/5! 0.43 · 10−4 0.47 · 10−4

Table 4: Theoretical errors of approximation by con-
tinuous polynomial and trigonometric splines.

u(x) Theor.err. Theor. err.
pol.spl trig.spl.

1 1/(1 + 25x2) 0.60 0.52
2 sin(x) 0.51 · 10−3 0.
3 x3/3! 0.94 · 10−3 0.13 · 10−2

4 x5/5! 0.47 · 10−3 0.47 · 10−3

In table 5, the maximums of the absolute values
of actual errors of approximation by continuous poly-
nomial splines are defined by (18), (2)–(4) and by
continuous trigonometrical splines defined by (21),
(10)–(12) on interval [−1, 1] with step h = 0.01 (in
Maple, Digits=30) are presented.

Table 5: Actual errors of approximation by continu-
ous polynomial and trigonometric splines.

u(x) Actual err. Actual err.
pol. spl. trig.spl.

1 1/(1 + 25x2) 0.16 · 10−4 0.16 · 10−4

2 sin(x) 0.44 · 10−7 0.16 · 10−11

3 x3/3! 0.79 · 10−7 0.12 · 10−6

4 x5/5! 0.40 · 10−7 0.43 · 10−7
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The approximation of the function 1/(1 + 25x2)
on [−1, 1] with h = 0.1 by continuous trigonometric
splines (21), (10)–(12) is represented in figure 1. The
approximation of the function 1/(1+25x2) on [−1, 1]
with h = 0.1 by continuous polynomial splines (18),
(2)–(4) is represented in figure 2.

–0.01

–0.005

0

0.005

0.01

0.015

0.02

–1 –0.5 0.5 1

Fig. 1: Graph of error of approximation of Runge func-
tion 1/(1 + 25x2) on [−1, 1] with h = 0.1 by continuous
trigonometric splines (21), (10)–(12).

–0.01

–0.005

0.005

0.01

0.015

0.02

–1 –0.5 0.5 1

Fig. 2: Graph of error of approximation of Runge func-
tion 1/(1 + 25x2) on [−1, 1] with h = 0.1 by continuous
polynomial splines (18), (2)–(4).

7 Continuous approximation
If we know the values of the function in points xk then
we can take continuous trigonometric approximation
of the function in form:

Ṽ (x) = u(xj)w̃j(x) + u(xj+1)w̃j+1(x)+

u(xj+2)w̃j+2(x), x ∈ [xj , xj+1], (24)

where for x = xj + th, t ∈ [0, 1]:

w̃j(xj+th) =
sin(h)− sin(th− h) + sin(th− 2h)

2 sin(h)− sin(2h)
,

(25)

w̃j+1(xj+th) =
− sin(th− 2h) + sin(th)− sin(2h)

2 sin(h)− sin(2h)
,

(26)

w̃j+2(xj + th) =
sin(th− h)− sin(th) + sin(h)

2 sin(h)− sin(2h)
.

(27)
It is easy to show that:

Ṽ (x) = u(x), u = 1, sin(x), cos(x).

Therefore

xj+1∫
xj

Ṽ (x)dx = u(xj)W0+u(xj+1)W1+u(xj+2)W2,

(28)
where

W0 =
sin(2h)− h cos(h)− h

−1 + cos(2h)
,

W1 =
h cos(h)− sin(h)

−1 + cos(h)
,

W2 =
−h cos(h) + 2 sin(h)− h

−1 + cos(2h)
.

It can be shown that:

∫ xj+1

xj

Ṽ (x)dx−
∫ xj+1

xj

u(x)dx = O(h3).

Let us compare continuous trigonometrical approxi-
mations (24)–(27) and (21), (10)–(12) where integrals
were calculated by (28).

The errors of approximation of function 1/(1 +
25x2), x ∈ [−1, 1], h = 0.1, by splines (24)–(27) are
represented in figure 3 and errors of approximation
of function 1/(1 + 25x2), x ∈ [−1, 1], h = 0.1 by
splines (21), (10)–(12), (28) are represented in figure
4.
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Fig. 3: Graph of error of approximation of Runge func-
tion 1/(1 + 25x2) on [−1, 1] with h = 0.1 by continuous
trigonometric splines (24)–(27).
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Fig. 4: Graph of error of approximation of Runge func-
tion 1/(1 + 25x2) on [−1, 1] with h = 0.1 by continuous
trigonometric splines (21), (10)–(12), (28).

If we know the values of the function in points xk
then we can take continuous polynomial approxima-
tion of the function in form:

V (x) = u(xj)wj(x) + u(xj+1)wj+1(x)+

u(xj+2)wj+2(x), x ∈ [xj , xj+1], (29)

where for x = xj + th, t ∈ [0, 1]

wj(xj + th) = 1− (3/2)t+ (1/2)t2, (30)
wj+1(xj + th) = −(t− 2)t, (31)
wj+2(xj + th) = (t− 1)t/2. (32)

It is easy to show that V (x) = u(x), u = 1, x, x2.
In (18), (2)–(4) we can use:

xk+1∫
xk

u(t)dt = (u(xk) + u(xk+1))h/2+O(h3). (33)
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Fig. 5: Graph of error of approximation of Runge func-
tion 1/(1 + 25x2) on [−1, 1] with h = 0.1 by continuous
polynomial splines (29)–(32).

Errors of approximation of Runge function
1/(1 + 25x2) on [−1, 1] by h = 0.1 by polynomial
splines (29)–(32) are represented in figure 5. Errors
of approximation of Runge function on [−1, 1] by
h = 0.1 by polynomial splines (18), (2)–(4), (33) are
represented in graphics 6.
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Fig. 6: Graphs of error approximation of Runge function
1/(1+25x2) on [−1, 1] with h = 0.1) by continuous poly-
nomial splines (18), (2)–(4), (33).

The results show that the polynomial and the trigono-
metric integro-differential splines of the third order
approximation may be used in practice but Lebesque
constant increase when h is tending to zero.
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