On \(s \)-quasinormally embedded or weakly \(s \)-permutable subgroups of finite groups

Ping Kang
Tianjin Polytechnic University
Department of Mathematics
No. 399 BinShuiWest Road, 300387 Tianjin
People’s Republic of China
kangping2929@163.com

Hong Pan
Xinyang Normal University
College of Mathematics and Information Science
No.237 Chang’an Road, 464000 Xinyang
People’s Republic of China
panhong372@163.com

Abstract: Suppose that \(G \) is a finite group and \(H \) is a subgroup of \(G \). \(H \) is said to be \(s \)-quasinormally embedded in \(G \) if for each prime \(p \) dividing the order of \(H \), a Sylow \(p \)-subgroup of \(H \) is also a Sylow \(p \)-subgroup of some \(s \)-quasinormal subgroup of \(G \); \(H \) is said to be weakly \(s \)-permutable in \(G \) if there is a subnormal subgroup \(T \) of \(G \) such that \(G = HT \) and \(H \cap T \leq H_{sG} \), where \(H_{sG} \) is the subgroup of \(H \) generated by all those subgroups of \(H \) which are \(s \)-quasinormal in \(G \). We fix in every non-cyclic Sylow subgroup \(P \) of \(G \) some subgroup \(D \) satisfying \(1 < |D| < |P| \) and study the structure of \(G \) under the assumption that every subgroup \(H \) of \(P \) with \(|H| = |D| \) is either \(s \)-quasinormally embedded or weakly \(s \)-permutable in \(G \). Some recent results are generalized and unified.

Key Words: \(s \)-quasinormally embedded subgroup; Weakly \(s \)-permutable subgroup; Solvable groups; Saturated formation; Finite groups.

1 Introduction

All groups considered in this paper are finite. We use conventional notions and notation. \(G \) always means a group, \(|G| \) denotes the order of \(G \) and \(\pi(G) \) denotes the set of all primes dividing \(|G| \). Let \(\mathcal{F} \) be a class of groups. We call \(\mathcal{F} \) a formation, provided that (1) if \(G \in \mathcal{F} \) and \(H \leq G \), then \(G/H \in \mathcal{F} \), and (2) if \(G/M \) and \(G/N \) are in \(\mathcal{F} \), then \(G/\langle M \cap N \rangle \) is in \(\mathcal{F} \) for any normal subgroups \(M, N \) of \(G \). A formation \(\mathcal{F} \) is said to be saturated if \(G/\Phi(G) \in \mathcal{F} \) implies that \(G \in \mathcal{F} \). In this paper, \(\mathcal{W} \) will denote the class of all supersolvable groups. Clearly, \(\mathcal{W} \) is a saturated formation.

A subgroup \(H \) of \(G \) is called \(s \)-quasinormal (or \(s \)-permutable, \(\pi \)-quasinormal) in \(G \) provided \(H \) permutes with all Sylow subgroups of \(G \), i.e., \(HP = PH \) for any Sylow subgroup \(P \) of \(G \). This concept was introduced by Kegel in [5] and has been studied extensively by Deskins [2] and Schmidt [12]. More recently, Ballester-Bolinches and Pedraza-Aguilera [1] generalized \(s \)-quasinormal subgroups to \(s \)-quasinormally embedded subgroups. A subgroup \(H \) is said to be \(s \)-quasinormally embedded in \(G \) if for each prime \(p \) dividing the order of \(H \), a Sylow \(p \)-subgroup of \(H \) is also a Sylow \(p \)-subgroup of some \(s \)-quasinormal subgroup of \(G \). Clearly, every \(s \)-quasinormal subgroup of \(G \) is an \(s \)-quasinormally embedded subgroup of \(G \), but the converse does not hold. Many authors consider minimal or maximal subgroups of a Sylow subgroup of a group when investigating the structure of \(G \), such as in [1-2], [5-10] and [12-16], etc. For example, Li, Wang and Wei in [10] provide the following result: Let \(G \) be a group and \(P \) a Sylow \(p \)-subgroup of \(G \), where \(p \) is a prime divisor of \(|G| \) with \((|G|, p - 1) = 1 \). If every maximal subgroup of \(P \) is \(s \)-quasinormally embedded in \(G \), then \(G \) is \(p \)-nilpotent. Recently, Wei and Guo in [14] prove the following result: Let \(p \) be the smallest prime dividing the order of a group \(G \) and \(P \) a Sylow \(p \)-subgroup of \(G \). Then \(G \) is \(p \)-nilpotent if and only if there is a subgroup \(D \) such that \(1 < |D| < |P| \) and every subgroup \(H \) of \(P \) with order \(|H| = |D| \) or with order \(2|D| \) (if \(P \) is a nonabelian 2-group and \(|P : D| > 2 \)) is \(s \)-quasinormally embedded in \(G \).

As another generalization of the normality, Skiba in [11] introduced the following concept: A subgroup \(H \) of \(G \) is said to be weakly \(s \)-permutable in \(G \) if there is a subnormal subgroup \(T \) of \(G \) such that \(G = HT \) and \(H \cap T \leq H_{sG} \), where \(H_{sG} \) is the subgroup of \(H \) generated by all those subgroups of \(H \) which are \(s \)-permutable in \(G \). Clearly, every \(s \)-permutable subgroup of \(G \) is an weakly \(s \)-permutable subgroup of \(G \), but the converse does not hold. He provides the following result: Let \(\mathcal{F} \) be a saturated formation containing \(\mathcal{W} \), the class of all supersolvable groups and \(G \) a group with \(E \) as a normal subgroup of \(G \) such that \(G/E \in \mathcal{F} \). Suppose that every non-cyclic Sylow subgroup \(P \) of \(F^n(E) \) has a subgroup \(D \) such that
1 \leq |D| < |P| and every subgroup \(H \) of \(P \) with order \(|H| = |D| \) or with order \(2|D| \) (if \(P \) is a nonabelian 2-group and \(|P : D| > 2 \)) is weakly \(s \)-permutable in \(G \), where \(F^*(E) \) is the generalized Fitting subgroup of \(E \). Then \(G \in \mathcal{F} \).

The aim of this article is to unify and improve above Theorems using \(s \)-quasinormally embedded or weakly \(s \)-permutable subgroups. Our main theorem is the following result: Let \(\mathcal{F} \) be a saturated formation containing \(\mathcal{F} \), the class of all supersolvable groups and \(G \) a group with \(E \) as a normal subgroup of \(G \) such that \(G/E \in \mathcal{F} \). Suppose that every non-cyclic Sylow subgroup \(P \) of \(F^*(E) \) has a subgroup \(D \) such that \(1 < |D| < |P| \) and every subgroup \(H \) of \(P \) with order \(|H| = |D| \) or with order \(2|D| \) (if \(P \) is a nonabelian 2-group and \(|P : D| > 2 \)) is either \(s \)-quasinormally embedded or weakly \(s \)-permutable in \(G \), where \(F^*(E) \) is the generalized Fitting subgroup of \(E \). Then \(G \in \mathcal{F} \).

2 Basic definitions and preliminary results

In this section, we collect some known results that are useful later.

Lemma 1 ([11]) Suppose that \(U \) is \(s \)-quasinormally embedded in a group \(G \), and let \(H \leq G \) and \(K \leq G \). Then the following assertions hold.

(i) If \(U \leq H \), then \(U \) is \(s \)-quasinormally embedded in \(H \);

(ii) \(UK/K \) is \(s \)-quasinormally embedded in \(G \) and \(UK/K \) is \(s \)-quasinormally embedded in \(G/K \);

(iii) If \(K \leq H \) and \(H/K \) is \(s \)-quasinormally embedded in \(G/K \), then \(H \) is \(s \)-quasinormally embedded in \(G \).

Lemma 2 ([11]) Let \(H \) be a weakly \(s \)-permutable subgroup of a group \(G \).

(i) If \(H \leq K \leq G \), then \(H \) is weakly \(s \)-permutable in \(K \);

(ii) If \(N \) is normal in \(G \) and \(N \leq H \leq G \), then \(H/N \) is weakly \(s \)-permutable in \(G/N \);

(iii) If \(H \) is a \(\pi \)-subgroup and \(N \) is a normal \(\pi' \)-subgroup of \(G \), then \(HN/N \) is weakly \(s \)-permutable in \(G/N \);

(iv) Suppose \(H \) is a \(p \)-group for some prime \(p \) and \(H \) is not \(s \)-permutable in \(G \). Then \(G \) has a normal subgroup \(M \) such that \(|G : M| = p \) and \(G = HM \).

Lemma 3 ([13]) Let \(G \) be a group, \(K \) an \(s \)-quasinormal subgroup of \(G \) and \(P \) a Sylow \(p \)-subgroup of \(K \), where \(p \) is a prime. If either \(P \leq O_p(G) \) or \(K_G = 1 \), then \(P \) is \(s \)-quasinormal in \(G \).

Lemma 4 ([12]) If \(P \) is an \(s \)-quasinormal \(p \)-subgroup of a group \(G \) for some prime \(p \), then \(N_G(P) \geq O^p(G) \).

Lemma 5 ([13]) Let \(G \) be a group and \(p \) a prime dividing \(|G| \) with \((|G|, p - 1) = 1 \).

(i) If \(N \) is normal in \(G \) of order \(p \), then \(N \leq Z(G) \);

(ii) If \(G \) has cyclic Sylow \(p \)-subgroup, then \(G \) is \(p \)-nilpotent;

(iii) If \(M \leq G \) and \(|G : M| = p \), then \(M \leq G \).

Lemma 6 ([10]) Let \(G \) be a group and \(P \) a Sylow \(p \)-subgroup of \(G \), where \(p \) is a prime divisor of \(|G|\) with \((|G|, p - 1) = 1 \). If every maximal subgroup of \(P \) is \(s \)-quasinormally embedded in \(G \), then \(G \) is \(p \)-nilpotent.

Lemma 7 ([3, III, 5.2 and IV, 5.4]) Suppose that \(p \) is a prime and \(G \) is a minimal non-\(p \)-nilpotent group, i.e., \(G \) is not a \(p \)-nilpotent group but whose proper subgroups are all \(p \)-nilpotent.

(i) \(G \) has a normal Sylow \(p \)-subgroup \(P \) for some prime \(p \) and \(G = PQ \), where \(Q \) is a non-normal cyclic \(q \)-subgroup for some prime \(q \neq p \).

(ii) \(P/\Phi(P) \) is a minimal normal subgroup of \(G/\Phi(P) \).

(iii) The exponent of \(P \) is \(p \) or 4.

Lemma 8 ([6]) Let \(H \) be a nilpotent subgroup of a group \(G \). Then the following statements are equivalent:

(i) \(H \) is \(s \)-quasinormal in \(G \);

(ii) \(H \leq F(G) \) and \(H \) is \(s \)-quasinormally embedded in \(G \).

Lemma 9 ([14]) Let \(N \) be an elementary abelian normal \(p \)-subgroup of a group \(G \). If there exists a subgroup \(D \) in \(N \) such that \(1 < |D| < |N| \) and every subgroup \(H \) of \(N \) with \(|H| = |D| \) is \(s \)-quasinormally embedded in \(G \), then there exists a maximal subgroup \(M \) of \(N \) such that \(M \) is normal in \(G \).

Lemma 10 ([3, VI, 4.10]) Assume that \(A \) and \(B \) are two subgroups of a group \(G \) and \(G \neq AB \). If \(AB^g = B^gA \) holds for any \(g \in G \), then either \(A \) or \(B \) is contained in a nontrivial normal subgroup of \(G \).

The generalized Fitting subgroup \(F^*(G) \) of \(G \) is the unique maximal normal quasinilpotent subgroup of \(G \). Its definition and important properties can be found in [4, X, 13]. We would like to give the following basic facts we will use in our proof.
Lemma 11 ([4, X.13]) Let G be a group and M a subgroup of G.

(i) If M is normal in G, then $F^*(M) \leq F^*(G)$;
(ii) $F^*(G) \neq 1$ if $G \neq 1$; in fact, $F^*(G)/F(G) = \text{Soc}(F(G)C_G(F(G))/F(G))$;
(iii) $F^*(F^*(G)) = F^*(G) \geq F(G)$; if $F^*(G)$ is solvable, then $F^*(F^*(G)) = F(G)$.

Lemma 12 ([111]) Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow subgroup P of $F^*(E)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P:D| > 2$) is weakly s-permutable in G, where $F^*(E)$ is the generalized Fitting subgroup of E. Then $G \in \mathcal{F}$.

3 Main results

Theorem 13 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is either s-quasinormally embedded or weakly s-permutable in G. Then G is p-nilpotent.

Proof. Assume that the theorem is not true and let G be a counterexample of minimal order. We derive a contradiction in several steps.

By Lemmas 1 and 2, the following two steps are obvious.

Step 1. $O_p'(G) = 1$.

Step 2. G has a unique minimal normal subgroup N and G/N is p-nilpotent. Moreover, $\Phi(G) = 1$.

Step 3. $O_p(G) = 1$.

If $O_p(G) \neq 1$, then step 2 yields $N \leq O_p(G)$ and $\Phi(O_p(G)) \leq \Phi(G) = 1$. Therefore, G has a maximal subgroup M such that $G = MN$ and $G/N \cong M$ is p-nilpotent. Since $O_p(G) \cap N$ is normalized by N and M, we conclude that $O_p(G) \cap M$ is normal in G. The uniqueness of N yields $N = O_p(G)$. Clearly, $P = N(P \cap M)$. Furthermore, $P \cap M < P$, and, thus there exists a maximal subgroup P_1 of P such that $P \cap M < P_1$. Hence, $P = NP_1$. By hypothesis, P_1 is s-quasinormally embedded or weakly s-permutable in G. Suppose first P_1 is s-quasinormally embedded in G. Then there is an s-quasinormal subgroup K of G such that $P_1 \in \text{Syl}_p(K)$. If $K_G \neq 1$, then $N \leq K$. Since N is a normal p-subgroup of K and $P_1 \in \text{Syl}_p(K)$, we have that $N \leq P_1$, a contradiction. Hence $K_G = 1$, and so by Lemma 3 P_1 is s-quasinormal in G. By Lemma 4, $O^p(G) \leq N_G(P_1)$, $P_1 \leq G$. Then $N \cap P_1 = 1$ and $|N| = p$. By Lemma 5, $N \leq Z(G)$ and hence G is p-nilpotent, a contradiction. Therefore, we may assume that P_1 is weakly s-permutable in G. Then there is a subnormal subgroup T of G such that $G = P_1T$ and

$$P_1 \cap T \leq (P_1)s_G \leq O_p(G) = N \leq O^p(G)$$

because N is the unique minimal normal subgroup of G. Since $|G:T|$ is a power of p, $O^p(G) \leq T$. Hence,

$$P_1 \cap T \leq (P_1)s_G \leq O^p(G) \cap P_1 \leq T \cap P_1,$$

and so

$$P_1 \cap T = (P_1)s_G = O^p(G) \cap P_1.$$

Consequently, $G = O^p(G)$ implies that $(P_1)s_G$ is normal in G by Lemma 4. By the minimality of N, we have $(P_1)s_G = N$ or $(P_1)s_G = 1$. If $(P_1)s_G = N$, then $N \leq P_1$ and $P = NP_1 = P_1$, a contradiction. Thus $P_1 \cap T = (P_1)s_G = 1$, and so $|T_p| = p$. Then T is p-nilpotent. Let $T_{p'}$ be the normal p'-complement of T. Then $T_{p'}$ is normal in G and $T_{p'}$ is a p'-Hall subgroup of G. It follows that $T_{p'}$ is the normal p'-complement of G, a contradiction.

Step 4. The final contradiction.

If P has a maximal subgroup P_1 which is weakly s-permutable in G, then there is a subnormal subgroup T of G such that $G = P_1T$ and

$$P_1 \cap T \leq (P_1)s_G \leq O_p(G) = 1.$$

Then $P_1 \cap T = 1$. Hence $|T_p| = p$. Therefore, T is p-nilpotent. Thus G is p-nilpotent, a contradiction. Now we may assume that all maximal subgroups of P are s-quasinormally embedded in G. Then G is p-nilpotent by Lemma 6, a contradiction. □

The following corollaries is immediate from Theorem 13.

Corollary 14 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is s-quasinormally embedded in G. Then G is p-nilpotent.

Corollary 15 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is weakly s-permutable in G. Then G is p-nilpotent.

Corollary 16 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is s-permutable in G. Then G is p-nilpotent.
Corollary 17 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is permutable in G. Then G is p-nilpotent.

Corollary 18 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is normal in G. Then G is p-nilpotent.

Theorem 19 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is either s-quasinormally embedded or weakly s-permutable in G. Then G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order. We will derive a contradiction in several steps.

Step 1. $O_p'(G) = 1$.

If $O_p'(G) \neq 1$, Lemma 1 (ii) and Lemma 2 (iii) guarantee that $G/O_p'(G)$ satisfies the hypotheses of the theorem. Thus $G/O_p'(G)$ is p-nilpotent by the choice of G. Then G is p-nilpotent, a contradiction.

Step 2. $|D| > p$.

Suppose that $|D| = p$. Since G is not p-nilpotent, G has a minimal non-p-nilpotent subgroup G_1. By Lemma 7 (i), $G_1 = [P_1]Q$, where $P_1 \in \text{Syl}_p(G_1)$ and $Q \in \text{Syl}_q(G_1)$, $p \neq q$. Let $x \in P_1$ and $L = \langle x \rangle$. Then L is of order p or 4 by Lemma 7 (iii). By the hypotheses, L is either s-quasinormally embedded or weakly s-permutable in G, thus in G_1 by Lemma 1 (i) and 2 (i). First, suppose that L is weakly s-permutable in G_1. Then there is a subnormal subgroup T of G_1 such that $G_1 = LT$ and $L \cap T \leq L_1$. Hence $P_1 = P_1 \cap G_1 = P_1 \cap LT = L(P_1 \cap T)$. Since $P_1/\Phi(P_1)$ is abelian, we have $(P_1 \cap T)\Phi(P_1)/\Phi(P_1)$ is normal in $G_1/\Phi(P_1)$. Since $P_1/\Phi(P_1)$ is the minimal normal subgroup of $G_1/\Phi(P_1)$, we have that $P_1 \cap T \leq \Phi(P_1)$ or $P_1 = (P_1 \cap T)\Phi(P_1) = P_1 \cap T$. If $P_1 \cap T \leq \Phi(P_1)$, then $L = P_1$ is normal in G_1. It follows that G_1 is p-nilpotent, a contradiction. If $P_1 \cap T = \Phi(P_1)$ and $T = G_1$ and so $L = L_1G_1$ is s-permutable in G_1. For any element x in P_1, now we have $(x)Q$ is a proper subgroup of G_1, then $(x)Q = (x) \times Q$. This implies that $G_1 = P_1 \times Q$, a contradiction. Therefore, $L = \langle x \rangle$ is s-quasinormally embedded in G_1 for every element x in P_1, then by Lemma 8 $(x)Q$ is s-quasinormally embedded in G_1. Thus $LQ \leq G_1$. Therefore, $LQ = L \times Q$. Then $G_1 = P_1 \times Q$, a contradiction.

By Theorem 13.

Step 4. P has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is either s-quasinormally embedded or weakly s-permutable in G. Assume that $H \leq P$ such that $|H| = |D|$ and H is weakly s-permutable in G. Then there exists a subnormal subgroup T of G such that $G = HT$ and $H \cap K \leq H_G$. By Lemma 2 (iv), we may assume G has a normal subgroup M such that $[G : M] = p$ and $G = HM$. Since $|P : D| > p$ by Step 3, M satisfies the hypotheses of the theorem. The choice of G yields that M is p-nilpotent. It is easy to see that G is p-nilpotent, contrary to the choice of G.

Step 5. If $N \leq P$ and N is minimal normal in G, then $|N| \leq |D|$.

Suppose that $|N| > |D|$. Since $N \leq O_p(G)$, N is elementary abelian. By Lemma 9, N has a maximal subgroup which is normal in G, contrary to the minimality of N.

Step 6. Suppose that $N \leq P$ and N is minimal normal in G. Then G/N is p-nilpotent.

If $|N| < |D|$, G/N satisfies the hypotheses of the theorem by Lemma 1 (ii). Thus G/N is p-nilpotent by the minimal choice of G. So we may suppose that $|N| = |D|$ by Step 5. We will show that every cyclic subgroup of P/N of order p or order 4 (when P/N is a non-abelian 2-group) is s-quasinormally embedded in G/N. Let $K \leq P$ and $|K/N| = p$. By Step 2, N is non-cyclic, so are all subgroups containing N. Hence there is a maximal subgroup $L \neq N$ of K such that $K = NL$. Of course, $|N| = |D| = |L|$. Since L is s-quasinormally embedded in G by the hypotheses, $K/N = LN/N$ is s-quasinormally embedded in G/N by Lemma 1 (ii). If $p = 2$ and P/N is non-abelian, take a cyclic subgroup X/N of P/N of order 4. Let K/N be maximal in X/N. Then K is maximal in X and $|K/N|=2$. Since X is non-cyclic and X/N is cyclic, there is a maximal subgroup L of X such that N is not contained in L. Thus $X = LN$ and $|L| = |K| = 2|D|$. By the hypotheses, L is s-quasinormally embedded in G. By Lemma 1 (ii), $X/N = LN/N$ is s-quasinormally embedded in G/N. Hence G/N satisfies the hypotheses. By the minimal choice of G, G/N is p-nilpotent.

Step 7. $O_p(G) = 1$.

Suppose that $O_p(G) \neq 1$. Take a minimal normal subgroup N of G contained in $O_p(G)$. By Step 6, G/N is p-nilpotent. It is easy to see that N is the unique minimal normal subgroup of G contained in $O_p(G)$. Furthermore, $O_p(G) \cap \Phi(G) = 1$.

E-ISSN: 2224-2880 1107 Issue 11, Volume 12, November 2013
Hence $O_p(G)$ is an elementary abelian p-group. On the other hand, G has a maximal abelian subgroup M such that $G = MN$ and $M \cap N = 1$. It is easy to deduce that $O_p(G) \cap M = 1$, $N = O_p(G)$ and $M \cong G/N$ is p-nilpotent. Then G can be written as $G = N(M \cap P)M_p'$, where M_p' is the normal p-complement of M. Pick a maximal subgroup S of $M_p = P \cap M$. Then NSM_p is a subgroup of G with index p. Since p is the minimal prime in $\pi(G)$, we know that NSM_p is normal in G. Now by Step 3 and the induction, we have NSM_p is p-nilpotent. Therefore, G is p-nilpotent, a contradiction.

Step 8. The minimal normal subgroup L of G is not p-nilpotent.

If L is p-nilpotent, then it follows from the fact that L_p' char $L \leq G$ that $L_p' \leq O_p(G) = 1$. Thus L is a p-group. Whence $L \leq O_p(G) = 1$ by Step 7, a contradiction.

Step 9. G is a non-abelian simple group.

Suppose that G is not a simple group. Take a minimal normal subgroup L of G. Then $L < G$. If $|L|_p > |D|$, then L is p-nilpotent by the minimal choice of L, contrary to Step 8. If $|L|_p \leq |D|$, take $P_s \geq L \cap P$ such that $|P_s| = p|D|$. Hence P_s is a Sylow p-subgroup of P_sL. Since every maximal subgroup of P_s is of order $|D|$, every maximal subgroup of P_s is s-quasinormally embedded in G by hypotheses, thus in P_sL by Lemma 1 (i). Now applying Theorem 13, we get P_sL is p-nilpotent. Therefore, L is p-nilpotent, contrary to Step 8.

Step 10. The final contradiction.

Suppose that H is a subgroup of P with $|H| = |D|$ and Q is a Sylow q-subgroup with $q \neq p$. Then $HQ^g = Q^gH$ for any $g \in G$ by the hypotheses that H is s-quasinormally embedded in G and Lemma 8. Since G is simple by Step 9, $G = HQ$ from Lemma 10, the final contradiction.

The following corollaries are immediate from Theorem 19.

Corollary 20 Suppose that G is a group. If every non-cyclic Sylow subgroup of G has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is either s-quasinormally embedded or weakly s-permutable in G, then G has a Sylow tower of supersolvable type.

Corollary 21 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is s-quasinormally embedded in G. Then G is p-nilpotent.

Corollary 22 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is weakly s-permutable in G. Then G is p-nilpotent.

Corollary 23 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is s-permutable in G. Then G is p-nilpotent.

Corollary 24 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is s-permutable in G. Then G is p-nilpotent.

Corollary 25 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is normal in G. Then G is p-nilpotent.

Corollary 26 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. Suppose that every cyclic subgroup of P of prime order or order 4 is either s-quasinormally embedded or weakly s-permutable in G. Then G is p-nilpotent.

Corollary 27 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. Suppose that every cyclic subgroup of P of prime order or order 4 is s-quasinormally embedded in G. Then G is p-nilpotent.

Corollary 28 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. Suppose that every cyclic subgroup of P of prime order or order 4 is weakly s-permutable in G. Then G is p-nilpotent.
Corollary 30 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. Suppose that every cyclic subgroup of P of prime order or order 4 is permutable in G. Then G is p-nilpotent.

Corollary 31 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. Suppose that every cyclic subgroup of P of prime order or order 4 is normal in G. Then G is p-nilpotent.

Theorem 32 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow p-subgroup of E has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is either s-quasinormally embedded or weakly s-permutable in G. Then $G \in \mathcal{F}$.

Proof. Suppose that P is a non-cyclic Sylow p-subgroup of E, $\forall p \in \pi(E)$. Since P has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is either s-quasinormally embedded or weakly s-permutable in G by hypotheses, thus in E by Lemma 1 (i). Applying Corollary 20, we conclude that E has a Sylow tower of supersolvable type. Let q be the maximal prime divisor of $|E|$ and $Q \in \text{Syl}_q(E)$. Then $Q \trianglelefteq G$. Since $(G/Q, E/Q)$ satisfies the hypotheses of the theorem, by induction, $G/Q \in \mathcal{F}$. For any subgroup H of Q with $|H| = |D|$, since $Q \trianglelefteq O_q(G)$, H is either s-quasinormal or weakly s-permutable in G by Lemma 8. Since s-quasinormal implies weakly s-permutable and $F^*(Q) = Q$ by Lemma 11, we get $G \in \mathcal{F}$ by applying Lemma 12.

The following corollaries are immediate from Theorem 32.

Corollary 33 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow p-subgroup of E has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is s-quasinormally embedded in G. Then $G \in \mathcal{F}$.

Corollary 34 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow p-subgroup of E has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is weakly s-permutable in G. Then $G \in \mathcal{F}$.

Corollary 35 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow p-subgroup of E has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is weakly s-permutable in G. Then $G \in \mathcal{F}$.

Corollary 36 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow p-subgroup of E has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is permutable in G. Then $G \in \mathcal{F}$.

Corollary 37 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow p-subgroup of E has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is normal in G. Then $G \in \mathcal{F}$.

Corollary 38 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every maximal subgroup of any non-cyclic Sylow subgroup of E is either s-quasinormally embedded or weakly s-permutable in G. Then $G \in \mathcal{F}$.

Corollary 39 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every cyclic subgroup of any non-cyclic Sylow subgroup of E of prime order or order 4 is either s-quasinormally embedded or weakly s-permutable in G. Then $G \in \mathcal{F}$.

Corollary 40 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every maximal subgroup of any non-cyclic Sylow subgroup of E is s-quasinormally embedded in G. Then $G \in \mathcal{F}$.

Corollary 41 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal
of prime order or order 4 is weakly E-quasinormal in G. Then $G \in \mathcal{F}$.

Corollary 42 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every maximal subgroup of any non-cyclic Sylow subgroup of E is weakly s-permutable in G. Then $G \in \mathcal{F}$.

Corollary 43 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every cyclic subgroup of any non-cyclic Sylow subgroup of E is weakly s-permutable in G. Then $G \in \mathcal{F}$.

Corollary 44 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every maximal subgroup of any non-cyclic Sylow subgroup of E of prime order or order 4 is cyclic subgroup of any non-cyclic Sylow subgroup of E. Then $G \in \mathcal{F}$.

Corollary 45 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every cyclic subgroup of any non-cyclic Sylow subgroup of E of prime order or order 4 is s-quasinormal in G. Then $G \in \mathcal{F}$.

Corollary 46 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every maximal subgroup of any non-cyclic Sylow subgroup of E is quasinormal in G. Then $G \in \mathcal{F}$.

Theorem 50 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is either s-quasinormally embedded or weakly s-permutable in G. Then $G \in \mathcal{F}$.

Proof. We distinguish two cases:

Case 1. $\mathcal{F} = \mathcal{U}$.

Let G be a minimal counter-example.

Step 1. Every proper normal subgroup N of G containing $F^*(E)$ (if it exists) is supersolvable.

If N is a proper normal subgroup of G containing $F^*(E)$, then $N/N \cap E \cong NE/E$ is supersolvable. By Lemma 11 (iii), $F^*(E) = F^*(F^*(E)) \leq F^*(E \cap N) \leq F^*(E)$, so $F^*(E \cap N) = F^*(E)$. For any Sylow subgroup P of $F^*(E \cap N) = F^*(E)$, P has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is either s-quasinormally embedded or weakly s-permutable in G by hypotheses, thus in N by Lemma 1 (i) and Lemma 2 (i). So N and $N \cap H$ satisfy the hypotheses of the theorem, the minimal choice of G implies that N is supersolvable.

Step 2. $E = G$.

If $E < G$, then $E \in \mathcal{U}$ by Step 1. Hence $F^*(E) = F(E)$ by Lemma 11. It follows that every Sylow subgroup of $F^*(E)$ is normal in G. By Lemma 8, every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is either s-quasinormal or weakly s-permutable in G. Applying Lemma 12 for the special case $\mathcal{F} = \mathcal{U}$, $G \in \mathcal{F}$, a contradiction.

Step 3. $F^*(G) = F(G) < G$.

If $F^*(G) = G$, then $G \in \mathcal{F}$ by Theorem 32, contrary to the choice of G. So $F^*(G) < G$. By Step 1, $F^*(G) \in \mathcal{U}$ and $F^*(G) = F(G)$ by Lemma 11.

Step 4. The final contradiction.

Since $F^*(G) = F(G)$, each non-cyclic Sylow subgroup of $F^*(G)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is either s-quasinormal or weakly s-permutable in G by Lemma 8. Applying Lemma 12, $G \in \mathcal{U}$, a contradiction.
Case 2. $\mathcal{F} \neq \mathcal{U}$.

By hypotheses, every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is either s-quasinormally embedded or weakly s-permutable in G, thus in E Lemma 1 (i) and Lemma 2 (i). Applying Case 1, $E \in \mathcal{U}$. Then $F^*(E) = F(E)$ by Lemma 11. It follows that each Sylow subgroup of $F^*(E)$ is normal in G. By Lemma 8, each non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is either s-quasinormal or weakly s-permutable in G.

Applying Lemma 12, $G \in \mathcal{F}$. These complete the proof of the theorem.

The following corollaries are immediate from Theorem 50.

Corollary 51 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is s-quasinormally embedded in G. Then $G \in \mathcal{F}$.

Corollary 52 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is weakly s-permutable in G. Then $G \in \mathcal{F}$.

Corollary 53 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is s-permutable in G. Then $G \in \mathcal{F}$.

Corollary 54 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is s-quasinormally embedded or weakly s-permutable in G.

Corollary 55 Let \mathcal{F} be a saturated formation containing \mathcal{U}, the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P with order $|H| = |D|$ or with order $2|D|$ (if P is a nonabelian 2-group and $|P : D| > 2$) is s-quasinormally embedded or weakly s-permutable in G.

Corollary 56 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Then $G \in \mathcal{F}$ if and only if every maximal subgroup of any Sylow subgroup of $F^*(E)$ is either s-quasinormally embedded or weakly s-permutable in G.

Corollary 57 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Then $G \in \mathcal{F}$ if and only if every cyclic subgroup of any Sylow subgroup of $F^*(E)$ of prime order or order 4 is s-quasinormally embedded or weakly s-permutable in G.

Corollary 58 ([9, Theorem 1.1]) Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$.

Corollary 59 ([9, Theorem 1.2]) Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$.

Corollary 60 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$.

Corollary 61 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$.
Corollary 62 ([7, Theorem 3.4]) Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Then $G \in \mathcal{F}$ if and only if every maximal subgroup of any Sylow subgroup of $F^\ast(E)$ is s-quasinormal in G.

Corollary 63 ([8, Theorem 3.3]) Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Then $G \in \mathcal{F}$ if and only if every cyclic subgroup of any Sylow subgroup of $F^\ast(E)$ of prime order or order 4 is s-quasinormal in G.

Corollary 64 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Then $G \in \mathcal{F}$ if and only if every maximal subgroup of any Sylow subgroup of $F^\ast(E)$ is quasinormal in G.

Corollary 65 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Then $G \in \mathcal{F}$ if and only if every cyclic subgroup of any Sylow subgroup of $F^\ast(E)$ of prime order or order 4 is quasinormal in G.

Corollary 66 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Then $G \in \mathcal{F}$ if and only if every maximal subgroup of any Sylow subgroup of $F^\ast(E)$ is normal in G.

Corollary 67 Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Then $G \in \mathcal{F}$ if and only if every cyclic subgroup of any Sylow subgroup of $F^\ast(E)$ of prime order or order 4 is normal in G.

4 Conclusion

The results explained in the previous sections show that the method that we replace conditions for all maximal subgroups or all minimal subgroups of Sylow subgroups of G by conditions referring to only some subgroups of Sylow subgroups of G in order to investigate the structure of a finite group is very useful. Results of this type are interesting. In addition, there are many other generalizations of the normality, for example, SS-quasinormal subgroups in [6]; c^\ast-normality in [13]; X-semipermutable subgroups in [17]; c-supplemented subgroups in [18]. As an application, we may consider using the above special subgroups to characterize the structure of finite groups.

Acknowledgements: The research was supported financially by the NNSF-China (11201400) and the Research Grant of Tianjin Polytechnic University.

References:

