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Abstract: - Most of the statistical estimation procedures are based on a quite simple principle: find the
distribution that, within a certain class, is as similar as possible to the empirical distribution, obtained from the
sample observations. This leads to the minimization of some statistical functionals, usually interpreted ad
measures of distance or divergence between distributions. In this paper we study the majorization pre-order of
the distance between distributions. This concept, known in literature as relative majorization, is extended to the
weak definition of majorization, which is more relevant in many practical contexts such as estimation problem.
Providing mathematical proofs, we study under which conditions statistical functionals are consistent with
respect to the relative weak majorization (from above) pre-order.
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1 Introduction H. With the assumption that the theoretical

. ] o distribution is discrete and that our benchmark
Within the field of statistical inference, most of the  gjstribution (for estimation purpose) is the empirical
estimation procedures consist in minimizing an gjstribution, we classify divergence measures into
appropriate measure of distance between a two main classes, according to the duality in their

theoretical and an empirical (observed) distribution. tormulation: we shall call them form A and form B.
Statistical functionals which are suitable to measure Then, we analyze two different situations, viz.: i)

distance between distributions are the well known the empirical and theoretical distributions are

divergence measures [1], [8]. In this paper we defined on the same set; i) the support of the
propose to analyze divergence measures and theirempirical distribution is included in the support of
properties by using majorization theory [18], [12]. the theoretical distribution. In case i) we provide
Majorization is a pre-order on vectors used t0 ¢onditions under which divergence measures of the
analyze f the components of a vector are more or form A or B preserve-majorization. This is done
less “uniform”, compared to another vector. respectively in section3.2 (form A) and section 3.3
Majorization can be generalized from vectors to (form B). Nevertheless, in case ii) the conditions for
measureable functions, as summarized in section 2. (strong)r-majorizations are not fulfilled, as frequent
To be more specific, in the paper we refer 10 a jn many practical situations (such as the case of
generalization known as relative majorization [10] gmali samples): thus we extend the study to the
(r-majorization) which can be used to compare any more general case of weakmajorization (section

couple of theoretical distributions (s&} G) with 3.3), providing conditons that a statistical
respect to a benchmark distribution ($8yin terms  fynctional must satisfy in order to preserve also the
of dissimilarity. In particular, ifG is smaller than a  \yeak pre-order. We find that, among the most
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preserve the strong pre-order but are not consistent

with respect to the weak one. This is confirmed by
empirical results, summarized in section 3.4.
2 Notation and preliminary results

Majorization [12] is a pre-order on vectors aimed to
determine whether the components of a vector are
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) [LuP®de > [Fv(dt, vze
[0, u(D].
i) J udu=[ wvdu.

Alternative definitions of generalized majorization
with respect to a measure are given by Joe [10], van
Evren and Harremoes [25]. It is worth noting that

more (or less) “spread out” or more (or less) “equal” this definition is related to the concept of second
than the components of another vector. Functions of order stochastic dominance [9], the usefulness of
the vectors that are consistent with this pre-order are stochastic orderings and their applications (e.g. in

called Schur-convex [18]. Majorization and Schur-
convexity can be generalized from vectors to
integrable functions (see, among others [24], [10]):
for this purpose, the definition of the re-arrangement
of a function [22] is required.

In this Section we shall refer to a positive meagure
on aset C R.

Definition 1. Let u be a real valued nonnegative
integrable function on.IWe introduce the notation

u¥ (t) to denote thelecreasing rearrangemerntf u
with respect to uthat is

u (t) = supfz | a(z)> 8},

for every tO[0,u(1)], where a(2)=(A,), A~{x €
Iu(x)>z}.

Note that botlu(z) and uf”) (t) are right continuous

functions. Similarly, we define thdncreasing
rearrangemenof u with respect to as:

) (t) = inf {z | b(z)> 1,

for everyt[0,.41)], whereb(z) = ((B,), B~{x €
I'lu(x) < z}. In this case alsdh(z) and u”(t)
are right continuous functions.

As special cases, the superscrifgt) may be
dropped, when it is understood from the context,
that is: 1) ifu is the counting measure, for any
vectoru = (uq, uy, ... ,ux) € R, f; > 0, let denote

u; (uq) the decreasing (increasing) rearrangement of
vectoru; 2) if u is the Lebesgue measure, ani$ a
real valued non-negatiyeintegrable function on, |

let denote u; (u;) the decreasing (increasing)
rearrangement of.u

Definition 2. Let u, v bereal valued nonnegatiye
integrable functions on a setWe say that y-
majorizesu [3] and we writer <, v if:
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Finance) have been discussed so fare (see, among
others, [20], [21]).

When conditions for f~majorization are not
completely satisfied, there are also weak definitions
of 1+ majorization. In particular, we will need the
following one.

Definition 3. Let u, vbereal valued nonnegative be
Lintegrable functions on a sét. We say that
weakly ~majorizes u from above and write
u <?L) v when only i) in Definition 2 holds.

A generalization of Karamata’s theorem
(independently studied by [14], [11] and proved also
in [15]) allows us to characterize a class of
functionals which are consistent with respect to
strong and weak~majorization. This result, proved

in Chong [1974, theorem 1.6] and Joe [1987,
theorem 2.1] can be summarized as follows.

Theorem 1. Let u, v be real valued nonnegative be
Lintegrable functions on a det

) w= v ifand only if] AV <[ dvdu,
| |

for all continuous conyex functiors
u <{;y v if and only if:]lﬂ@dﬂSJoqp(v)dy’
|

i)

for all decreasing continuous convex
functionsg

The theorem says that the functionk!‘(u)dﬂ is
|

consistent with strong--majorization (pconvex) or
weak f-majorization from above ¢ convex and
decreasing). It is worth noting that point
(characterization theorenof g~majorization) may
be interpreted as a definition of the generalized
majorization.

)
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3 Minimum and

maj orization

divergence

3.1 Divergence measures

Let D be a family of discrete probability
distributions with a common support, s&; then,
S = {x1,x,, ...} is an at most countably infinite set.
For every distributiors belonging taD, G is a step
function; letg the function defined on the s&t as

¥ =GEx-G(x),
Q) =lmG(y). Let us write for shortg(x) =g,

follows: where

for every x, JS. Otherwise saidg; represents the
jump of G at the pointx,. There are two cases: 1)
#S=m<oo; 2) #S=00, Correspondingly, there are
two cases forg: 1) g is a finite vector
0=(9,,9,.---9); 2) g is an infinite sequence
9= (% .9,.---) ([18], p.25).

It is well known that theempirical distribution
function EDF) is a consistent estimator &f(x).
Now, if X;,X,,...,X, are iid with distribution
G € D, let us denote by F the EDF corresponding to
the observed sampleq X,,...X,. More formally:

n
F(x)=%2l)q(x), where 1,(x) is the function
i=1

defined as1,(x)=1 if x<a, and O otherwise.
Finally, let S¢ be the support of the EDF, and Iet

be the function defined on the s& as follows:
f(Y=F(X—-F(x). Otherwise said, f(x)
represents the empirical relative frequency of the
point X .

Define u; (or up) to be the (probability) measure
corresponding to the distribution functigh(or F);

U and up are finite-valued nonnegative measures

with ur dominated byu;, ur < ug. Note that, by
construction,Sc U S (in particular, the inclusion is
always strict in the case 2), then>0, whileg is
always greater than 0.

In a nonparametric approach to statistical inference,

the estimand is sometimes the distribut®ntself.

In that case, an estimation problem may be solved

with the minimum distance method. The minimum
distance estimator for a distribution, with respect to
a given “distance” functiord, is defined as the
distribution (if it exists and it is unique) frorD
which is “closest” toF in the sense of the distance
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following properties: as a function @f, d attains its
minimum d, for P = Q, and d(P,Q) > d, for

P #= Q ([5], p.65). It is worth noting thad is not a
distance in the strict sense. Indeed, for instatide,
not a symmetrical functional oP and Q. To
emphasize this fact, we will refer @(P,Q) as
divergenceof Q with respect ta® (or divergence of

Q from P), and we shall speak ominimum
divergence (MD) estimation methodsee among
others[6], [26]). Several divergence measures can
be used to construct estimators. Perhaps the most
known is the relative entropy (also known as
Kullback-Leibler divergence, or Kullback-Leibler

distance) of @ from P, defined asflnSsz

fpln%dn, where P and Q are dominated by a

common ¢ —finite measuren and wherep =
dP/dn andq = dQ/dn represent the corresponding
Radon-Nikodym derivatives of &nd Qwith respect
ton.

In our context, reasonable divergence measures can
be based on the ratif/g (or g/f). Indeed,
majorization can be interpreted as an ordering of
“closeness to uniformity”. Then, the main idea is
that the more the value of the ratfyg or g/f) is
close to one, the more is “similar” to G (or G is
“similar” to F).

We can distinguish two different main cases:

A) Undominated casdn general, the measure
Ue is not dominated by, then the ratio
functiong/f does not generally integrate to

one sincef; g/f dF < [; dG =1.

B) Dominated caseAs ur < ug, the function
f/g is the Radon-Nikodym derivative

dF/dG,thenf, f/g dG = st dF =1

Correspondingly, we distinguish two different
families of divergence measures that we shall call
functionals oftype-Aand functionals ofypeB [17],
that is

A) du(F,6) = Es(¢(g/f)) =

Js, #(a/f) dF = X5, d(g/)f G €D
B) ds(G,F) = Ec(¢(f/9) =

Js #(f/9)dG =%s¢(f/9)9. G €D

where¢ is a continuous and convex function. Note
that the functionall, yields a divergence measure
of G with respect toF, while the functionaldg
yields a divergence measure Fofwith respect ta;,

d. Here the distance is intended to be a functional actually d, and dz are generally not symmetric.

d(P,Q) of two distributionsP and Q with the
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Moreover, for a given convex functiop, d is
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simply the “dual” version otl;. Many well known The pre-orders defined bg, and <y suggest
estimation methods are based on the minimization which distribution, betweer¢ and H, should be
of divergence measures which belong to these preferred (in terms of their similarity with respect to
classes, such as the Kullback-Leibler divergence the EDFF). In particular, the use of the strong or
[16], the Chi square divergence ([4], [13]) and the the weak pre-order is justified as follows. In
Hellinger divergence ([2], [23]). However, practical estimation contexts, (strongflominance

according to the functiog, a divergence measure c5n be verified only wher§ =S, which presumes
can be appropriate or inappropriate for estimation

purpose. We will discuss it in the sequel.
It is immediate to see under which conditions

functionals of type A could be reasonable Lor aEy .pomt r']n S. This is ? quite restrictive
divergence measures. We consider reasonableYPothesis. In the more general case, wiggrl S,

divergence measures all the statistical functionals Weakr-dominance should be used. Moreover, note
which are consistent with respect to a particular that the strong conditioff < H means that is
majorization ordering, defined below, which closer toF, compared toH. On the other hand,
indicates the “relative dissimilarity” between G <f H means that means thétis closer toF,
distributions. Actually, as a direct consequence of compared toH as well asu;(X € Sp) = uy(X €

that #S<oo and that the random sample is large
enough to have at least one empirical observation

theorem 1, the following results hold. Sr): thus, in the weak case, the distribution which
Proposition 1. maximizes the probability of the s®t is generally
preferred.
1) For every pair of distribution§ and H € So, proposition "1 establishes under which
D, (g/f) <@g (/) & conditions functionalsd,(F,G) preserve ther-
d,(F,G) < d,(F, H) for any convex majorization  pre-order (strong or  weak).
function ¢ in d,. Nevertheless, as divergence measures of the form B
2) For every pair of distribution§ and H € are based on the reciprocals of the ratjtf, their
D, (g/f) <t (h/f) & consistency with respect to a relation of

majorization cannot be immediately derived. Yet,
Theorem 3 below establishes that (under certain
conditions) functionals of the form B also satisfy the
property of consistency with respect to weak
majorization. This depends on the equivalence of
weak majorization between the ratio functignsf

d,(F,G) < d,(F,H) for any decreasing

and convex functionp indy,.
Borrowing and extending to the weak case the
definition by Joe [10] ofr-majorization (elative
majorizatior), the conditiongg/f) < (h/f) and

(9/f) <{r) (h/f) could be re-defined as follows. andh/f and a sort of (strong) majorization between
their reciprocals, as it is proved in the following
Definition 4. Theorem 2. Finally, consistency of type-B

We say thaG is r-dominated byH with respect to  funtionals with respect to weak-domnance is
F and writeG 3z H when (g/f) <) (h/f) or simply proved in corollary 1.
identically g is r-majorizedby h with respect tof,

g <¢ h [10]. Theorem 2. For every pair of distribution& and
Similarly, we say tha® is weaklyr-dominated from HeD: G3IFH if and only if (f/g)ga) <
above by H with respect toF and writeG <y H (f/h)gH).

when(g/f) <(r (h/f).

Proof. It is sufficient to prove thafot rT(F)(z)dZ >

Then proposition 1 can be rephrased as follows. ftsT(F) (2)dz vze[01], if and only if
0 ) ) )
t (G t,(H
Proposton 1'. fo a§ )(z)dz > fo bT( )(z)dz, vz e [0,1], VzEe
1) For every pair of distribution§ and H € [0,1], where r =g/f, s=h/f, a=f/g and
D, G3p H & d,(F,G) < d,(F,H) for b=f/h. .
any convex functiong in d,. First of all, observe thata and ag Dare
2) For every pair of distribution6 and H € equimeasurable:
D,GSYH & dy(F,G) <dy(F,H) for
any decreasing and convex functiginin uf B sz<atsz}=
ds. =N o1 z < (<2,
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whereis the Lebesgue measure. The same result

holds forb ande(H). Thus, considering that =0
on the setS—-S; :

1
j a® (t)dt = i édG

0

_(f~
_JEdG_l_

1
=J.%dH=J.bTHdt
S 0

Similarly we can observe that, by assumption,
1= us(S) =2 p, (Se) . Denote byk the cardinality

of the setS, hencev(S:) =k

We can represels: by the set(w ,\w,,....w,), whose
elements are defined by:

[ Lan
5

gw) 5, 9Wia) -5
f(wi)  f(w)
or similarly with the set(Z,%,,...,z,), defined by:
f(Zj) > k(zj_l) , j=2...k.
f(z;)  f(zj)

Hence, the non-decreasing rearrangements arfd
s with respect tq are monotone, non-decreasing

and piecewise linear functions on [0,1], in
particular:
rTF)=g(Wi)
f(w)
i-1 i
or tD[Z_l f(wm),Z_l LS T
ST(F) h(z)
f(z)
for ID[Z; 1(Zn), Z (] j=1 k
wheref(vxb): f(z)=0 and obviously

k
Z f(wn>=2f Zp) =1.

m=1

The mtegral between 0 andof a monotone, non-
decreasing and piecewise linear function is a
continuous monotone,  strictly-increasing and
piecewise linear function on [0,1]. We respectively
obtain:

gw)
F(w)

i-1 i
for O[> f(wy), Y. f(wy)l, =1k
m=1 m=1

Ug(x) = f r(F) (t)dt =
0

E-ISSN: 2224-2880 670
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h(z;) «
f(z)

j-1 j
for t0[> #(zn), Y. f(zn)], i= 1k,

m=1 m=1

Uy (¥ :fsi”(t)dt:
0

where gw)=h(z)=0. Remind also that

12 4 ()= Gw)2 4y (S)=H(z).
U (X) is invertible on [0,1] and its inverse function
(Ug) *(y) is also continuous, monotone, strictly-

increasing and piecewise linear on [0g(S:)]
(notice thatus (S)=Us @ ):

(Us) () :f—Wi;y

(
a(w,

i-1 i
for YOI dWa) D dWi)l, j=1...k
m=L m=L

Consider the non-increasing re-arrangement 4f
with respect tqs. Observe that

ow) L o) W) FW) o,
fow)  f(wy) g(w4)  g(w) ’
yields:
i i-1
2O =] gy 1D ). S0
0 046 ()]
fori=1..k,

which is monotone, non-increasing and piecewise
linear. Similarly:

fW) s
b0 = w12 ) 2zl
0 04, (S
fori=1..k.

The integral ofaﬁG) between 0 ang gives:

e (y) = f a® (tdt =

f(w) '
=) YD[Z o W) ;g( Wl gk
1 YD[:UG(SF)J-]

In other words:

VG(y)z{(uG)‘(y yoIO, 46 (Se)l
1 yO[ s (Se)A
Similarly we obtain:
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(U a0, 44 (Se)l

1 YOy (Se) A
Us(X)2U, (X)), for xO[01], if and only if
(Us) (M £ (U)H(y), for yO [0, py(Se)],
which is equivalent toV; (y) <V, (y) for yO [0,
1], as Vi, (y) =1 for yO [ 4 (S:), 4s(Se)] and

V; (y) =V, (y) =1 for yO[ 45(S:),1]. But since
V; @=V, @ =1 we obtain:

Vi (Y) ={

y y
ja§‘3>(t)dtsjbf“>(t)dt -
0 0

y y

jaﬁ‘”(t) zjbf'”(t)dt, myo [0, 1],

which yields the thesis.

Hence, weak r-majorization is equivalent to
continuous  (strong)  majorization between
reciprocals. We can now prove that, under some
conditions, functionals of typB- are also
“reasonable” divergence measures.

Theorem 3. For every pair of distribution§ and
HeD: G S¥Y H & dg(G,F) <dg(H,F) for any
functiong in dg which is convex and defined in 0.

Proof. By assumption

I P (t)dtzjrf”(t)dt, nafog].
0 0

Theorem 2 establishes that this condition is

equivalent to:

o f
LR LA o1
!g : lh tdt, oxofoq]
Lo L)
Where_[— 1 dt:J-F 1 dt,
0 0

(@)
N

The functionsz and a, “are equimeasurable:

H{ 0 S z<ah<z}=
=N o[o1: 7 < ()= 2
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and and bT(H) are non-decreasing and continuous
from the right in [0,1]. They also take value O in
[01- R(S:)].

If @is continuous, convex and defined in 0, the
Karamata [14] theorem yields:

1 (4s) 1 ()
L{i 1 jdtzj‘(z{i T dt.
0 g 0 h

Finally, for equimeasurability, the last inequality is
equivalent to:

S gJo=Xd g o+ Zebolo>
2ol Tl e el

S-S

which proves the theorem.

Observe that » g=1-/(Ss),
S-S

distribution which maximizes the probability &

is generally preferred.

Thus, we conclude that functionals of the Form A

(with ¢ convex and decreasing) and Form B (wgth

convex and defined in 0) are consistent with respect

to the weak-majorization pre-order (with respect to

the empirical distribution). The following corollary

shows that functionals of the form B (witlp

convex, not necessarily defined in 0, exactly like

functionals of the form A) are also consistent when

(strong)r-majorization holds, besides weak.

hence the

Coroallary 1.

For every pair of distributionss and H € D:
G 3r H © dg(G,F) <dg(H,F) for any convex
functiong in dg.

Proof. The proof can be easily derived from proofs
of theorems 2 and 3.

3.4 Applications of some wel known
diver gence measur es

To show the usefulness of our classification and
properties, we now provide some examples which
involve two of the main divergence measures used
in statistical estimation: the Kullback-Leibler (KL)
divergence and the Chi-square (Chi*2). We obtain

the KL or the Chi*2 divergence if we respectively
set ¢(t) =-In(t)or ¢t)=({t-1%in d4 or dz. In

whereis the Lebesgue measure. The same result particular, we have the following four different

holds forb ande(H). Moreover the functionsa@
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1) KL form A: Kullback-Leibler divergence

KL, (F,G)=> - fin(g/f)

S
KL form B: Reverse Kullback-Leibler
divergencg(8], [19])
Klg(G F)=) - gin(f/g)

S
Chi*2 form A: Neyman modified Chi-
Square divergencg8], [7])
Xa(F.G)=Y (1-g/ ) f

S

2)

3)

4) Chi~2 form B: Chi Square divergence
2
XeG.F)=) (1~ f/9)g
S
Example 1

A random sample of dimension=100 generated
from a Binomial distributionBi (6,05) yields the

following empirical frequencies for the points

x=0]1...6:
01O =525 T0c 2710 25 100

which define the empirical distributiok. Now,

compareF to P ~Bi (6048 and Q ~Bi (6052).

Note that $ =S={x=01..6}, thus we can
compareP and Q by strongr-majorization. Note
that:

1 2 2313 3 1

PQO.-..p6) =
= 0.0190.109.259,311,0.230.0794.0122

@QO....q6)=
= 0.01227.0794).215).3110.252).109).0197

The increasing re-arrangement of the ratipsf
(weighted by:) seems to be more “even” and

uniform compared to the re-arrangement gf f ,
as shown in figure 1.

E-ISSN: 2224-2880 672
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2( -
18
1€
14

12 - T

1C N

0 |

......

02z 04 0€ 0f 1C

(4e) q(ﬂF)
Figure 1: Increasing re-arrangementfs T and ? 1
(dashed)
Actually, we obtair? <, Q as
(,UF X q (He)
U (x)—j todt ijT =Uq (),
0

for xD[O;L] . This is shown in figure 2.
10

08

06

04

02

02 04 06 08 10

Figure 2:Up andUq (dashed).

It is easy to verify that both the KL and the Chi*2
divergence measures (form A and B) are consistent
with the pre-order

KL, (F,Q)=0.03875750.014744F KL, (F,P);

KLg(Q,F)=0.037833%0.0157374 KLy (P,F);
XA(F,Q) =0.0756226>0.0342506= x, (F,P);
Xs(F,Q)=0.0811313>0.0280714= x5 (F,P).

This property holds for theorem 1, point i) (for
functionals of the form A) and corollary 1 (form B).
Nevertheless, in many practical situations, condition

S =S is not satisfied. Thus, functional which do

not fulfill conditions of theorem 1 point ii) (for
functionals of the form A) and theorem 3 (form B)

Volume 13, 2014



WSEAS TRANSACTIONS on MATHEMATICS

could provide misleading results, as shown in the
following example.

Example 2

A random sample of dimension=20 generated
from a Poisson distributionP(4) yields the

following empirical frequencies for the points

x=01...6:
1 3117 11
f ;--qf 6 el Gyl ot Rt Sl il sl T
t0 ©) (20 2C 2C 4 20 2C 10)
which define the empirical distributiok. Now,
compareF to P ~P(38) and Q ~P(4.2) . Observe
that f(x)=0 for x=78.... actually we have
S ={x=01..6} 0 S={x=01,..}, thus we can

compare P an only by weak-majorization. Note

that D px(3 0009108 (B67464= D o(x).
x0S: XSk
Moreover we obtain that:
X (He

£ q ()
T 1 =Uq(x) for xO[01]
0

as shown in figure 3: thuB <y Q.

)
up(x)ijpT dt >
0

08
06
04

0.z

Figure 3:U p (dashed) andJ .

Finally it is possible to verify that only KL (form A)
and Chi*2 (form B) preserve the weak majorization
pre-order (note that KL form B is not defined when
S #S as¢(t) =-In(t) is not finite int=0).

KL, (F,Q) = 0.3499930.275265 KL, (F,P);
Xa(F,Q)= 0.555154 0.560979= x,(F,P);

Xs @F 3 0.613250.451497= y,(P,F).

We conclude that the choice ¢f, or KLg in a
situation whenS # S can seriously lead to choose

the wrong distribution. This is confirmed by a
simulation study.

Simulation 1
500 replications of random samples of dimension
n=10 were generated from a Binomial distribution
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Bi (205): for each replication we checked that
$ =S={x=012}. The MD method, applied to
the KL and Chi*2 divergence measures (form A or
B) lead in any case to acceptable results in terms of
mean squared error (MSE). Actually, note that the
minimization of KL (form A) exactly leads to the
maximum likelihoodstimate (MLE) whose optimal
properties are well known. From table 1 we observe
that MD estimates corresponding to the considered
divergence measures (especially Chi*2 form A) are
(on average) close to the MLE estimates in terms of
MSE, hence it is appropriate to use any of those
methods whenS =S.

Simulation 2

500 replications of random samples of dimension
n=10 were generated from a Binomial distribution
Bi (L005) : for each replication we surely have that
S O0S={=01.10}. As only KL form A and
Chin2 form B preserve the weakmajorization pre-
order, other MD methods are not appropriate for this
situation, as confirmed by simulation results in
terms of MSE. Actually, KL form B is not defined
anytime § #S (for theorem 3) and the MSE of
Chin2 form A is (on average) approximately 24
times the MSE of KL form A (MLE) and Chi*2
form B, which on the other hand are really close.

Average KL (A) KL(B) Chi"2 Chi"2
M.S.E. (A) (B)
Sim.1 0.012 0.02 0.013 0.021
Sim.2 0.00260  ---- 0.063 0.00265

Table 1: average MSE over 500 replications. As for simulation
1 the four methods provide good/acceptable estimates. As for
simulation 2 only KL form A and Chi*2 form B seem to work
appropriately

4 Conclusion

In order to compare theoretical distributions with

respect to a reference distribution (represented in
our case by the empirical distribution), majorization

theory can provide useful guidelines. In particular

we use relative majorization [10] to analyze the

distance between the theoretical and empirical
distributions. As in many practical situations strong

r-majorization cannot be fulfilled, we propose weak

r-majorization (from above) as the most appropriate
pre-order to compare distributions. Thus we search
for a class of statistical functionals which preserve
such pre-order. Within the class of divergence
measures [1], classified in form A and B, the results
can be summarized as follows. Assuming that the
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