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Abstract: In order to improve the performance of basic bacterial foraging optimization (BFO) for various global
optimization problems, a superior attraction bacterial foraging optimizer (SABFO) is proposed in this paper. In
SABFO, a novel movement guiding technique termed as superior attraction strategy is introduced to make use of
all bacteria historical experience as potential exemplars to lead individuals direction. This strategy enables the
bacteria in population to exchange information and collaborate with the superior individuals to search better so-
lutions for different dimensions. Two variants of SABFO are studied and tested on a set of sixteen benchmark
functions including various properties, such as unimodal, multimodal, shifted and inseparable characteristics. Four
state-of-the-art evolutionary algorithms are adopted for comparison. Experimental study demonstrates remarkable
improvement of the proposed algorithm for global optimization problems in terms of solution accuracy and con-
vergence speed.

Key–Words: Global optimization; Bacterial foraging optimization; Swarm intelligence; Engineering optimization;
Movement updating; Meta-heuristic; Evolutionary algorithms.

1 Introduction
Global optimization is a challenging and practical
problem which exists in many real world fields, such
as engineering, economics and management. Gen-
erally, global optimization problems are character-
ized by unimodal, multimodal, nonlinear and irregu-
lar properties. Without loss of generality, we consider
a minimization problem as the maximization model
could be transformed into a minimization one and
vice-versa. An unconstrained global optimization can
be defined as the following:

min f(X), X = [x1, x2, · · · , xD] (1)

where f : RD → R denotes a real valued objective
function, D represents the number of the dimensions
to be solved.

As the real world optimization problems become
increasingly large-scale and complicate, it is diffi-
cult for conventional and mathematical programming

methods to guarantee a global optimum or even a sat-
isfactory solution. Thus, more efficient and effective
optimization techniques are always demanded.

Inspired by swarm behaviors and biological ac-
tivities in natural ecosystem, swarm intelligence have
been developed to address complex problems. For
instance, particle swarm optimization (PSO), origi-
nally introduced by Kennedy and Eberchart [1], mim-
ics birds flocking and fish schooling in which the in-
dividuals search for food by collaboration; Genetic al-
gorithm (GA), first proposed by Holland [2], emulates
Darwins evolutionary theory C survival of the best by
performing simple operations on gene-string codes;
Ant colony optimization (ACO), developed by Dorigo
et al. [3], imitates ant colonies finding the short-
est route between food and home. These algorithms
have shown better performance on solving complex
problems and been applied to many practical areas
[4, 5, 6, 7].
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Most recently, the chemotactic behavior of Es-
cherichia Coli (E. Coli) bacteria living in human in-
testines attracts great interests due to its simple for-
aging pattern [8, 9], hereby presenting bacterial for-
aging optimization (BFO). BFO is a population-based
stochastic search algorithm that mimics the chemo-
taxis activity of bacterial foraging behaviors. Since
its introduction, BFO has been successfully applied to
some engineering fields, such as power system [10],
multiobjective optimization [11], optimal feeder rout-
ing [12] and so on. However, two common criti-
cisms still exist in BFO. First, canonical BFO suffers
poor performance and slow convergence rate com-
pared to other population-based algorithms (e.g., PSO
and GA) [13, 14]. BFOs performance deteriorates
with the growth of dimensionality and complexity of
problem.

Some BFO variants have been designed to im-
prove its performance and tune its parameters. Pan-
dit et al. [15] developed an improved BFO to im-
prove computational efficiency by employing a pa-
rameter automation strategy and crossover operation.
The original BFOs performance also has a definite
link with chemotactic step size , but so far it is hard
to determine an appropriate chemotactic step size for
various problems. Chen et al. [23] introduced an
adaptive foraging strategies that enable the algorithm
to dynamically modify the run-length unit parame-
ter during optimization process. Experiments on four
functions indicate its improvement. A BFO variant
with adaptive step size to balance exploration and ex-
ploitation is also found in [16]. Chemotaxis size with
linear and nonlinear variations was discussed by Niu
[17]. The novel chemotaxis strategy with commu-
nication scheme is proposed to increase information
exchange among bacteria [18]. Besides, other be-
haviors, i.e., elimination, reproduction and migration,
would be conducted only when certain given condi-
tions are satisfied. Sarasiri et al. [19] hybridized BFO
and Tabu search to enhance algorithms exploration
and exploitation capabilities. Similarly, BFO is com-
bined with PSO to form a velocity modulated BFO
which has fast convergence speed, and the method
is tested on five functions to justify its enhancement
[20]. Genetic algorithm was integrated into BFO and
the performance of the algorithm was studied with
an emphasis on mutation, crossover, variation of step
sizes, chemotactic steps, and the lifetime of the bac-
teria [21]. Verma et al. [22] incorporated proba-
bilistic derivative approach into BFO where the direc-
tion of bacteria is determined by a probability matrix
which is calculated using derivatives along the poten-
tial orientations. Two cooperative methods were ap-
plied to BFO, i.e., the serial heterogeneous cooper-
ation on the decomposition levels of implicit space

and hybrid space, respectively [23]. Although many
variants have been proposed to overcome BFOs de-
merits, these variants are either designed for specific
problems [15, 16, 22] or lack of comprehensive exper-
iments over more benchmark functions [13, 20, 23],
thus poor convergence when addressing various and
complex problems is still the shortcoming of BFO.
Besides, the introduction of additional strategies in-
crease the complexity of implementing BFO [13, 23].

In order to address the aforementioned issues,
i.e., poor convergence, a novel bacterial foraging opti-
mizer, termed as superior attraction bacterial foraging
optimizer (SABFO), is proposed in this paper. A su-
perior attraction strategy is developed to enhance the
search capabilities of the original BFO, which derives
two SABFO variants, namely SA-ws and SA-ns. It is
envisioned that SABFOs are more robust than BFO as
they are applied to a diverse set of problems with var-
ious dimensions. Moreover, the proposed technique
is easy to implement and even simplifying the com-
putational complexity of original BFO. Thirdly, the
overall performance, including solution accuracy and
convergence speed, is improved and verified through
comprehensive comparisons against several state-of-
the-art evolutionary algorithms on global optimization
problems.

The rest of the paper is organized as follows. Sec-
tion 2 presents the framework of basic BFO and the
proposed method. Experiment settings are introduced
in Section 3. Experimental results and analysis are
shown in Section 4, followed by the conclusion in
Section 5.

2 The Proposed Algorithm

2.1 Basic Bacterial Foraging Optimizer
The basic bacterial foraging optimizer comprises
three constituent mechanisms, namely, chemotaxis,
reproduction and elimination-dispersal [8]. A concise
description of each mechanism is given as follows.

2.1.1 Chemotaxis

In the basic BFO, the chemotaxis process is to imi-
tate the activity of E.coli bacterium as two types of
movements, i.e., tumbling and swimming. Tumbling
represents an E.coli bacterium moves with random di-
rection, while swimming means an E.coli bacterium
walks in the same direction after locating a fertile area.
The position of the ith bacterium is defined as follows:

θi(j + 1, k, l) = θi(j, k, l) +
C(i)×∆(i)√
∆T (i)×∆(i)

(2)
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where θi(j, k, l) denotes the position of the ith bac-
terium at jth chemotaxis, kth reproduction and lth
elimination-dispersal step. C(i) is the run length unit
which determines the step size adopted during each
swimming or tumbling. ∆(i) represents a random di-
rection vector whose values fall belong to [-1,1].

F (θi(j, k, l)) indicates the fitness value of the ith
bacterium corresponding to the position θi(j, k, l).

2.1.2 Reproduction

After every Nc chemotaxis steps the health statuses
of the bacteria are evaluated and those with inferior
healthy situation will die. Nc is the maximum steps
in a chemotaxis process and the health status of each
bacterium is defined as equation (3):

H(i) =

Nc∑
j=1

F (i, j, k, l) (3)

where H(i) means the health status of the ith bac-
terium.

In the reproduction scheme, only the bacteria with
the ranking of top fifty percent can survive. Then a
survival bacterium is reproduced to two identical ones
that are used to replace the dead individuals at the
same locations. Thus, the population size of bacteria
is unaltered through the reproduction.

2.1.3 Elimination-dispersal

This process is to mimic the phenomenon of bacte-
ria renewal or migration due to environmental change.
Specifically, a number of individuals are selected to be
re-born or migrated to other locations based on ran-
dom probability.

2.2 Superior Attraction Strategy
In the chemotaxis process of the basic BFO, the next
movement of a bacterium is determined by random
tumbling. Generating a random direction makes the
population maintain better diversity. Nevertheless, be-
cause all individuals randomly walk around the land-
scape without intra-population information exchange,
the search capability of BFO cannot ensure a satis-
factory solution especially when there exist plenty of
local optima or the optimization problem is complex.
Due to the fact that all bacteria stochastically wander
in the space with no direct communication with oth-
ers, a bacterium that finds a nutrient area could not
inform and attract other bacteria in time, which re-
sult in slow convergence of the population. With the
purpose of improving BFOs search ability and con-
vergence rate, a novel movement technique, namely,
superior attraction strategy, is proposed in this study.

Table 1: Procedure for construction of BEi

Initialization
For d = 1 : D

If rand < Pro
A1 = B(randi1(p))
A2 = B(randi2(p))
If F (A1) < F (A2)
BEi

d = A1,d

Else BEi
d = A2,d

End
Else BEi

d = B(i)d
End

End
Output BEi

In the proposed technique, the direction of the
tumble for the ith bacterium is update as the follow-
ing:

θi(j + 1, k, l) = θi(j, k, l)

+ C(i)×Ri ×
(
BEi − θi(j, k, l)

)
(4)

where Ri is a D-dimensional random vector lies in
[0,1]. BEi represents a D-dimensional leading exem-
plar whose elements are made of superior historical
information of itself and other bacteria. The detailed
pseudo code for construction of BEi is shown in Ta-
ble 1.

In Table 1, Pro is a given probability that deter-
mines whether a bacterium shall exploit its past in-
formation or move close to other bacteria in the dth
dimension. B(i) denotes the historical best of the ith
bacterium. p means the population size. randi(p) indi-
cates the bacterium selected from the population ran-
domly.

All these bacteria can share their past experience
with others by moving close to the superior individ-
uals with the influence of superior attraction strategy.
To ensure the latest information are exchanged timely,
the leading exemplar is used to guide the bacterium
just for once and will be rebuilt for every movement
updating process. Compared with the original BFO,
there are two main differences can be observed:

(1) Instead of evolution via random chemotaxis, the
bacteria can walk along a more accurate direction to-
wards the leading ones.

(2) Instead of separate tumbling in the search space,
all bacteria except the worst one can potentially work
as an exemplar to collaborate with others for various
different dimensions. Apparently, the correlations of
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cooperation are built among the individuals by sharing
their information with each other.

2.3 Superior Attraction Bacterial Foraging
Optimizer

The superior attraction bacterial foraging optimizer is
proposed by replacing BFOs movement updating for-
mula (Eq. (1)) with the superior attraction strategy.

Moreover, to further investigate the efficiency of
the proposed technique and its interaction with the
classical updating formula of direction, we derive an-
other SABFO variant for comparison, where all pro-
cedures are the same as SABFO except the swimming
operation. In this variant, the swimming operation
(Step 4 (6)) is removed and the bacteria searching for
optima completely depends on the proposed strategy.
The main motivation for the removal of the swimming
process is to test how the superior attraction strat-
egy impacts the search capability and performance
of BFO. To distinguish the two SABFO variants, the
SABFO with and without swimming are termed as
SA-ws and SA-ns, respectively.

The detailed procedures of SA-ws is shown as fol-
lows:

Step 1: Initialization of parameters:
p : population size,
Nc: chemotactic steps,
Ns: swimming steps,
Nre: reproduction steps,
Ned: elimination-dispersal steps,
Ped: possibility of elimination-dispersal,
C(i): chemotactic step size (run length unit),
θi(i,j,k): initialized position.

Step 2: Elimination-dispersal loop: l = l + 1 .

Step 3: Reproduction loop: k = k + 1 .

Step 4: Chemotaxis loop: j = j + 1 .
(1) For i = 1, 2, · · · , p , take a chemotactic step for

the ith bacterium.
(2) Calculate θ(i(j, k, l)) .
(3) Let F ′ = F (θ(i(j, k, l))) .
(4) Compute θi(j + 1, k, l) = θi(j, k, l)

+ C(i)×Ri ×
(
BEi − θi(j, k, l)

)
(5) Calculate θ(i(j + 1, k, l)) .
(6) Swimming:

(a) Initialize m = 0.

(b) While m < Ns,

• If F (θi(j + 1, k, l)) < F ′ let F ′ =
F (θi(j + 1, k, l)) and θi(j + 1, k, l) =

θi(j+1, k, l)+ C(i)×∆(i)√
∆T (i)×∆(i)

, and calcu-

late F (θi(j + 1, k, l)) .
• let m = Ns.

(7) If i ̸= p let i = i+ 1 , and go to (2)

Step 5: If j < Nc then go to Step 4.

Step 6: Reproduction:
(1) Calculate health value of the ith bacterium,

H(i) =
∑Nc

j=1 F (i, j, k, l) .
(2) The Sr individuals with the worst fitness values

are eliminated and the other Sr bacteria with the
best fitness values are split to replace the vacan-
cies.

Step 7: If k < Nre then go to Step 3.

Step 8: Elimination-dispersal: For i = 1, 2, · · · , p ,
with possibility Ped , eliminate and disperse each bac-
terium.

Step 9: If l < Ned , then go to Step 2; Else go to the
termination.

As the procedures of SA-ns are similar to that of
SA-ws, they are not presented here. The flowchart of
SA-ws and SA-ns are depicted in Figure 1 on the next
page and Figure 2 on the following page, respectively.

3 Experiment Settings
3.1 Benchmark Functions
As we propose to fully test the performance of
SABFO algorithms, sixteen benchmark functions col-
lected from [24, 25] are adopted for the comprehen-
sive comparison. To increase difficulty and complex-
ity of the experiments, all test functions are imple-
mented with shift or rotation, thus including various
characteristics, such as unimodal, multimodal, sepa-
rable and rotated problems. For the shift operation,
the global optimal is shifted to different locations for
different dimensions (z = θ−SV ), SV is the position
of the new global optimal. As to rotation, the original
variable is left multiplied by an randomly orthogonal
matrix, i.e., z =M × θ .

The formulas of these functions with and with-
out rotation are shown in Table 2 and Table 3, respec-
tively.

3.2 Compared algorithms and relevant set-
tings

The experiments were carried out to compare six
stochastic algorithms including the proposed SABFO
algorithms on sixteen test problems with dimensions
of two, ten and thirty. The algorithms adopted for
comparison are listed as follows:

(1) GA: Genetic algorithm [2];
(2) BFO: Canonical BFO [8];
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Figure 1: Flowchart of SA-ws

Figure 2: Flowchart of SA-ns
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Table 2: Test functions without rotation

Fun Name Formula
f1 Sphere f1(x) =

∑D
i=1 z

2
i

f2 Step f2(x) =
∑D

i=1

(⌊
zi +

1
2

⌋)2
f3 Schwefel

f3(x) = 418.982887273

×D −
∑D

i=1 zi sin(
√
|zi|)

f4 2D minima
f4(x) = 78.332331408+∑D

i=1(z4i −16z2i +5zi)
D

f5 Rastrigin
f5(x) =

∑D
i=1

(z2i − 10 cos(2πzi) + 10)

f6
Non-
Rastrigin

f6(x) =
∑D

i=1(y
2

−10cos(2πyi) + 10);
if |zi| < 0.5, yi = zi

else yi =
round(2zi)

2

f7 Ackley

f7(x) = 20 + e+ fbias−
20 exp(−1

5

√
1
D

∑D
i=1 z

2
i )

− exp( 1
D

∑D
i=1 cos(2πzi))

f8 Griewank
f8(x) =

∑D
i=1

z2i
4000 + 1

−
∏i=1

d cos( zi√
i
) + fbias

Table 3: Test functions without rotation
Fun. Name Formula
f9 Sphere f9(x) =

∑D
i=1 z

2
i

f10 Schwefel f10(x) = maxi=1,...,D |zi|

f11 Rosenbrock
f11(x) =

∑D−1
i=1 ((zi

−1)2) + 100(z2i − zi+1)
2

f12 Tablet
f12(x) = (1000z1)

2

+
∑D

i=2 z
2
i

f13 Ellipset
f13(x) =

∑D
i=1(aizi)

2

where ai = 20
i−1
n−1

,i = 1, · · · , D

f14 2D minima
f14(x) = 78.332331408+∑D

i=1(z
4
i −16z2i +5zi)
D

f15 Griewank
f15(x) =

∑D
i=1

z2i
4000 + 1

−
∏i=1

d cos( zi√
i
) + fbias

f16 Salomon
f16(x) = 1 + 20 + e−

cos(2π

√∑D
i=1 z

2
i

D )

− exp(
∑D

i=1 cos(2πzi)
D )

(3) PSO-g: PSO with global topology [26];
(4) PSO-l: PSO with local topology [26];
(5) SA-ws: SABFO with swimming;
(6) SA-ns: SABFO without swimming;
For fair comparison, the maximum function eval-

uations (FEs) for all involved approaches is set to
be proportional to the optimized dimensions, namely,
5000 × D . Thus, when solving the 2-D problems,
the maximum FEs is set at 10000. When solving 10-
D problems, the maximum FEs is set as 50000, and
the number is set to be 150000 for 30-D problems.
The population size is set at 100 for the compared
algorithms, and the specific parameter settings rec-
ommended in the original references [1, 2, 8, 26] are
adopted in the study. C(i) = 1.5 for i = 1, 2, · · · , p
. With regard to the construction probability in SAB-
FOs, we employ the method introduced in [24] to de-
termine the values since different Pro values generate
better performance for various problems. All experi-
ments are separately run 30 times for each algorithm
on each test function. The mean values of the final
solutions are given in Section 4.

4 Experimental results
4.1 Results for 2-D problems
Table 4 presents the means of the 30 runs of the six
methods on the eight 2-D benchmark functions with-
out rotation. The best results are shown in bold. It
can be observed that SA-ns outperforms the other al-
gorithms on 6 out of 8 problems in terms of means,
while SA-ws obtains the best result for only one func-
tion.

Table 5 shows the results on the benchmark func-
tions with rotation, which make problems inseparable
for D one-dimensional searches. In this case, it can be
seen that SA-ns performs worse than on the unrotated
category in terms of means, that is, SA-ns achieves
the best outcomes on 3 out of eight problems. Sim-
ilarly, SA-ws outperforms the other methods on one
functions.

Furthermore, comparing SA-ws with BFO, SA-
ws outperforms BFO on 10 out of 16 functions.

The convergence characteristics of the compared
algorithms on several representative 2-D functions
(e.g., unimodal and multimodal problems) are shown
in Figures 3 - 5. It can be observed that SA-ns con-
verges fast on 2-D functions without rotation and finds
the best results at early stage of evolution. For the 2-D
rotated functions, PSO-l has good convergence speed.

To sum up, SA-ns performs better than the com-
pared algorithms on 9 out of sixteen problems, and
SA-ws gains best results on 2 out of sixteen functions.
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Table 4: Results for 2-D unrotated problems

f1 f2 f3
GA 8.75E-03 0.00E+00 4.81E-03
BFO 1.23E+00 9.10E+01 6.36E+01
PSO-g 3.89E-10 0.00E+00 3.78E-09
PSO-l 5.60E-06 0.00E+00 1.23E-01
SA-ws 4.06E-07 0.00E+00 1.10E-07
SA-ns 0.00E+00 0.00E+00 1.78E+01

f4 f5 f6
GA 1.02E-03 3.20E-03 4.78E-03
BFO 1.53E-04 2.27E-02 6.52E-03
PSO-g 4.65E-10 7.72E-10 4.63E-10
PSO-l 2.68E-09 1.74E-05 6.04E-02
SA-ws 6.05E-06 4.98E-02 1.19E-01
SA-ns 4.57E-10 0.00E+00 2.00E-01

f7 f8
GA 7.74E-03 4.49E-02
BFO 1.77E-02 9.62E-01
PSO-g 1.34E-05 5.01E-03
PSO-l 2.28E-04 7.99E-03
SA-ws 1.46E-03 2.45E-03
SA-ns 0.00E+00 2.05E-03

Table 5: Results for 2-D rotated problems

f9 f10 f11
GA 7.34E-03 4.95E-02 5.73E+00
BFO 2.51E+00 1.36E-01 1.30E+01
PSO-g 3.82E-10 1.40E-05 4.43E+00
PSO-l 8.59E-08 1.90E-04 8.71E-02
SA-ws 3.43E-07 4.72E-04 2.65E+01
SA-ns 0.00E+00 9.46E-14 1.88E+01

f12 f13 f14
GA 1.06E+02 1.66E+00 9.40E-04
BFO 1.21E+02 4.00E+01 2.67E-04
PSO-g 5.58E+02 9.01E-05 4.59E-10
PSO-l 9.29E+01 1.19E-02 1.20E-08
SA-ws 3.55E+02 1.18E+02 7.07E-01
SA-ns 3.46E+02 3.85E+01 7.07E-01

f15 f16
GA 4.22E-02 8.56E-02
BFO 7.54E-01 9.08E-01
PSO-g 3.60E-03 5.13E-03
PSO-l 7.03E-03 3.98E-02
SA-ws 4.61E-03 4.65E-03
SA-ns 2.35E-03 1.41E-02

Figure 3: Convergence curves on 2-D f1

Figure 4: Convergence curves on 2-D f5

Figure 5: Convergence curves on 2-D f16
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Table 6: Results for 10-D unrotated problems

f1 f2 f3
GA 4.62E+01 8.85E+00 8.79E+02
BFO 8.22E+03 1.25E+04 2.15E+03
PSO-g 1.09E-13 0.00E+00 2.78E+02
PSO-l 4.81E-05 0.00E+00 1.07E+03
SA-ws 2.42E-04 0.00E+00 5.65E-01
SA-ns 0.00E+00 0.00E+00 5.66E-09

f4 f5 f6
GA 3.85E+00 1.07E+01 7.80E+00
BFO 3.54E+00 3.05E+01 1.95E+01
PSO-g 4.24E-01 2.50E+00 4.16E+00
PSO-l 8.77E-08 4.75E+00 6.17E+00
SA-ws 8.72E-04 9.89E-02 1.86E-01
SA-ns 4.57E-10 0.00E+00 0.00E+00

f7 f8
GA 7.75E-01 9.56E-01
BFO 1.81E+01 1.13E+02
PSO-g 5.44E-08 1.01E-01
PSO-l 1.55E-02 7.36E-02
SA-ws 2.15E-02 1.65E-03
SA-ns 1.78E-15 1.44E-05

4.2 Results for 10-D problems
The average results of the 30 runs of the sixteen al-
gorithms on the 10-D problems are given in Table 6
and Table 7. As can be seen from Table 6, SA-ns
outperforms the compared methods on all unrotated
functions, while SA-ws performs best on function 2.
For the 10-D functions with rotation, there is a ob-
vious improvement for SA-ns as it achieves the best
results on 6 out of eight rotated problems in terms of
means. Comparing with its performance on 2-D prob-
lems, SA-ns improves its results for functions 12, 14
and 16. Meanwhile, SA-ws cannot obtain any best
rankings for this case. However, SA-ws outperforms
BFO for all the test function in terms of means.

To investigate the correlation between SABFOs
convergence speed and problem dimensionality, the
figures depicted on 2-D problems are repeated on the
10-D problems, as shown in Figures 6 - 8. Although
the dimensions of test functions are increased, SA-
ns exhibits good search capabilities and convergence
faster than other algorithms on most of the test func-
tions.

4.3 Results for 30-D problems
In addition to low-dimension problems, the experi-
ments are repeated on the relatively complex problems
with 30 dimensions to verify SABFOs performance.

Table 7: Results for 10-D rotated problems

f9 f10 f11
GA 4.70E+01 6.00E+00 1.29E+05
BFO 7.63E+03 4.55E+01 8.47E+08
PSO-g 3.09E-14 1.80E-05 1.02E+02
PSO-l 1.37E-05 1.69E-01 7.45E+00
SA-ws 2.61E-04 1.77E-02 4.19E+01
SA-ns 0.00E+00 2.87E-06 3.43E+01

f12 f13 f14
GA 2.76E+03 8.03E+03 7.39E+00
BFO 1.83E+04 2.43E+05 2.70E+00
PSO-g 1.64E-13 1.11E-06 2.25E+00
PSO-l 2.88E-05 3.10E+03 2.93E-02
SA-ws 2.91E-01 4.89E+00 4.45E-03
SA-ns 0.00E+00 1.67E-01 5.19E-07

f15 f16
GA 7.71E-01 7.15E-01
BFO 1.12E+02 1.14E+01
PSO-g 1.24E-01 1.15E-01
PSO-l 5.45E-02 2.42E-01
SA-ws 1.26E-02 1.23E-01
SA-ns 1.05E-03 9.99E-02

Figure 6: Convergence curves on 10-D f1

Figure 7: Convergence curves on 10-D f5
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Figure 8: Convergence curves on 10-D f16

Figure 9: Convergence curves on 30-D f1

Table 8 and Table 9 present the mean experiment re-
sults of 30 trials of the sixteen algorithms on 30-D
benchmark problems. It can be observed that SA-ns
gains the best results on 15 out of sixteen test prob-
lems. Moreover, SA-ws performs better than the other
algorithms except SA-ns on 11 out of sixteen func-
tions which is significantly improved than in the 2-D
and 10-D categories of test. SABFOs outperforms the
original BFO on all test functions.

Figures 9 - 11 present the convergence charac-
teristics of the algorithms on 30-D problems as con-
ducted on 2-D and 10-D problems. As can be seen
from the figures, SABFOs exhibits better search abili-
ties and convergence speed than the compared swarm
intelligence algorithms on almost all test functions
with 30 dimensions.

4.4 Discussion on the superior attraction
strategy

By analyzing the results of the SABFO variants on 2-
D, 10-D and 30-D functions, it can be concluded that
SABFOs perform better with the increase of dimen-
sionality of the test problems.

With regard to the easiest category C 2-D prob-
lems, although SABFOs obtains 10 best rankings out

Table 8: Results for 30-D unrotated problems

f1 f2 f3
GA 4.77E+03 6.70E+03 5.51E+03
BFO 5.54E+04 8.46E+04 8.42E+03
PSO-g 4.01E-10 5.00E-02 1.04E+03
PSO-l 8.54E-01 9.00E-01 5.95E+03
SA-ws 2.77E-03 0.00E+00 1.67E+03
SA-ns 1.49E-20 0.00E+00 1.37E+02

f4 f5 f6
GA 2.18E+01 1.31E+02 8.67E+01
BFO 7.73E+00 2.22E+02 2.24E+02
PSO-g 4.05E+00 2.14E+01 2.88E+01
PSO-l 6.79E-03 4.38E+01 4.28E+01
SA-ws 2.48E-03 1.50E+01 1.72E+01
SA-ns 4.57E-10 1.03E+00 3.04E+00

f7 f8
GA 1.33E+01 5.25E+00
BFO 2.00E+01 5.19E+02
PSO-g 5.24E-06 1.40E-02
PSO-l 8.28E-01 6.32E-02
SA-ws 4.11E-02 5.62E-04
SA-ns 1.10E-10 2.84E-12

Table 9: Results for 30-D rotated problems

f9 f10 f11
GA 3.42E+03 9.85E+00 2.98E+06
BFO 5.48E+04 6.72E+01 9.51E+09
PSO-g 7.06E-10 1.32E+00 7.39E+02
PSO-l 8.30E-01 6.60E+00 4.55E+02
SA-ws 2.55E-03 9.92E-01 1.11E+02
SA-ns 1.74E-20 8.43E-02 4.34E+01

f12 f13 f14
GA 4.05E+04 2.86E+05 2.49E+01
BFO 9.98E+04 2.32E+06 8.07E+00
PSO-g 3.92E+03 1.14E+02 7.96E+00
PSO-l 1.40E+04 6.81E+04 5.33E+00
SA-ws 3.19E+03 9.86E+03 2.80E+00
SA-ns 1.27E+03 1.64E+03 1.78E+00

f15 f16
GA 5.21E+00 8.46E+00
BFO 5.27E+02 2.96E+01
PSO-g 7.15E-03 4.10E-01
PSO-l 6.21E-02 1.96E+00
SA-ws 8.60E-04 5.71E-01
SA-ns 2.93E-09 3.00E-01
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Figure 10: Convergence curves on 30-D f5

Figure 11: Convergence curves on 30-D f16

of sixteen functions, SA-ns and SA-ws relatively un-
derperforms other algorithms on the test with rotation.
It indicates that all the evolutionary algorithms could
solve the easy and simple problems efficiently. The
performance of SABFOs need to be justified on more
complex problems. With the growth of complexity of
problems, namely, 10-D and 30-D problems, the per-
formance of SABFOs improves and achieves the best
results on most functions in terms of means, especially
for 30-D category. This proves that the proposed strat-
egy is more effective in addressing relatively com-
plex and high-dimensional problems. This advantage
is mainly due to SABFOs more accurate and dimen-
sional position rule, as well as SABFOs making use
of historical information.

The efficiency of the superior attraction strategy
is further verified by comparing SA-ws with SA-ns.
SABFO without swimming outperforms SABFO with
swimming on almost all functions with various di-
mensionalities. As the only difference between SA-
ws and SA-ns is implementing the swimming or not,
it is safe to conclude that the proposed technique ex-
hibits superior search capabilities than the original
tumbling operation and improves the efficiency and
effectiveness of BFO.

In addition, SA-ns simplifies the procedure of

SA-ws by removing the swimming component, which
leads to an easy implementation of the original BFO
and fulfills the potential of the proposed strategy.

5 Conclusion
In this paper, a novel movement updating technique,
i.e., superior attraction strategy, is proposed to over-
come the following demerits of original BFO: (1)
BFO cannot perform well on various problems with
different dimensions. (2) BFO suffers poor conver-
gence. By making use of historical information of
bacteria to enhance BFO, the introduced method is
effective in guiding bacteria direction and generating
better quality results. The convergence speed of BFO
is accelerated via information exchange among bac-
teria. The novel strategy lets the individuals poten-
tially works as an exemplar to collaborate with others
to search for the better solutions for different dimen-
sions.

Experimental comparisons have been conducted
on sixteen global optimization functions including
unimodal and multimodal problems with various di-
mensions. The results indicate that the SABFOs sig-
nificantly improve the performance of BFO on the
diverse of functions with different complexity when
compared with several existing evolutionary algo-
rithms. The convergence curves have shown a fast
convergence speed of the SA-ns on most of test prob-
lems that overcomes the poor convergence of BFO.

In addition, the implementation of the superior at-
traction strategy is simple and does not introduce any
complex operation to basic BFO. The SA-ns even sim-
plifies computational complexity of basic BFO.

For the future interests, the convergence and
search behavior of SABFOs should be mathematically
proofed. Besides, the application of SABFOs to real-
world problems is also a promising topic.

Acknowledgements: This work was supported by
the National Natural Science foundation of China
(Grants No. 71171064, 71001072 and 71271140).

References:

[1] J. Kennedy, and R. Eberhart, Particle swarm op-
timization, Proceedings of IEEE International
Conference on Neural Networks Proceedings,
pp. 1942–1948, Piscataway, NJ, USA, 1995.

[2] J. H. Holland, Adaptation in natural and artifi-
cial systems: an introductory analysis with ap-
plications to biology control and artificial intelli-
gence, Ann Arbor, USA: University of Michigan
Press, 1975.

WSEAS TRANSACTIONS on MATHEMATICS Xianghua Chu, Ben Niu, Qiang Lu, Jun Ding

E-ISSN: 2224-2880 1204 Issue 12, Volume 12, December 2013



[3] M. Dorigo, V. Maniezzo, and A. Colorni, Ant
system: Optimization by a colony of cooperating
agents, IEEE Transactions on Systems Man and
Cybernetics Part B-Cybernetics, Vol. 26, No. 1,
1996, pp. 29-41.

[4] B. Qiao, X. Chang, M. Cui et al., Hybrid parti-
cle swarm algorithm for solving nonlinear con-
straint optimization problems,WSEAS Transac-
tions on Mathematics, Vol. 12, No. 1, 2013, pp.
76-84.

[5] Z. M. Nopiah, M. I. Khairir, S. Abdullah et al.,
Time complexity estimation and optimisation of
the genetic algorithm clustering method, WSEAS
Transactions on Mathematics, Vol. 9, No. 5,
2010, pp. 334-344.

[6] G. Fuellerer, K. F. Doerner, R. F. Hardl et al., Ant
colony optimization for the two-dimensional
loading vehicle routing problem, Computers &
Operations Research, Vol. 36, No. 3, 2009, pp.
655-673.

[7] X. Chu, Q. Lu, B. Niu et al., Solving the distri-
bution center location problem based on multi-
swarm cooperative particle swarm optimizer, 8th
International Conference on Intelligent Comput-
ing Technology, pp. 626-633, Huangshan, China,
2012.

[8] K. M. Passino, Biomimicry of bacterial foraging
for distributed optimization and control,IEEE
Control Systems Magazine, Vol. 22, No. 3, 2002,
pp. 52-67.

[9] S. D. Muller, J. Marchetto, S. Airaghi et al., Op-
timization based on bacterial chemotaxis,IEEE
Transactions on Evolutionary Computation, Vol.
6, No. 1, 2002, pp. 16-29.

[10] S. Mishra, and C. N. Bhende, Bacterial forag-
ing technique-based optimized active power fil-
ter for load compensation, IEEE Transactions on
Power Delivery, Vol. 22, No. 1, 2007, pp. 457-
465.

[11] B. Niu, H. Wang, J. Wang et al., Multi-objective
bacterial foraging optimization, Neurocomput-
ing , Vol. 116, No. 0, 2013, pp. 336-345.

[12] S. Singh, T. Ghose, and S. K. Goswami, Optimal
Feeder Routing Based on the Bacterial Foraging
Technique, IEEE Transactions on Power Deliv-
ery, Vol. 27, No. 1, 2012, pp. 70-78.

[13] H. N. Chen, Y. L. Zhu, and K. Y. Hu, Adaptive
Bacterial Foraging Optimization, Abstract and
Applied Analysis, Vol. 2011, Article ID 108269,
2011, pp. 1-27.

[14] M. El-Abd, Performance assessment of foraging
algorithms vs. evolutionary algorithms, Informa-
tion Sciences, Vol. 182, No. 1, 2012, pp. 243-
263.

[15] N. Pandit, A. Tripathi, S. Tapaswi et al., An
improved bacterial foraging algorithm for com-
bined static/dynamic environmental economic
dispatch, Applied Soft Computing, Vol. 12, No.
11, 2012, pp. 3500-3513.

[16] P. D. Sathya, and R. Kayalvizhi, Optimal seg-
mentation of brain MRI based on adaptive bac-
terial foraging algorithm, Neurocomputing, Vol.
74, No. 14-15, 2011, pp. 2299-2313.

[17] B. Niu, Y. Fan, H. Wang et al., Novel bacterial
foraging optimization with time-varying chemo-
taxis step, International Journal of Artificial In-
telligence, Vol. 7, No. 11, 2011, pp. 257-273.

[18] B. Niu, and H. Wang, Bacterial Colony Opti-
mization, Discrete Dynamics in Nature and So-
ciety,Vol. 2012, Article ID 698057, 2012, pp. 1-
28.

[19] N. Sarasiri, K. Suthamno, and S. Sujitjorn, Bac-
terial Foraging-Tabu Search Metaheuristics for
Identification of Nonlinear Friction Model, Jour-
nal of Applied Mathematics,Vol. 2012, Article
ID 238563, 2012, pp. 1-23.

[20] S. Gollapudi, S. S. Pattnaik, O. P. Bajpai et
al., Velocity Modulated Bacterial Foraging Op-
timization Technique (VMBFO), Applied Soft
Computing, Vol. 11, No. 1, 2011, pp. 154-165.

[21] D. H. Kim, A. Abraham, and J. H. Cho, A hy-
brid genetic algorithm and bacterial foraging ap-
proach for global optimization, Information Sci-
ences, Vol. 177, No. 18, 2007, pp. 3918-3937.

[22] O. P. Verma, M. Hanmandlu, P. Kumar et al., A
novel bacterial foraging technique for edge de-
tection, Pattern Recognition Letters, Vol. 32, No.
8, 2011, pp. 1187-1196.

[23] H. N. Chen, Y. L. Zhu, and K. Y. Hu, Cooper-
ative Bacterial Foraging Optimization,Discrete
Dynamics in Nature and Society, Vol. 2012, Ar-
ticle ID 238563, 2009, pp. 1-23.

[24] J. J. Liang, A. K. Qin, P. N. Suganthan et
al., Comprehensive learning particle swarm op-
timizer for global optimization of multimodal
functions, IEEE Transactions on Evolutionary
Computation, Vol. 10, No. 3, 2006, pp. 281-295.

[25] M. Hu, T. Wu, and J. D. Weir, An intelli-
gent augmentation of particle swarm optimiza-
tion with multiple adaptive methods, Informa-
tion Sciences, Vol. 213, 2012, pp. 68-83.

[26] J. Kennedy, and R. Mendes, Population structure
and particle swarm performance,Proceedings of
IEEE congress on Evolutionary Computation,
pp. 1671-1676, Hawaii, USA, 2002.

WSEAS TRANSACTIONS on MATHEMATICS Xianghua Chu, Ben Niu, Qiang Lu, Jun Ding

E-ISSN: 2224-2880 1205 Issue 12, Volume 12, December 2013




