
Global Dynamics of an SEIRS Epidemic Model with Constant
Immigration and Immunity

Li juan Zhang
Institute of disaster prevention

Basic Course Department
Sanhe, Hebei 065201

P. R. CHINA
Lijuan262658@126.com

Yingqiu Li Qingqing Ren Zhenxiang Huo
Institute of disaster prevention

Basic Course Department
Sanhe, Hebei 065201

P. R. CHINA

Abstract: An SEIRS model for disease transmission that includes immigration of the infective, susceptible, ex-
posed, and recovered has been constructed and analyzed. For the reason that the immunity of the recovered is
temporary, a proportion δ1 of recovered will come back to susceptible. We also consider vaccine injection to the
susceptible with a proportion c. The model also incorporates a population size dependent contact rate and a disease-
related death. As the infected fraction cannot be eliminated from the population, this kind of model has only one
unique endemic equilibrium that is globally asymptotically stable. In a special case where the new members of
immigration are all susceptible, the model shows a threshold phenomenon. In order to prove the global asymptot-
ical stability of the endemic equilibrium, we change our system to a three-dimensional asymptotical autonomous
system with limit equation. Finally, we discussed syphilis as a case to predict the development in China. Computer
simulation shows that the model can reflect the dynamic and immigration behaviour for disease transmission.

Key–Words: SEIRS model, population size dependent contact rate, syphilis, compound matrix

1 Introduction
The incidence of a disease is the number of new cases
per unit time, and it plays an important role in the
study of mathematical epidemiology. Thieme and
Castillo-Chavez [1] argued that the general form of a
population-size-dependent incidence should be writ-

ten as βλ(N)
SI

N
, where S is the number of suscepti-

ble at time t, I the number of infective at time t, and
N the total population size at time t, then S+ I ≤ N ,
β is the probability per unit time of transmitting a dis-
ease between two individuals in contact. And λ(N) is
the probability for an individual to take part in a con-
tact. In many articles λ(N) is also called the contact
rate, βλ(N) , C(N) which is the average number
of adequate contacts of an individual per unit time is
said to be an adequate contact rate. An adequate con-
tact is a contact which is sufficient for transmission of
the infection from an infective to a susceptible. Many
contact rate forms are used in the incidence term in
deterministic epidemic models described by differen-
tial equation. For example the standard incidence λSI

N
starts with the assumption that adequate contact rate
is constant λ. The bilinear incidence λSI = βN S

N I
implies that the adequate contact rate is βN that is
linearly proportional to the total population size N .
This would be realistic when the total population size

N is not too large because the number of adequate
contacts made by an individual per unit time should
increase as the total population size N increases. On
the contrary, if population size is quite large, because
the number of adequate contacts made by an infective
per unit time should be limited, or grows less rapidly
asN increases, the linear contact rate βN is not avail-
able and the constant adequate contact rate λ may be
more realistic. Hence the two above-mentioned ade-
quate contact rates are actually two extreme cases for
the total population size N being very small and very
large.

Many expressions have also been used for the in-
cidence term. Anderson [2] argued that if C(N) =
λ̄N δ is an appropriate contact rate, then the incidence
is C(N) = λ̄N δSI/N . The data in Anderson arti-
cle [2] for human diseases in communities with pop-
ulation sizes from 1000 to 400000 imply that δ is be-
tween 0.03 and 0.07.That also shows that the inci-
dence give by C(N)SI/N with a contact rate such
as C(N) = λ̄N0.05 would be even better.

In analogy to Hollings [3] derivation of predater’s
functional response to the amount of prey, the con-
tact function C(N) should be βaN

1+bN . Heesterbeek and
Metz [4] derived an effective contact rate of the form
C(N) = βbN

1+bN+
√
1+2bN

,which is modelling the for-
mation of the short-time social complexes.
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All above-mentioned adequate contact rate forms
satisfy the following two assumptions:

(H1) C(N) is a nonnegative continuous function
as N ≥ 0 and is continuous differential as N > 0;

(H2) D(N) = C(N)/N is a non-increasing con-
tinuously differentiable function asN > 0, D(0) ̸= 0
and C ′(N) + |D′(N)| ̸= 0.

Many authors have done researches on SEIR
models of epidemics transmission recently. Green-
halgh [4] considered SEIR models that incorporate
density dependence in the death rate. Cooke and van
den Driessche [5] introduced and studied the SEIRS
models with two delays. Recently, Greenhalgh [6]
studied Hopf bifurcations in models of the SEIRS
type, with density- dependent contact rate and death
rate. Li and Muldowney [7] and Lietal [8], studied
global dynamics of the SEIR models with a nonlin-
ear incidence rate and with a standard incidence, re-
spectively. Li et al. [9] analyzed the global dynam-
ics of an SEIR model with vertical transmission and
a bilinear incidence. Research on epidemic models
of SEIR or SEIRS types with the general population-
size-dependent adequate contact rate C(N) satisfying
the assumptions (H1) and (H2) are scarce in the pub-
lished reports. Zhang [10] has studied an SEIR model
with population size dependent contact rate and new
flow of immigration, but has not considered the failure
of immunity and the vaccination. But it is well known
that they are very important in reality.

In this manuscript, we construct and study the
SEIRS epidemic model with a general contact rate and
immigration of distinct compartments. Especially, to
establish the global stability of the endemic equilib-
rium, we reduced the model to a three-dimensional
asymptotical autonomous differential system with a
limit system. C(N)/I is a general population-size-
dependent function satisfying the assumptions (H1)
(H2). We assume a constant proportion of new mem-
bers into the population per unit time, of which a frac-
tion q is exposed, a fraction p is infective, and a frac-
tion b is recovered. So the fraction 1−p−q−b is sus-
ceptible, where p, q, b are nonnegative constants with
0 ≤ p+q+b ≤ 1. Assume that natural deaths occur at
a rate proportional to the population size N . Then the
natural death rate term is µN , µ is the natural death
rate constant. Under our assumptions, the infection
cannot be eliminated because there is a constant new
infected individuals moving in, when 1 − q − p > 0.
In order to eradicate the disease, it would be neces-
sary to isolate the fraction of arriving infected individ-
uals. Our model has some features in common with
models that include vertical transmission, but vertical
transmission models normally include a new infected
proportional, which are already in the population and
thus may have a disease-free equilibrium [11,12]. We

also make some simulation with the syphilis. With
our conclusion, we can make some prediction. This
can be used to some disease control department and
so on.

2 Problem Formulation
2.1 Model Formulation
The total population sizeN(t) is divided into four dis-
tinct epidemic subclasses (compartments) of individu-
als which are susceptible, exposed, infectious, and re-
covered (with temporary immunity), with the denoted
S(t), E(t), I(t), and R(t) respectively. q, p and b are
all nonnegative constant, and 0 ≤ p + q + b ≤ 1.
The parameters µ, ε, γ are all positive constants. α
is a nonnegative constant and represents the death rate
because of disease (the disease-related death rate), we
assume it is small. µ is the rate constant for natural
death, γ is the rate constant for recovery, and ε is the
rate constant at which the exposed individuals become
infective, so that 1

ε is the mean latent period. The re-
covered individuals are assumed to acquire temporary
immunity, so there is transfer from class R back to
class S with a proportion δ1. The positive constant
A is the constant recruitment rate into the population,
so that A/µ represents a carrying capacity, or maxi-
mum possible population size, rather than the popu-
lation size N . C(N) satisfying the assumptions (H1)
and (H2) is the adequate contact rate. Then the SEIRS
model with the adequate contact rate and immigration
of different compartment individuals is derived on the
basis of the basic assumptions. By using the trans-
fer diagram, it is described by the following system of
differential equations

S′ = (1− p− q − b)A− βλ(N)
S

N
I

− µS + δ1R− cS

E′ = qA+ βλ(N)
S

N
I − µE − εE

I ′ = pA+ εE − µI − αI − γI (1)
R′ = bA+ γI − µR+ cS −Rδ1
N(t) = S(t) + E(t) + I(t) +R(t).

We study (1) in the closed set:

Γ = {(S,E, I,R) ∈ R4
+ : 0 ≤ S + E + I

+R = N ≤ A/µ}

R+
4 denotes the nonnegative cone of R4, including its

lower dimensional faces. It can be verified that Γ is
positively invariant with respect to (1). ∂Γ, Γ̊ denote
the boundary and the interior of Γ respectively.
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The continuity of the right side of (1) on N > 0
implies that solutions exist in Γ and solutions remain
in Γ, they are continuous for all t > 0 (see [13]).

If D(N) =
βλ(N)

N
=

C(N)

N
, D(N) ∈ C ′[0,

A

µ
],

then the right side of (1) is globally Lipschitz in Γ
so that the initial value problem has a unique solu-
tion for all t ≥ 0 that depends continuously on the
data. IfD′(0) is bounded, thenD′(N) is still bounded
on [0, A/µ]. Then in the interior of the region Γ, the
right side of (1) is locally Lipschitz, as a Lipschitz
constant exists for every closed bounded subset of the
interior of Γ. Thus for any point in the interior of Γ,
the initial value problem has a unique solution for all
t ≥ 0. If 0 < p + q + b < 1, the solutions starting at
points on the boundary of Γ enter the interior of Γ. If
p+q+b = 0, solutions starting on the S-axis approach

P0 =
( A(µ+ δ1)

µ(µ+ δ1 + c)
, 0, 0,

Ac

µ(µ+ δ1 + c)

)
, but all

the other solutions starting at points on the boundary
of Γ enter the interior of Γ .If p + q = 1 − b, for all
solutions starting at points on the boundary of Γ, they
enter the interior of Γ or stay on ∂Γ. So the initial
value problem is well posed in a close set Γ.

2.2 Equilibrium
The equilibrium of system (1) can be found by setting
the right sides of the four equations of (1) equal to
zero, giving the algebraic system

(1− p− b− q)A− SID(N)− µS
+δ1R− cS = 0

qA+D(N)SI = (µ+ ε)E (2)
pA+ εE = (µ+ α+ γ)I

bA+ γI = µR− cS + δ1R.

Adding all equations in (2), we obtain

I =
1

α
(A− µN) (3)

Let δ = µ+ α+ γ, ω = µ+ ε then R and E can
be expressed in terms of N :

R =
bA

µ+ δ1
+
γ(A− µN)

α(µ+ δ1)
+

αc(1− q − b− p)A
(µ+ δ1)(αµ+D(N)A−D(N)µN + αδ1 + αc)

(4)

E =
δ

ε
I − pA

ε
(A− µN)− pA

ε

S =
α(1− p− b− q)A

αµ+D(N)(A− µN) + αδ1 + αc
(5)

Substituting (4) and (5) into the second equation in(2),
we have

1

α
(A− µN)[D(N)

α(1− p− b− q)A
αµ+D(N)(A− µN) + αδ1 + αc

− (µ+ ε)δ

ε
] +

pA(µ+ ε)

ε
+ qA = 0 (6)

The existence and number of equilibrium corre-
spond to those of the roots of the equation (6) in the

interval [0,
A

µ
].

R0 = βλ(A/µ)
ε

ε+ µ

1

µ+ γ + α
=
εC(A/µ)

δω
(7)

Theorem 1 Suppose p + q + b = 0 or new members
of immigration are all susceptible.

The point

P0 =

(
A(µ+ δ1)

µ(µ+ δ1 + c)
, 0, 0,

Ac

µ(µ+ δ1 + c)

)
is the disease-free equilibrium of the system (1). It is
stable when R0 ≤ 1 and unstable when R0 > 1

1. When R0 < 1, the solutions of the system (1)
starting sufficiently close to P0 in Γ move away from
P0 except those starting on the invariant S-axis which
approach P0 along the axis.

2. When R0 > 1 system (1) has a unique interior
(endemic) equilibrium and its coordinates satisfy (3)-
(5)if and only if R0is between µ

µ+δ1+candC(A/µ)
α .

Proof. When p + q + b = 0, that is p = q = b = 0,
the equation (6) becomes:

G(N) = [
D(N)αA

α(µ+ δ1 + c) +D(N)(A− µN)

− (µ+ ε)δ

ε
]
1

α
(A− µN)

= 0.

We can see that either A − µN = 0, then I = 0, and
we can deduce

E = 0, I = 0, R =
cA

µ(µ+ c+ δ1)
, S =

Aµ+Aδ1
µ(µ+ c+ δ1)

.

WhenR0 ≤ 1, we setL = εE+ωI , then its derivative
along the solutions of (1) is

L′ = δωI(R0
S

N

C(N)

C(A/µ)
− 1) ≤ 0.

That implies that all paths in Γ approach the largest
positively invariant subset of the set M where L′ = 0.
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The reason is the Lyapnuov-Lasell theorem [18]. M
is the set where I = 0. At the same time E = 0.

S′ =(A+ δ1R)− (µ+ c)s

S =
A+ δ1R

µ+ c
+ [S(0)− A+ δ1R

µ+ c
]e(−µ−c)S

S →A+ δ1R

µ+ c

We can conclude that all solutions of (1) will approach
the disease-free equilibrium.

When R0 > 1 then L′ can be written as:

L′ = δωI(R0
S

A/µ

D(N)

D(A/µ)
− 1).

So L′ > 0 for S which is sufficiently close to A/µ,
except the invariant S-axis.

Solutions starting sufficiently close to P0 move
away neighbourhood of P0, except those starting on
the S-axis which approach P0. From the assumptions
(H1) and (H2), the function G(N) is decreasing, so
that the equation G(N) = 0 has at most one unique
root. We let

F (N)

= D(N) αA
αµ+D(N)(A−µN)+αδ1+αc −

(µ+ε)δ
ε

= AαC(N)
Nα(µ+δ1+c)+C(N)(A−µN) −

1
R0

C(A/µ)
α

lim
N→0

F (N) = 1− 1
R0

C(A/µ)
α

lim
N→A/µ

F (N) = C(A/µ)

(
µ

µ+δ1+c −
1
R0

)
.

If and only if R0 is between µ
µ+δ1+c and C(A/µ)/α,

that is for
µ

µ+ δ1 + c
< R0 < C(A/µ)/α

or
C(A/µ)/α < R0 <

µ

µ+ δ1 + c
,

equation (6) has only one positive root in the inter-
val N1 ∈ (0, A/µ). That is the system has one en-
demic equilibrium P1 = (S1, E1, I1, R1) except dis-
ease equilibrium P0, and it satisfies:

S1 =
α(1− p− q − b)A

αµ+D(N1)(A− µN1) + αδ1 + αc

I1 =
1

α
(A− µN1)

E1 =
δ

αε
(A− µN1)−

pA

ε

R1 =
αc(1− p− q − b)A

(µ+ δ1)(αµ+D(N1)(A− µN1) + αδ1 + αc)

+
bA

µ+ δ1
+
γ(A− µN1)

α(µ+ δ1)

is coordinates of P1 satisfy(3)-(5)when p = 0, q =
0, b = 0, where N = N1.

Theorem 2 When p + q + b = 1, that is all of new
members of immigration are not susceptible, system
(1) has a unique boundary equilibrium,

P2 =

(
0,

qA

µ+ ε
,
pA+ qAε/µ+ ε

µ+ α+ γ
,

bA

µ+ δ1

+
pAγ

δ(µ+ δ1)
+

qAωγ

ωδ(µ+ δ1)

)
and it is globally asymptotically stable.

Proof. Let 0 < p+q < 1−b in system (1), it is easy to
see that P2is the unique equilibrium of the system(1).
The global asymptotical stability of the point P2 can
be proved by using the function L = S. ⊓⊔

Theorem 3 When 0 < p+ q < 1− b system (1) only
has equilibrium P ∗ = (S∗, E∗, I∗, R∗) and P ∗ is in
the feasible region of Γ.

Proof. It is easy to see that system (1) has no disease-
free equilibrium, the equation (6) becomes

1

α
(A− µN)[D(N)

α(1− p− q − b)A
αµ+D(N)(A− µN) + αδ1 + αc

− (µ+ ε)δ

ε
] +

pA(µ+ ε)

ε
+ qA = 0

to simplify we can see

G(N) =
1
α(A− µN)[ C(N)(1−p−q−b)Aα

(A−µN)C(N)+Nα(µ+δ1+c) −
ωδ
ε ]

+pAω
ε + qA = 0

From the assumptions (H1)-(H2), the function
G(N) is decreasing, so the equation has at most a
unique root. And we have

lim
N→0

G(N) =(1− p− q − b)A− ωδA

αε
+
pAω

ε

=
A

εα
[µ(α− ε− c)− εγ − εαb] < 0,

lim
µ→A/µ

G(N) =
pAω

ε
+ qA > 0.

So the equation G(N) = 0 exists only one posi-
tive root N∗ in (0, A/µ) .
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Now we can find the only equilibrium P ∗ =
(S∗, E∗, I∗, R∗) satisfying

I∗ =
1

α
(A− µN∗)

S∗ =
α(1− p− q − b)A

αµ+D(N∗)(A− µN∗) + αδ1 + αc

E∗ =
δ

αε
(A− µN∗)− pA

ε

R∗ =
αc(1− p− q − b)A

(µ+ δ1)(αµ+D(N∗)A−D(N∗)µN∗ + αδ1 + αc)

+
γ(A− µN∗)

α(µ+ δ1)
+

bA

µ+ δ1

2.3 Global stability of the Equilibrium
In this section, we establish that all solutions of (1) in
the interior of Γ converge to P ∗ if 0 < p+ q < 1− b
and to P1 if p + q + b = 0 and if R0is between

µ

µ+ δ1 + c
and C(A/µ)/α respectively. For this pur-

pose, we first introduce the change of variable that
can reduce the four-dimensional autonomous system
(1) into a three-dimensional asymptotical autonomous
system with a limit system, then prove that the equilib-
rium of this limit system corresponding to P1 and P ∗

are globally asymptotically stable, by using the geo-
metric approach to global stability problems in Li and
Muldowney [14]. This implies the main conclusion in
Corollary 3.1 of the third section.

For system (1), let δ1 = 0 then the equation can
be:

S′ =(1− p− q − b)A− βλ(N)
S

N
I − µS − cS

E′ =qA+ βλ(N)
S

N
I − µE − εE (8)

I ′ =pA+ εE − µI − αI − γI

N,R can be obtained from N ′ = A − µN − αI and
R = N − S − E − I . The feasible region of (8) is
T = {(S,E, I) ∈ R3

+ : 0 ≤ S + E + I ≤ A/µ} is
positively invariant with respect to (8), where R3

+ de-
notes the nonnegative cone of R3, including its lower
dimensional faces. Thus system (8)is bounded.

Lemma 1 Suppose p+ q + b = 0

1 If R0 ≤ 1, Q0 =
( A(µ+ δ1)

µ(µ+ δ1 + c)
, 0, 0

)
is the only

equilibrium in T and it is globally asymptotically
stable. If R0 > 1, Q0 becomes unstable, whereas
Q1 = (S1, E1, I1) is corresponding to the equi-
librium P1 of system (1), and emerges as a unique

equilibrium in the interior of T , whereR0 is defined
by (7)

I1 =
1

α
(A− µN1)

E1 =
δ

αε
(A− µN1)−

pA

ε

S1 =
α(1− p− q − b)A

αµ+D(N1)(A− µN1) + αδ1 + αc

R1 =
bA

µ+ δ1
+
γ(A− µN1)

α(µ+ δ1)

+
αc(1− p− q − b)A

(µ+ δ1)(αµ+D(N1)(A− µN1) + αδ1 + αc)

N1 is the unique root of the equation G(N) = 0 .

2 When R0 > 1 the solutions of system (7) starting
sufficiently close toQ0 in T move away fromQ0 ex-
cept that starting on the invariant S-axis approach
Q0 along this axis.

Lemma 2 When 0 < p + q < 1 − b, the system (7)
has the only equilibrium Q∗ = (S∗, E∗, I∗), which
is corresponding to the equilibrium P ∗ of system (1),
and Q∗ is in the interior of the feasible region of T ,
where

I∗ =
1

α
(A− µN∗)E∗

E∗ =
δ

αε
(A− µN∗)− pA

ε

S∗ =
α(1− p− q − b)A

αµ+D(N∗)(A− µN∗) + αδ1 + αc

Lemma 3 The system (8) is uniformly persistent if
either p + q + b = 0, R0 between

µ

µ+ δ1 + c
and

C(A/µ)/α or 0 < p+ q < 1− b holds.

Proof. If 0 < p + q < 1 − b, it is easy to see that the
vector field of system (8) is transversal to the bound-
ary of T on all its faces.

If p+ q+ b = 0, the vector field of the system (8)
is transversal to boundary of T on all its faces except
the S-axis, which is invariant with respect to (8). On

the S-axis the equation of S :
dS

dt
= A − µS − cS,

implies

S(t)→ A

µ+ c
as t→ +∞

If p+ q+ b = 0, Q0 is a only ω-limit point on the
boundary of T .

The system is said to be uniformly persistent
( [15, 16]) if there exists constancy c with 0 <
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c < 1 such that any solution (S(t), E(t), I(t))

with initial data (S(0), E(0), I(0)) ∈ T̊ satisfies
lim
t→∞

inf |(S(t), E(t), I(t))| ≥ c.
The conclusion of the lemma follows from The-

orem 4.3 in [17], as the maximal invariant set on the
boundary ∂T of T is an empty set when 0 < p+ q <
1− b and the singleton {Q0} and Q0 is isolated when
p + q + b = 0 and R0 between

µ

µ+ δ1 + c
and

C(A/µ)/α, thus the hypothesis (H) of [17] holds
for(8). The conclusion for uniform persistence in The-
orem 4.3 of [17] is equivalent to Q0 being unstable
when p + q + b = 0 and R0 > 1. Thus, system(8)is
uniformly persistent in T̊ .

The main aim of this section is to prove the fol-
lowing Theorem.

Theorem 4 1) When p + q + b = 0 and R0 between
µ

µ+ δ1 + c
andC(A/µ)/α, the unique endemic equi-

librium P1 of system (1)is globally asymptotically sta-
ble in the interior of Γ. Moreover, P1 attracts all tra-
jectories in Γ except those on the invariant S-axis that
converge to P0 along this axis.

2) When 0 < p + q < 1 − b, the unique endemic
equilibrium P ∗ of system (1)is globally asymptotically
stable in the interior of Γ.

By inspecting the vector field given by (1), we see
that if 0 < p+ q < 1− b, all trajectories starting from
the boundary ∂Γ of Γ enter the interior Γ̊ of Γ.

When p + q + b = 0, they do except those so-
lutions on the S-axis that converge to P0, along this
invariant axis. Thus we need only to prove that Γ̊ is
the attractive region of P ∗ when 0 < p + q < 1 − b
and P1 when p+ q + b = 0 respectively.

For the results in Theorem 1 and Theorem 3,
we utilize a geometric approach to the global stabil-
ity problem developed in Li and Muldowney [19]and
Smith [18]. Here we apply the theory, in particular
Theorem A.2 in the appendix, to prove the following
theorem. In addition, it is remarked in [18], under the
assumptions of theorem A.2 in the appendix, the con-
dition q̄2 < 0 also implies the local stability of the
equilibrium x̄, as assuming the contrary, x̄ is both the
alpha and omega limit of a homo-clinic orbit that is
ruled out by the condition q̄2 < 0.

From Lemma 1 we can make the following con-
clusions.

Lemma 4 1) If 0 < p + q < 1 − b, Q∗ is globally
asymptotically stable.

2) When p + q + b = 0 and R0is between
µ

µ+ δ1 + c
and C(A/µ)/α, Q1 is globally asymptot-

ically stable.

Proof. By Lemma 3, there exists a compact set K in
the interior of Γ that is absorbing(8). Thus, in the
closed set T the system (8) satisfies the assumptions
H3, H4, H5 in appendix [17]. Let x = (S,E, I) and
f(X) denote the vector field of (8). The Jacobian ma-

trix J =
∂f

∂x
Associated with a general solution of (8) is:

J =

a11 a12 a13
a21 a22 a23
0 ε −δ


Where we have:

a11 =−D(N)I − ISD′(N)− c− µ
a12 =− SID′(N)

a13 =−D(N)S −D′(N)SI

a21 =D(N)I + ISD′(N)

a22 =D
′(N)SI − µ− ε

a23 =D(N)S +D′(N)SI

The second compound matrix J [2] of J can be cal-
culated as follows:

J [2] =

b11 b12 b13
ε b22 b23
0 b32 b33


where

b11 =a11 + a22 = −D(N)I − c− 2µ− ε
b22 =a11 + a33 = −δ − c− µ−D(N)I − ISD′(N)

b33 =a22 + a33 = −δ − µ− ε+D′(N)SI

b12 =a23 b13 = −a13 b23 = a12 b32 = a21

The proof of the theorem consists of choosing a
suitable vector norm | · | in R3 and a 3 × 3 matrix-
valued function A(x), such that the quantity q̄2 de-
fined by (A.2) in the appendix is negative. We set A
as the following diagonal matrix.

A(S,E, I) = diag(1,
E

I
,
E

I
) (9)

Then A is C1 and non-singular in the interior of T .
Thus

AfA
− =diag

(
0,
I

E

(E
I

)
f
,
I

E

(E
I

)
f

)
=diag

(
0,
E′

E
− I ′

I
,
E′

E
− I ′

I

)
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Therefore the matrixB = AfA
−1+AJ [2]A−1 can be

written in the block form

B =

[
B11 B12

B21 B12

]
With

B11 =−D(N)I − c− 2µ− ε

B21 =

[Eε
I
0

]

B12 =
I

E

(
D(N)S +D′(N)SI

) [
1 1

]
B22 =

[
c11 −SID′(N)

D(N)I + ISD′(N) c22

]
c11 =

E′

E
− I ′

I
− µ− δ − c−D(N)I − ISD′(N)

c22 =
E′

E
− I ′

I
− µ− δ − ε+D′(N)IS

Choosing the vector norm | · | in R

[
3
2

]
∼= R3 as

|(u, v, w)| = sup{|u|, |v|+ |w|}
The Lozinskĭi measure ρ(B) with respect to | · |

can be estimated as follows (see [18]): ρ(B) ≤
sup{g1, g2}, where

g2 = ρ(B12) + |B22| g1 = ρ1(B11) + |B12| (10)

where |B12|, B21 are matrix norms with respect to l1
vector norm, and ρ1 denotes the Lozinskĭi measure
with respect to l1 vector norm. More specifically,

|B21| =
Eε

I
and noting the assumptions (H1)-(H2)

B21 =
IS

E

(
D(N) + |D′(N)I|

)
Noting that B11 is a scalar, its Lozinskĭi measure with
respect to any vector norm in ρ1 is equal to B11. In
order to compute ρ1(B22), we add absolute value of
off-diagonal elements to the diagonal one in each col-
umn of B22, and then take the maximum of two sums.
Using D′(N) ≤ 0 and ω = µ+ ε, we have

ρ1(B22) =
E′

E
− I ′′

I
− δ − c, if c ≤ ε

ρ1(B22) =
E′

E
− I ′′

I
− δ − ε, if c > ε

Therefore

B11 =−D(N)I − c− 2µ− ε

B12 =
IS

E

(
D(N) +D′(N)I

)

The reason is that

D(N) +D′(N)I ≥ D(N) +D′(N)N

=(ND(N))′ = C ′(N) ≥ 0

and

g1 =− µ− ω − c−D(N)I +
IS

E
(D(N)

+D′(N)I) (11)

g2 =
Eε

I
+
E′

E
− I ′

I
− δ − c if c ≤ ε

g2 =
Eε

I
+
E′

E
− I ′

I
− δ − ε if c > ε

Rewrite the last two equations of (8) we have

E′

E
+ ω − qA

E
=
D(N)SI

E

I ′

I
+ δ − pA

I
=
εE

I
(12)

Seeing that D′(N) ≤ 0 , D(N) ≥ 0 we have if c ≤ ε

g1 =− µ− c−
qA

E
+
E′

E
−D(N)I

+
IS

E
D′(N)I ≤ E′

E
− µ− c

g2 =− c−
pA

I
+
E′

E
if c ≤ ε

g2 =− ε−
pA

I
+
E′

E
if c > ε

ρ(B) ≤E
′

E
−min{c, µ+ c, ε}

Along with the solution (S(t), E(t), I(t) of equa-
tion (8) with the initial value (S(0), E(0), I(0) in the
compact absorbed set K which is in the internal of T ,
we have

1

t

∫ t

0
ρ(B)ds ≤ 1

t
log

E(t)

E(0)
−M

M = min{c, µ+ c, ε} , which implies

q̄2 = lim sup
t→∞

sup
x0∈K

1

t

∫ t

0
ρ(B(x(s, x0)))ds ≤ −M.

3 Simulation and application analy-
sis

As an application, the author discussed the syphilis.
Syphilis is an infectious disease which is transmitted
by sexually, blood and maternal chronic. In China, the
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prevalence of syphilis is almost distributed through-
out the country (Figure1). Henan, Yunnan, Guangxi
are the most seriously provinces. In order to observe
the development trend of syphilis prevalence, the au-
thor collected reports of National Notifiable Disease
statistics from January 2006 to June 2012,in total of
78 data [20](Figure 2,3)

Figure 1:

Figure 2: The scatter diagram of Syphilis prevalence

Figure 3: The trend of Syphilis prevalence

We can see that, the number of syphilis fluctuates
in periodic, the peak located in 8,9,10 months annual,
and 1,2 month are the least months. But the peak of
fluctuations is being higher and higher. It is obvious
from Figure2 that the trough values are roughly linear.

At present, most of the research is the symptom,
pathogenesis and pathological analysis [21, 22]. For
the consideration of social and economic impact, hu-
man activity change gradually, we weed out trough
data, phase prediction(Figure4).

Figure 4: The map of prediction

p = q = b = 0.133 , β = 0.56 , λ = 0.42 , A = 0.12
µ = 0.0012 , ε = 0.65 , α = 0.21 , γ = 0.72 , δ1 = 1

The red circle sets are the real data, the star sets
are forecast data, and we can see that this method has
well done the problem. We can make prediction of
the numbers of Syphilis after July 2012 through the
prophase data. The author extracts the trough data,
and make forecast, using the data fitting (Figure5)

Figure 5: The data fitting for the trough data

Through the above prediction method for
syphilis, we can solve the prevalence prediction of this
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complex infectious disease. We have note that, this
prediction method is only applicable to a short period
of time. Thus the application value of the model has
been proved.

If we make prediction for a long time using this
method, you will be very disappointment(Figure 6).l

Figure 6: prediction for a long time

In addition, the recruitment rate A is very impor-
tant, we can see that the number of diseased change
with A from figure 7.We also simulate the stability of
the endemic equilibrium(Figure 8).

Figure 7: The change of diseased with A

4 Conclusions

This article has been devoted to studying an SEIRS
model for disease transmission that include immigra-
tion of the infectives, susceptibles, exposed and recov-
ered. For the reason that the immunity of the recov-
ered is temporary, a proportion δ1 of recovered will
come back to susceptibles. We also consider vac-
cine injection to the susceptibles with a proportion c.

Figure 8: The stability of the endemic equilibrium

The model also incorporates a population size depen-
dent contact rate C(N) and a disease-related death.
As the infected fraction cannot be eliminated from
the population, this kind of model has unique an en-
demic equilibrium that is globally asymptotically sta-
ble. In order to prove the global asymptotical stabil-
ity of the endemic equilibrium, we change our system
to a three-dimensional asymptotical autonomous sys-
tem with limit equation. The result is that the global
dynamical behaviour of system (1) and the outcome
of the disease are completely determined by R0. In
a special case p + q + b = 0, where the new mem-
bers of immigration are all susceptibles, the model
shows a threshold phenomenon. In order to eradicate
the disease it would be necessary to isolate the frac-
tion of arriving infected individuals. Our model has
some features in common with models that include
vertical transmission, but vertical transmission models
normally include a flow of new infected proportional
to the number of infected already in the population
and thus may have a disease-free equilibrium [9, 13].

R0 is the product of the constant
ε

δω
and the value

C(A/µ) of the adequate contact rate function C(N)

atN =
A

µ
, which is the population size at the disease-

free equilibrium. The constant
1

δ
=

1

µ+ α+ γ
is

the average period and
ε

ω
=

ε

µ+ ε
is the fraction

of exposed individuals surviving the latent class E.
From expression(7) of R0, it is easy to see the con-
tribution of the contact rate to the basic reproduction
number. If let C(N) be a constancy λ, then R0 de-
fined by (7) becomes the basis reproduction number

λε

(µ+ ε)(µ+ α+ γ)
of the SEIR model with the stan-
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dard incidence
λSI

N
in [8]. If δ=0, c = 0, the outcome

will be the same to article [10].
Finally, we discussed syphilis incidence and

transmission characteristics and predict the develop-
ment in China. Computer simulation shows that the
model can reflect the dynamic and immigration be-
havioural for disease transmission. So we can take
reasonable prevention and intervention methods to
provide reference, basing on the theory.
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