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Abstract: Linear discriminant analysis (LDA) is a classical approach for dimensionality reduction. It aims to max-
imize between-class scatter and minimize within-class scatter, thus maximize the class discriminant. However,
for undersampled problems where the data dimensionality is larger than the sample size, all scatter matrices are
singular and the classical LDA encounters computational difficulty. Recently, many LDA extensions have been
developed to overcome the singularity, such as, Pseudo-inverse LDA (PILDA), LDA based on generalized singular
value decomposition (LDA/GSVD), null space LDA (NLDA) and range space LDA (RSLDA). Moreover, they
endure the Fisher criterion that is nonoptimal with respect to classification rate. To remedy this problem, weighted
schemes are presented for several LDA extensions in this paper and called them weighted generalized LDA algo-
rithms. Experiments on Yale face database and AT&T face database are performed to test and evaluate effective of
the proposed algorithms and affect of weighting functions.

Key–Words: Feature extraction; dimensionality reduction; undersampled problem; weighting function; misclassi-
fication rate

1 Introduction

Many machine learning, data mining and bioinformat-
ics problems involve data in very high-dimensional
space. Undersampled problems where data dimen-
sion is larger than the sample size, frequently occur in
many applications including information retrieval [1-
3], face recognition [4-6], and microarray data analy-
sis [7].

The feature extraction process is an important part
of pattern recognition and machine learning, which
can results in computation cost decreasing and classi-
fication performance increasing. An appropriate rep-
resentation of data from all features is an important
problem in machine learning and data mining prob-
lems. All original features can not always beneficial
for classification or regression tasks. Some features
are irrelevant or redundant in distribution of data set.
These features can decrease the classification perfor-
mance. In order to increase the classification perfor-
mance and to reduce computation cost of classifier,

the feature selection process should be used in classi-
fication or regression problems [8].

Linear discriminant analysis (LDA) [9] is one of
the most popular linear projection techniques for fea-
ture extraction. However, the classical LDA usually
encounters two difficulties. One is the singularity
problem caused by the undersampled problem. In
recent years, many LDA extensions have been de-
veloped to deal with this problem, such as, pseudo-
inverse LDA (PILDA) [10-11], LDA/GSVD [12-14],
null space LDA (NLDA) [12,15], range space LDA
[16], orthogonal LDA (OLDA) [11,17], uncorrelated
LDA (ULDA) [11,18] and regularized LDA (RLDA)
[19]. In PILDA, the inverse of the scatter matrix is
replaced by the pseudo-inverse. It is equivalent to ap-
proximating the solution using a least-squares solu-
tion method. The optimal transformation is computed
through the simultaneous diagonalization of scatter
matrices. LDA/GSVD is one of generalizations of
LDA based on GSVD, it overcomes the singular-
ity of the scatter matrices by applying the GSVD to
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solve the generalized eigenvalue problem. The clas-
sical LDA solution is a special case of LDA/GSVD
method. In NLDA, the between-class distance is max-
imized in the null space of the within-class scatter
matrix. It is a two-step approach, the transformation
using a basis of null space of the within-class scatter
matrix is performed in the first stage and then in the
transformed space the second projective directions are
searched. In range space LDA, the within-class dis-
tance is minimizes in the range space of the between-
class scatter matrix. Similarly, we propose a method
based on the transformation by a basis of the range
space of the within-class scatter matrix to handle un-
dersampled problems.

Another drawback of LDA-based algorithms is
that the Fisher separability criterion is not directly
related to classification rate. A promising solution
to this problem is to introduce weighted schemes
into the criteria. We can see from [20-21,25] that
weighting functions are close with classification ac-
curacy. Different weighting functions can lead dif-
ferent classification error. Selecting suitable weight-
ing function can increase classification accuracy. In
this paper, we focus on weighted versions of PILDA,
LDA/GSVD, NLDA and range space LDA with five
weighting functions for each weighted scheme, in
which the K-Nearest neighbors (KNN) method [22]
is used for a classifier. We apply the Euclidean dis-
tance dij = ∥mi −mj∥ between the means of class
i and j in weighting functions w(dij). A weight-
ing function is generally a monotonically decreasing
function because classes that are closer to one another
are likely to have a greater confusion and should be
given a greater weightage. For weighting functions,
we first apply two special cases of the weighting func-
tion w(dij) = (dij)

−p proposed by Lotlikar et al. in
[20] with p = 1 and p = 2, and then an improved ver-
sion of weighting function w(dij) = 1

2d2ij
erf(

dij
2
√
2
)

presented by Loog in [25] where the Mahanalobis dis-
tance is replaced by the Euclidean distance. In addi-
tion, according to the feature of weighting functions,
we present two new weighting functions.

The rest of the paper is organized as follows. In
Section 2, we briefly review generalized LDA algo-
rithms. Weighted versions of generalized LDA algo-
rithms and weighting functions are introduced in Sec-
tion 3. Extensive experiments with proposed algo-
rithms have been performed in Section 4, the results
demonstrate the effective of the proposed algorithms
and the affect of weighting functions. Conclusion fol-
lows in Section 5.

2 Generalized LDA

In this section, we review several generalized LDA
algorithms which can overcome the limitation of
the classical LDA. Given a data matrix A =
[a1, · · · , an] ∈ Rm×n, where ai ∈ Rm, i = 1, · · ·n.
Assume the original data is already clustered and par-
titioned into r classes. Let A = [A1, · · · , Ar], where
Ai ∈ Rm×ni is the data matrix belonged to the i-th
class and

∑r
i=1 ni = n. LetNi be the set of indices of

i-th class, i.e., aj belongs to the i-th class for j ∈ Ni.
The aim of LDA is to find a linear transforma-

tion G ∈ Rm×l that maps each ai to yi ∈ Rl

by yi = GTai and optimally preserves the cluster
structure in the reduced-dimensional space. Let the
between-class, within-class and total scatter matri-
ces are defined as Sb =

∑r
i=1 ni(ci − c)(ci − c)T ,

Sw =
∑r

i=1

∑
j∈Ni

(aj − ci)(aj − ci)T and St =∑n
j=1 (aj − c)(aj − c)T (see [1]), where ci =

(1/ni)
∑

j∈Ni
aj and c = (1/n)

∑n
j=1 aj are class

centroids and the global centroid, respectively. We
can easily see that the trace of Sw measures the
within-class closeness and the trace of Sb mea-
sures the between-class separation. In the lower-
dimensional space obtained from the transforma-
tion G, three scatter matrices above become SL

w =
GTSwG,S

L
b = GTSbG and SL

t = GTStG. An op-
timal transformation G would maximize trace (SL

b )
and minimize trace (SL

w), simultaneously. In classical
LDA which requires Sw or Sb is nonsingular, common
optimizations include

max
G
{trace((SL

w)
−1SL

b )}

min
G
{trace((SL

b )
−1SL

w)}.
(1)

The problem (1) is equivalent to finding the
eigenvectors satisfying the generalized eigen equa-
tion Sbx = λSwx for λ ̸= 0. The solution can
be obtained by solving an eigenvalue problem on the
matrix S−1

w Sb if Sw is nonsingular or on S−1
b Sw if

Sb is nonsingular. There are at most r − 1 eigen-
vectors corresponding to nonzero eigenvalues since
rank(Sb) ≤ r − 1. Therefore, the reduced dimen-
sion by classical LDA is at most r − 1. A stable way
to solve this eigenvalue problem is to apply singular
value decomposition (SVD) on the scatter matrices,
the details can be found in [5].

When the data dimensionality is larger than the
sample size, all scatter matrices are singular and the
classical LDA is no longer applicable. In order to
solve the small sampled size problems, several gen-
eralizations of LDA have been proposed.
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2.1 Pseudo-inverse LDA

The pseudo-inverse of a matrix A, denoted as A+,
refers to a unique matrix satisfying A+AA+ =
A+, AA+A = A, (AA+)T = AA+ and (A+A)T =
A+A. The pseudo-inverse A+ is commonly com-

puted by SVD [23]. If A = U

[
Σ 0
0 0

]
V T is the

SVD of the matrix A, where U and V are orthogonal
and Σ is diagonal with positive diagonal entries, then

A+ = V

[
Σ−1 0
0 0

]
UT .

In this subsection, we consider the criterion
F1(G) = trace((SL

b )
+SL

w) proposed in [10], which
is a natural extension of (1) since the inverse of a ma-
trix may not exist, but the pseudo-inverse of a matrix
is well-defined. Moreover, when the matrix is invert-
ible, its pseudo-inverse is the same as its inverse. In
PILDA, the optimal transformation matrix G can be
obtained by solving a minimization problem

min
G

F1(G). (2)

The main technique for solving the problem (2) is
to use GSVD. Define the matrices

Hw = [A1 − c1(e1)T , · · · , Ar − cr(er)T ],
Hb = [

√
n1(c1 − c), · · · ,

√
nr(cr − c)],

Ht = [a1 − c, · · · , an − c],

where ei = (1, · · · , 1)T ∈ Rni . Then, the scatter ma-
trices can be expressed as Sw = HwH

T
w , Sb = HbH

T
b

and St = HtH
T
t . Let GSVD be applied to the matrix

pair (HT
b ,H

T
w ) such that

UT
b H

T
b X = [ Γb 0 ],

UT
wH

T
wX = [ Γw 0 ],

(3)

where Ub ∈ Rr×r and Uw ∈ Rn×n are orthogonal,
X ∈ Rm×m is a nonsingular matrix, ΓT

b Γb+ΓT
wΓw =

Is, s = rank
[
HT

b

HT
w

]
and ΓT

b Γb and ΓT
wΓw are diag-

onal matrices with nonincreasing and nondecreasing
diagonal components, respectively. The simultaneous

diagonalizations of Sb and Sw can be obtained by

XTSbX =

[
ΓT
b Γb

0m−s

]

=


Iµ

Dτ

0s−µ−τ

0m−s


= Db,

XTSwX =

[
ΓT
wΓw

0m−s

]

=


0µ

Eτ

Is−µ−τ

0m−s


= Dw,

(4)
where I and 0 denote identity and zero matrices, re-
spectively. Dτ = diag(αµ+1, · · · , αµ+τ ), Eτ =
diag(βµ+1, · · · , βµ+τ ) with αµ+1 ≥ · · · ≥ αµ+τ >
0, 0 < βµ+1 ≤ · · · ≤ βµ+τ and α2

i + β2i = 1 for
i = µ+ 1, · · · , µ+ τ . By (4), we can deduce that

XTStX = XTSbX +XTSwX =

[
Is 0
0 0

]
.

To solve the problem (2), we need the follow-
ing three lemmas, where the proofs of the first two
are straightforward from the definition of the pseudo-
inverse and the third lemma can be found in [10].

Lemma 1 For any matrix A ∈ Rm×n, we have
trace(AA+) = rank(A).

Lemma 2 For any matrix A ∈ Rm×n, we have
(AAT )+ = (A+)TA+.

Lemma 3 Let Σ = diag(σ1, · · · , σs) be any diago-
nal matrix with σ1 ≥ · · · ≥ σs > 0. Then, for any
matrix M ∈ Rm×s with rank(M) = δ, the following
inequality holds:

trace((MΣMT )+MMT ) ≥
δ∑
i

1
σi
,

where the equality holds if and only if M =

U

[
D 0
0 0

]
for some orthogonal matrix U ∈ Rm×m

and matrix D = Σ1QΣ2 ∈ Rδ×δ, where Q ∈ Rδ×δ is
orthogonal and Σ1,Σ2 ∈ Rδ×δ are diagonal matrices
with positive diagonal entries.

Theorem 4 Let X be the matrix specified by the
GSVD of (HT

b ,H
T
w ) in (3) and Xδ the matrix consist-

ing of the first δ columns of X , where δ = rank(Sb).
Then G = XδM minimizes F1 for any nonsingular
M .
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Proof: By the GSVD of the matrix pair (HT
b ,H

T
w ),

we have SL
b = G̃DbG̃

T and SL
w = G̃DwG̃

T , where
G̃ = (X−1G)T . Let G̃ = [G1, G2, G3, G4] be
a partition of G̃ such that G1 ∈ Rl×µ, G2 ∈ Rl×τ ,
G3 ∈ Rl×(s−µ−τ) and G4 ∈ Rl×(m−s). Putting
G12 = [G1, G2], we have SL

w+S
L
b = G12G

T
12+G3G

T
3

and SL
b = G12ΣG

T
12, where Σ =

[
Iµ

Dτ

]
. By

Lemma 1, we get

trace((SL
b )

+SL
b ) = rank(SL

b )
≤ rank(Sb) = δ.

(5)

Let Ĝ = G12Σ
1/2 and Ĝ = U

[
Σ̂ 0
0 0

]
V T be the

SVD of Ĝ. Then rank(Ĝ) = rank(G12) and Ĝ+ =

V

[
Σ̂−1 0
0 0

]
UT . Consequently, by Lemma 3, we

can deduce that

trace((SL
b )

+(SL
w + SL

b ))
= trace((G12ΣG

T
12)

+(G12G
T
12 +G3G

T
3 ))

≥ trace((G12ΣG
T
12)

+G12G
T
12)

= trace((Ĝ+)T Ĝ+ĜΣ−1ĜT )
= trace(V T

δ Σ−1Vδ)

≥
µ∑

i=1
1 +

δ∑
i=µ+1

1
α2
i
,

(6)

where Vδ is the matrix consisting of the first δ columns
of V . We can easily show that the last inequality in

(6) becomes equality if Vδ =

[
Qδ

0

]
for any orthog-

onal matrix Qδ ∈ Rδ×δ and G12 = U

[
D 0
0 0

]
∈

Rl×(µ+τ), where D = Σ̂QδΣ
−1/2
δ and Σδ is the δ-th

principal submatrix of Σ. It follows from (5)-(6) that

F1(G) = trace((SL
b )

+(SL
w + SL

b ))− trace((SL
b )

+SL
b )

≥
δ∑

i=µ+1

(
βi

αi

)
,

where the equality holds if rank(SL
b ) = δ, G12 =

U

[
Σ̂QδΣ

−1/2
δ 0

0 0

]
and G3 = 0.

We observe that the minimization of F1 is inde-
pendent of G4 and simply set it to zero. Hence, the
minimum of F1 is attained if the partition of G̃ =
[G1, G2, G3, G4] satisfies

G12 = U

[
Σ̂QδΣ

−1/2
δ 0

0 0

]
, G3 = 0 and G4 = 0.

Let U = [U1, U2] be a partition of U so that U1 ∈
Rl×δ and U2 ∈ Rl×(l−δ). It follows that

G12 = U

[
Σ̂QδΣ

−1/2
δ 0

0 0

]

=

[
U1Σ̂QδΣ

−1/2
δ 0

0 0

]
≡
[
M 0
0 0

]
.

Note that U is orthogonal matrix, Qδ is an arbitrary
orthogonal matrix and Σ̂ and Σδ are diagonal matri-
ces. Therefore, M is an arbitrary nonsingular matrix
and G = XδM minimizes F1(G). ⊓⊔

This method is called PILDA, that is,

Algorithm 2.1. PILDA

1. Compute the SVD of K =

[
HT

b

HT
w

]
as K =

P

[
R 0
0 0

]
UT , where P and U are orthogonal

and R is diagonal;

2. Let s = rank(K) and δ = rank(Hb). Com-
pute W from the SVD of P (1 : r, 1 : s), the
submatrix consisting of the first r rows and the
first s columns of matrix P from Step 1, as
P (1 : r, 1 : s) = V ΓW T ;

3. Let X = U

[
R−1W 0

0 I

]
;

4. Assign the first δ columns of the matrixX toXδ;

5. G = XδM , where M is any nonsingular matrix.

2.2 LDA based on GSVD
In this subsection, we review another method based on
the GSVD proposed by Howland et al. [12-14]. This
approach is justified to preserve the cluster structure
after dimension reduction.

When Sw = HwH
T
w is nonsingular, it is well-

known that trace((SL
w)

−1SL
b ) is maximized if Gh ∈

Rm×l consists of l eigenvectors of S−1
w Sb correspond-

ing to the l largest eigenvalues [1]. Let xi denote the
i-th column of X , then

Sbxi = λiSwxi, (7)

which means that λi and xi are an eigenvalue-
eigenvector pair of S−1

w Sb and trace(S−1
w Sb) = λ1 +

· · · + λm. Expressing λi as α2
i /β

2
i , the eigenvalue

problem (7) becomes
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β2iHbH
T
b xi = α2

iHwH
T
wxi. (8)

Let X = [X1, X2, X3, X4] ∈ Rm×m be
a partition of X obtained in section 2.1 with
X1 ∈ Rm×µ, X2 ∈ Rm×τ , X3 ∈ Rm×(s−µ−τ) and
X4 ∈ Rm×(m−s). Defining αi = 1, βi = 0 for i =
1, · · · , µ and αi = 0, βi = 1 for i = µ+τ+1, · · · s, we
can see that (8) is satisfied for 1 ≤ i ≤ s. For the re-
mainingm−s columns ofX , HbH

T
b xi andHwH

T
wxi

are zero. So, (8) is satisfied for arbitrary values of αi

and βi when s + 1 ≤ i ≤ m and then the columns
of X are the generalized singular vectors for the ma-
trix pair (HT

b ,H
T
w ). A question that remains is which

columns of X to include in Gh. If Sw is singular, [14]
argues in terms of the simultaneous optimization

max
GT

h

(trace(GT
hSbGh))

min
GT

h

(trace(GT
hSwGh)).

(9)

Letting gj represent a column of Gh, we have
trace(GT

hSbGh) =
∑
gTj Sbgj and trace(GT

hSwGh) =∑
gTj Swgj . If xi is the one of the leftmost µ columns

of X , then xi ∈ null(Sw) ∩ null(Sb)c (the superscript
c denotes the complement), which indicates that in-
cluding xi in Gh can increase trace(GT

hSbGh) while
leave trace(GT

hSwGh) unchanged. If xi is the one
of the rightmost m − s columns of X , then xi ∈
null(Sw) ∩ null(Sb), which implies that adding xi to
Gh has no effect on these trace and does not contribute
to either maximization or minimization in (9). In ei-
ther case, Gh should be comprised of the leftmost
µ + τ = rank(HT

b ) columns of X , as illustrated in
[24]. Hence, in LDA/GSVD the transformation ma-
trix is Gh = [X1, X2]. An efficient algorithm for
LDA/GSVD was presented in [12] as follows.

Algorithm 2.2. LDA/GSVD

1. Compute the EVD of St:

St = [ U1 U2 ]

[
Σ1 0
0 0

] [
UT
1

UT
2

]
.

2. Compute V from the EVD of S̃b =

Σ
−1/2
1 UT

1 SbU1Σ
−1/2
1 : S̃b = V ΓT

b ΓbV
T .

3. Assign the first r − 1 columns of U1Σ
−1/2
1 V to

Gh.

2.3 Null space LDA
Chen et al. [15] proposed the null space LDA (NLDA)
for dimensionality reduction of undersampled prob-
lems, which is a two-stage LDA method. This ap-
proach projects the original space onto the null space

of Sw by using an orthonormal basic of null (Sw), and
then in the projected space, a transformation that max-
imizes the between-class scatter is computed. Let the
EVD of Sw ∈ Rm×m be

Sw = UwΣwU
T
w

= [ Uw1 Uw2 ]

[
Σw1 0
0 0

] [
UT
w1

UT
w2

]
,

where s1 = rank(Sw), Uw is orthogonal, Σw1 is a
diagonal matrix with nonincreasing positive diago-
nal elements and Uw1 contains the first s1 columns
of the orthogonal matrix Uw. We can easily show
that null(Sw) = span(Uw2) and the transformation by
Uw2U

T
w2 projects the original data to null(Sw). The

between-class scatter matrix S̃b in the transformed
space is S̃b = Uw2U

T
w2SbUw2U

T
w2. Consider the EVD

of S̃b:

S̃b = ŨbΣ̃bŨ
T
b = [ Ũb1 Ũb2 ]

[
Σ̃b1 0
0 0

] [
ŨT
b1

ŨT
b2

]
,

where s2 = rank(S̃b), Ũb1 ∈ Rm×s2 and Σ̃b1 ∈
Rs2×s2 . In NLDA, the optimal transformation matrix
Ge is obtained by Ge = Uw2U

T
w2Ũb1.

2.4 Range space LDA
In this subsection, we propose another approach to
solve undersampled problems. This method first
transforms the original space by using a basis of
range(Sw) and then in the transformed space the max-
imization of between-class scatter is pursued. We de-
note shortly this method by RSLDA. Let the EVD of
Sw ∈ Rm×m be

Sw = UwΣwU
T
w

= [ Uw1 Uw2 ]

[
Σw1 0
0 0

] [
UT
w1

UT
w2

]
,

where s1 = rank(Sw),Σw1 is a diagonal matrix and
Uw1 ∈ Rm×s1 . We can easily show that range(Sw) =
span(Uw1) and the transformation by Vy = Uw1Σ

−1/2
w1

projects the original data to range(Sw). The within-
class scatter matrix S̃w in the transformed space is
S̃w = V T

y SwVy = Is1 . Let the EVD of S̃b ≡ V T
y SbVy

be

S̃b = ŨbΣ̃bŨ
T
b = [ Ũb1 Ũb2 ]

[
Σ̃b1 0
0 0

] [
ŨT
b1

ŨT
b2

]
,

where s3 = rank(S̃b), Σ̃b1 is a diagonal matrix and
Ũb1 ∈ Rs1×s3 . In RSLDA, the optimal transfor-
mation matrix Gy is obtained by Gy = VyŨb1 =

Uw1Σ
−1/2
w1 Ũb1.
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3 Weighted versions and weighting
functions

As in [25], Sb can be rewritten as

Sb =

r−1∑
i=1

r∑
j=i+1

ninj
n

(mi −mj)(mi −mj)
T .

From this formulation, it can be observed that clas-
sical LDA maximize the Euclidean distance between
the class means and all class pairs have the same
weights irrespective of their separability in the orig-
inal space, which makes that the resulting transforma-
tion preserve the distance of already well-separated
classes and cause a large overlap of neighboring
classes in the transformed space. In fact, the classes
which are closer together are more likely to have
more confusion and should therefore be more heavily
weighted.

Two similarly motivated solutions to this problem
have been proposed: weighted pairwise Fisher crite-
ria [25] and fractional-step LDA [20]. The fractional-
step LDA is iterative and very time-consuming. In
this section, in order to improve the classification ac-
curacy, we study the weighted versions of generalized
LDA mentioned in Section 2. We define a weighted
between-class scatter matrix as

Ŝb =
r−1∑
i=1

r∑
j=i+1

ninj
n

w(dij)(mi −mj)(mi −mj)
T ,

(10)
where dij = ∥mi −mj∥ is the Euclidean distance
between the means of class i and j and w(dij)
is a weighting function. Apparently, the weighted
between-class scatter matrix Ŝb degenerates to the
conventional between-class scatter matrix Sb if the
weighting function in (10) gives a constant weight
value. If the between-class scatter matrix Sb is re-
placed by the weighted between-class scatter matrix
Ŝb, by means of the algorithms obtained in Section 2,
we can get some weighted generalized LDA.

3.1 Weighted generalized LDA
With Algorithms 2.1 and 2.2, we can derive weighted
PILDA and weighted LDA/GSVD algorithms.

Algorithm 3.1. Weighted PILDA

1. Compute the EVD of St:

St = [ Ut1 Ut2 ]

[
Σt1 0
0 0

] [
UT
t1

UT
t2

]
;

2. Compute the weighted between-class scatter ma-
trix Ŝb;

3. Compute V from the EVD of Šb =

Σ
−1/2
t1 UT

t1ŜbUt1Σ
−1/2
t1 : Šb = V Γ̂T

b Γ̂bV
T ;

4. Assign the first r − 1 columns of Ut1Σ
−1/2
t1 V to

X̂δ;

5. Ĝ = X̂δM , where M is any nonsingular matrix.

Algorithm 3.2. Weighted LDA/GSVD

1. Compute the EVD of St:

St = [ Ut1 Ut2 ]

[
Σt1 0
0 0

] [
UT
t1

UT
t2

]
;

2. Compute the weighted between-class scatter ma-
trix Ŝb;

3. Compute V from the EVD of Šb =

Σ
−1/2
t1 UT

t1ŜbUt1Σ
−1/2
t1 : Šb = V Γ̂T

b Γ̂bV
T ;

4. Assign the first r − 1 columns of Ut1Σ
−1/2
t1 V to

Ĝh.

From Algorithms 3.1 and 3.2, we can see that
weighted LDA/GSVD is a special case of weighted
PILDA with M being the identity matrix. We will
discuss the affect of the choice of M to classification
accuracy in next section.

Similarly, we can obtain weighted NLDA and
weighted RSLDA.

Algorithm 3.3. Weighted NLDA

1. Compute the EVD of Sw:

Sw = [ Uw1 Uw2 ]

[
Σw1 0
0 0

] [
UT
w1

UT
w2

]
;

2. Compute the weighted between-class scatter ma-
trix Ŝb;

3. Compute the EVD of S̃b = Uw2U
T
w2ŜbUw2U

T
w2 :

S̃b = [ Ũb1 Ũb2 ]

[
Σ̃b1 0
0 0

] [
ŨT
b1

ŨT
b2

]
;

4. Ĝe = Uw2U
T
w2Ũb1.

Algorithm 3.4. Weighted RSLDA

1. Compute the EVD of Sw:

Sw = [ Uw1 Uw2 ]

[
Σw1 0
0 0

] [
UT
w1

UT
w2

]
;

2. Compute the weighted between-class scatter ma-
trix Ŝb;
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3. Compute the EVD of S̃b =

Σ
−1/2
w1 UT

w1ŜbUw1Σ
−1/2
w1 :

S̃b = [ Ũb1 Ũb2 ]

[
Σ̃b1 0
0 0

] [
ŨT
b1

ŨT
b2

]
;

4. Ĝy = Uw1Σ
−1/2
w1 Ũb1.

3.2 Weighting functions
We can see from [20-21,25] that weighting func-
tions have close relationships with classification accu-
racy. Different weighting functions can product dif-
ferent classification error. Selecting suitable weight-
ing function can increase classification accuracy. In
this paper, we consider four weighted schemes Algo-
rithms 3.1-3.4 with five weighting functions for each
weighted scheme. We apply the Euclidean distance
dij = ∥mi −mj∥ between the means of class i and j
in weighting functions w(dij). A weighting function
is generally a monotonically decreasing function be-
cause classes that are closer to one another are likely
to have a greater confusion and should be given a
greater weightage.

We first apply two special cases of the weight-
ing function w(dij) = (dij)

−p proposed by Lotlikar
et al. in [20] with p = 1 and p = 2, and then
an improved version of weighting function w(dij) =
1

2d2ij
erf(

dij
2
√
2
) presented by Loog in [25] where the

Mahanalobis distance is replaced by the Euclidean
distance. In addition, according to the feature of
weighting functions mentioned above, we present two
new weighting functions. They are listed below:

w1: w(dij) = (dij)
−2,

w2: w(dij) = 1
2d2ij

erf(
dij
2
√
2
),

w3: w(dij) = (dij)
−1,

w4: w(dij) = e
1

dij ,
w5: w(dij) = 1

edij
.

4 Experiments and analysis
In this section, in order to explain the effective of
the proposed methods and illustrate the affect of
weighting functions and any nonsingular matrix M
in PILDA and weighted PILDA to classification accu-
racy, we conduct a series of experiments on 5 different
data sets from the AT&T face database [26] and Yale
face database [27].

There are ten different images of 40 distinct sub-
jects in AT&T (or called ORL) face image database.
For some subjects, the images were taken at different

times, varying the lighting, facial details and facial ex-
pressions. The size of each images is 92× 112 pixels,
with 256 grey levels per pixel. The Yale face database
contains 165 face images of 15 individuals. There are
11 images per subject, and these 11 images are respec-
tively under the following different facial expression
or configuration: center-light, wearing glasses, happy,
left-light, wearing no glasses, normal, right-light, sad,
sleepy, surprised, and wink. In our experiment, the
images are cropped to a size of 32× 32, and the gray
level values of all images are rescaled to [0 1]. Some
images of one person are shown in Figure 1.

Figure 1: Images of one person in Yale.

Data sets 1-3 are from Yale face database. Data
set 1 chooses the 201-th dimension to 600-th dimen-
sion, it contains 15 classes and 165 examples with 400
dimensions; data set 2 chooses the 401-th dimension
to 900-th dimension,it contains 15 classes and 165 ex-
amples with 500 dimensions; data set 3 chooses the
800-th dimension to 1024-th dimension, contains 15
classes and 165 examples with 225 dimensions. Data
sets 4-5 are from AT&T face database. Data set 4
chooses the first 150 samples and the first 305 dimen-
sions, it contains 15 classes and 150 examples with
305 dimensions; data set 5 chooses the first 150 sam-
ples and the 333-th dimension to 665-th dimension, it
contains 15 classes and 150 examples with 333 dimen-
sions. For all 5 data sets, the number of data samples
is smaller than the dimension of data space, all scatter
matrices are singular.

In the following experiments, the KNN algorithm
with K = 7 is used as a classifier for all date sets.
For each method, we applied 5-fold cross-validation
to compute the misclassification rate. Experiments are
repeated 5 times to obtain mean prediction misclassi-
fication rate.

4.1 Effect of the matrix M

In this subsection, we study the effect of the matrix
M in PILDA to classification accuracy on five data
sets. We randomly generate 5 matrices for M and
compute the misclassification rates by using the opti-
mal transformation matrices produced in PILDA and
7-NN. The experiment results are listed in Table 1,
where w0: w(dij) = 1.

From Table 1, we can see that matrix M3 pro-
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Table 1: Misclassification rate (%) on five data sets

W-PILDA
kernel w(dij)

M1 M2 M3 M4 M5

W-LDA/GSVD W-NLDA W-RSLDA

w0 17.5758 20.6061 13.3333 13.9394 18.1818 16.3636 18.7879 16.9697

w1 18.7879 15.7576 18.7879 15.1515 15.7576 19.3939 16.9697 16.3636

date set 1 w2 15.7576 16.3636 12.7273 18.1818 13.9394 16.9697 13.3333 18.1818

w3 16.9697 17.5758 18.7879 18.7879 13.9394 18.1818 14.5455 18.7879

w4 17.5758 16.9697 18.7879 20.0000 17.5758 18.1818 20.0000 19.3939

w5 16.9697 15.1515 14.5455 18.1818 13.9394 16.9697 16.3636 18.1818

w0 11.5152 13.3333 13.3333 8.4848 12.1212 14.5455 13.3333 15.1515

w1 10.9091 16.9697 9.6970 13.9394 10.9091 16.3636 10.9091 13.3333

date set 2 w2 10.9091 13.9394 10.9091 13.9394 13.3333 14.5455 10.3030 10.9091

w3 10.9091 13.9394 10.3030 10.9091 10.3030 15.1515 13.3333 13.9394

w4 10.3030 12.7273 12.1212 12.1212 12.1212 15.1515 12.1212 15.1515

w5 11.5152 16.3636 12.7273 13.9394 12.7273 14.5455 12.1212 14.5455

w0 41.8182 40.6061 41.8182 38.1818 47.2727 38.7879 38.1818 36.3636

w1 50.3030 43.6364 46.0606 40.0000 40.6061 44.8485 40.0000 38.1818

date set 3 w2 44.2424 46.0606 44.2424 41.8182 41.8182 46.6667 35.7576 34.5455

w3 43.0303 41.2121 43.6364 47.8788 46.0606 45.4545 43.6364 33.9394

w4 42.4242 43.6364 46.0606 41.2121 38.7879 44.8485 38.1818 35.1515

w5 44.8485 37.5758 43.0303 43.6364 40.6061 44.8485 39.3939 33.9394

w0 44.6667 55.3333 52.0000 48.6667 50.6667 47.3333 45.3333 42.6667

w1 46.6667 47.3333 52.6667 44.6667 47.3333 43.3333 44.6667 40.6667

date set 4 w2 46.6667 47.3333 52.6667 44.6667 47.3333 43.3333 44.6667 40.6667

w3 51.3333 48.6667 49.3333 42.0000 52.0000 50.0000 46.0000 41.3333

w4 48.0000 47.3333 51.3333 45.3333 46.6667 50.0000 45.3333 42.6667

w5 94.0000 92.0000 93.3333 92.0000 92.0000 96.0000 86.6667 84.0000

w0 56.6667 64.0000 57.3333 58.6667 54.6667 59.3333 52.0000 38.6667

w1 59.3333 57.3333 58.0000 56.0000 64.6667 57.3333 55.3333 37.3333

date set 5 w2 59.3333 57.3333 58.0000 56.0000 64.6667 57.3333 55.3333 37.3333

w3 59.3333 56.6667 61.3333 58.0000 60.6667 58.6667 52.6667 42.0000

w4 62.0000 56.0000 60.0000 57.3333 62.6667 59.3333 52.0000 38.6667

w5 96.0000 96.0000 92.6667 91.3333 90.6667 92.0000 93.3333 87.3333
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duces the best classification accuracy for data set 1;
None of the accuracies is higher than matrix M4

for data set 2; Matrix M4 produces the best clas-
sification accuracy among PILDA, but is not higher
than RSLDA for data set 3; Matrix M1 produces the
best classification accuracy among PILDA, but is not
higher than RSLDA for data set 4; Matrix M5 pro-
duces the best classification accuracy among PILDA,
but is not higher than NLDA and RSLDA for data set
5.

4.2 Affect of weighting functions
In this subsection, we study the effect of five weight-
ing functions given in subsection 3.2 to classification
accuracy on five data sets. The experiment results are
listed in Table 1.

Figure 2: The misclassification rates (%) for Data set
1.

Figure 3: The misclassification rates (%) for Data set
2.

From Figure 2, we can see that the weighting
function w2 is better than other weighting functions
for data set 1. Especially, we get the best clas-
sification accuracy 87.2727 for M3 and w2. Fig-
ure 3 shows that the weighting function w3 produces

good overall results for PILDA, the weighting func-
tionw2 produces good overall results for LDA/GSVD,
NLDA and RSLDA. For data set 3, the weighting
function w4 produces good overall results for PILDA
and LDA/GSVD, the weighting function w2 produces
good overall result for NLDA , the weighting func-
tions w3 and w5 produce the best results for RSLDA.
For data sets 4 and 5, the weighting function w5

can’t be applied, the weighting functions w1 and w2

produce same results. For data set 4 and M1,M2,
the best weighting functions for LDA/GSVD, NLDA
and RSLDA are w1 and w2. The weighting function
w3 produces the best result for M3 and M4. The
best weighting function for M5 is w4. For data set
5 and M1,M3,M4, the best weighting functions for
LDA/GSVD and RSLDA are w1 and w2. The weight-
ing function w3 produces the best results for M2 and
M5 and NLDA.

5 Conclusion
In this paper, based on Pseudo-inverse LDA,
LDA/GSVD, null space LDA and range space LDA,
we propose weighted Pseudo-inverse LDA, weighted
LDA/GSVD, weighted null space LDA and weighted
range space LDA. Not only can these methods deal
with the singularity problem caused by the undersam-
pled problem, they can also make the criterions di-
rectly related to classification errors. In order to ex-
plain the effective of the proposed methods and illus-
trate the affect of weighting functions and any non-
singular matrix M in PILDA and weighted PILDA to
classification accuracy, we conduct a series of exper-
iments on 5 different data sets from the AT&T face
database and Yale face database. Results show that
different weighting functions and different nonsingu-
lar matrix M affect the classification accuracy of the
proposed methods.
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