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Abstract: - In thiswork, first part of this study, the high resolution numerical schemes of Lax and Wendroff, of
Y ee, Warming and Harten, of Y ee, and of Harten and Osher are applied to the solution of the Euler and Navier-
Stokes equations in three-dimensions. With the exception of the Lax and Wendroff and of the Y ee schemes,
which are symmetrical ones, all others are flux difference splitting agorithms. All schemes are second order
accurate in space and first order accurate in time. The Euler and Navier-Stokes equations, written in a
conservative and integral form, are solved, according to afinite volume and structured formulations. A spatially
variable time step procedure is employed aiming to accel erate the convergence of the numerical schemesto the
steady state condition. It has proved excellent gainsin terms of convergence acceleration as reported by Maciel.
The physical problems of the supersonic flows along a compression corner and along a ramp are solved, in the
inviscid case. For the viscous case, the transonic flow aong a convergent-divergent nozzle is solved. In the
inviscid case, an implicit formulation is employed to marching in time, whereas in the viscous case, a time
splitting approach is used. The results have demonstrated that the Harten and Osher agorithm, in its ENO
version, presents the best solutions in the inviscid compression corner and ramp problems; whereas the Lax and
Wendroff algorithm has presented the best solution to the nozzle problem.

Key-Words: - Lax and Wendroff algorithm; Yee, Warming and Harten algorithm; Y ee algorithm; Harten and
Osher agorithm; TVD and ENO flux splitting, Euler and Navier-Stokes equations, Finite volume, Three-
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1 Introduction scheme, some of these difficulties can be overcome
_ _ by adding a hefty amount of numerical dissipation
Conventional shock capturing schemes for the to the scheme. Unfortunately, this process brings
solution of nonlinear hyperbolic conservation laws about an irretrievable loss of information that
is linear and Lo-stable (stable in the L,-norm) when exhibits itsdlf in degraded accuracy and smeared
considered in the constant coefficient case ([1]). discontinuities. Thus, a typical complaint about
There are three magjor difficulties in using such conventional schemes which are developed under
schemes to compute discontinuous solutions of a the guidelines of linear theory is that they are not
nonlinear system, such as the compressible Euler robust and/or not accurate enough.
equations. . To overcome the difficulties, a new class of
(i) Schemes that are second (or higher) order schemes was considered that is more appropriate for
accurate may produce oscillations wherever the the computation of weak solutions (i.e., solutions
solution is not smooth; with shocks and contact discontinuities) of nonlinear
(if) Nonlinear instabilities may develop in spite of hyperbolic conservation laws. These schemes are
the L-stability in the constant coefficient case; required (a) to be total variation diminishing in the
(iii) The scheme may select anonphysical solution. nonlinear scalar case and the constant coefficient
_ It is well known that monotone conservative system case ([2-3]) and (b) to be consistent with the
difference schemes always converge and that their conservation law and an entropy inequality ([4-5]).
limit is the physical weak solution satisfying an The first property guarantees that the scheme does
entropy inequality. Thus monotone schemes are not generate spurious oscillations. Schemes with
guaranteed not to have difficulties (ii) and (iii). this property are referred in the literature as total
However, monotone schemes are only first order variation diminishing (TVD) schemes (or tota
accurate. Consequently, they produce rather crude variation non-increasing, TVNI, [3]). The latter
approxirr_]ations wh_enever the solution varies property guarantees that the weak solutions are
strongly in space or time. _ physical ones. Schemes in this class are guaranteed
When using a second (or higher) order accurate to avoid difficulties (i)-(iii) mentioned above.
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[6] has proposed a very enlightening generalized
formulation of TVD [7] schemes. Ro€'s result, in
turn, is a generdization of [8] work. [9]
incorporated the results of [6; 8 with minor
modification to a one parameter family of explicit
and implicit TVD schemes ([10-11]) so that a wider
group of limiters could be represented in a general
but rather simple form which is at the same time
suitable for steady-state applications. The final
scheme could be interpreted as a three-point,
spatially central difference explicit or implicit
scheme which has a whole variety of more rational
numerical dissipation terms than the classical way
of handling shock-capturing algorithms.

[12] applied a new implicit unconditionally
stable high resolution TVD scheme to steady state
calculations. It was a member of a one-parameter
family of explicit and implicit second order accurate
schemes developed by [3] for the computation of
weak solutions of one-dimensiona hyperbolic
conservation laws. The scheme was guaranteed not
to generate spurious oscillations for a nonlinear
scalar equation and a constant coefficient system.
Numerical experiments have shown that the scheme
not only had afairly rapid convergence rate, but also
generated a highly resolved approximation to the
steady state solution. A detailed implementation of
the implicit scheme for the one and two-
dimensional compressible inviscid equations of gas
dynamics was presented. Some numerica
experiments of one- and two-dimensional fluid
flows containing shocks demonstrated the efficiency
and accuracy of the new scheme.

Recently, a new class of uniformly high order
accurate essentially non-oscillatory (ENO) schemes
has been developed by [13] and [14-16]. They
presented a hierarchy of uniformly high order
accurate schemes that generalize [17]'s scheme, its
second order accurate MUSCL (“Monotone
Upstream-centered  Schemes for Conservation
Laws’) extension ([18-19]), and the total variation
diminishing schemes ([3; 20]) to arbitrary order of
accuracy. In contrast to the earlier second order
TVD schemes which drop to first order accuracy at
local extrema and maintain second order accuracy in
smooth regions, the new ENO schemes are
uniformly high order accurate throughout, even at
critica  points. The ENO schemes use a
reconstruction algorithm that is derived from a new
interpolation technique that when applied to
piecewise smooth data gives high order accuracy
whenever the function is smooth but avoids a Gibbs
phenomenon at discontinuities. An adaptive stencil
of grid points is used; therefore, the resulting

schemes are highly nonlinear even in the scalar case.
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In contrast to the earlier second order TVD
schemes, which drop to first order accuracy at local
extreme and maintain second order accuracy in
smooth regions, the new ENO schemes are
uniformly high order accurate throughout even at
critical points. Theoretical results for the scalar
conservation law and for the Euler equations of gas
dynamics have been reported with highly accurate
results. Preliminary results for two-dimensiona
problems were reported in [21].

[22] gives a very extensive survey of the state of
the art of second order high resolution schemes for
the Euler/Navier-Stokes equations of gas dynamics
in general coordinates for both ideal and equilibrium
real gases. Also, excellent reviews on modern
upwind conservative shock capturing schemes and
upwind shock fitting schemes based on wave
propagation property have been given by [23-24],
respectively.

Traditionaly, implicit numerical methods have
been praised for their improved stability and
condemned for their large arithmetic operation
counts ([25]). On the one hand, the dow
convergence rate of explicit methods become they
SO unattractive to the solution of steady state
problems due to the large number of iterations
required to convergence, in spite of the reduced
number of operation counts per time step in
comparison with their implicit counterparts. Such
problem is resulting from the limited stability region
which such methods are subjected (the Courant
condition). On the other hand, implicit schemes
guarantee a larger stability region, which alows the
use of CFL (Currant-Friedrichs-Lewis) numbers
above 1.0, and fast convergence to steady state
conditions. Undoubtedly, the most significant
efficiency achievement for multidimensiona
implicit methods was the introduction of the
Alternating Direction Implicit (ADI) algorithms by
[26-28], and fractiona step algorithms by [29]. ADI
approximate factorization methods consist in
approximating the Left Hand Side (LHS) of the
numerical scheme by the product of one
dimensional parcels, each one associated with a
different spatial coordinate direction, which retract
nearly the original implicit operator. These methods
have been largely applied in the CFD
(“Computational Fluid Dynamics’) community and,
despite the fact of the error of the approximate
factorization, it alows the use of large time steps,
which results in significant gains in terms of
convergence rate in relation to explicit methods.

In the present work, the [7] TVD symmetric, the
[9] TVD symmetric, the [12] TVD, and the [13]
TVD/ENO schemes are implemented, on a finite
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volume context and using a structured spatial
discretization, to solve the Euler and Navier-Stokes
equations in the three-dimensional space. With the
exception of [7; 9], al others schemes are high
resolution flux difference splitting ones, based on
the concept of Harten’s modified flux function. The
[7; 9 TVD schemes are symmetrical ones,
incorporating TVD properties due to the
appropriated definition of a limited dissipation
function. All schemes are second order accurate in
space. An implicit formulation is employed to solve
the Euler equations, whereas a time splitting method,
an explicit method, is used to solve the Navier-
Stokes equations. An approximate factorization in
Linearized Nonconservative Implicit LNI form is
employed by the [12-13] schemes, whereas an
approximate factorization ADI method is employed
by the [7; 9] schemes. All algorithms are first order
accurate in time. The algorithms are accelerated to
the steady state solution using a spatially variable
time step, which has demonstrated effective gainsin
terms of convergence rate ([30-31]). All schemes
are applied to the solution of physical problems of
the supersonic shock reflection at the wall and the
supersonic flow along a compression corner, in the
inviscid case, whereas in the laminar viscous case,
the supersonic flow along a compression corner is
solved. The results have demonstrated that the [12]
algorithm has presented the best solution in the
inviscid shock reflection problem; the [13]
algorithm, in its ENO version, and the [7] TVD
algorithm, in its Van Leer variant, have yielded the
best solutions in the inviscid compression corner
problem; and the [7] agorithm, in its Minmodl
variant, has presented the best solution in the
ViScous compression corner problem.

2 Navier-Stokes Equations

As the Euler equations can be obtained from the
Navier-Stokes ones by disregarding the viscous
vectors, only the formulation to the latter will be
presented. The Navier-Stokes equations in integral
conservative form, employing a finite volume
formulation and wusing a structured spatia
discretization, to three-dimensional simulations, are
written as:

o’Q/a+J/VL€-ﬁdvzo, )

where V is the cell volume, which corresponds to an
hexahedron cell in the three-dimensional space; Q is
the vector of conserved variables; and

P=(E,-E, ) +(F.-F,)] +(G, —GV)E represents
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the complete flux vector in Cartesian coordinates,
with the subscript “€” related to the inviscid
contributions or the Euler contributions and “v” is
related to the viscous contributions. These
components of the complete flux vector, as well the
vector of conserved variables, are defined as:

P pu o
pu pu® +p o
Q=4 Eo=¢ pw ¢, Fo=ipv+pp; (2
oW pUW W
e (e+ p)u (e+p)v
W 0
WU 1 Txx
Ge = P ’ Ev :R_e Y , (3)
PV +p Ta
(e+ p)w T+ 7,V + 7, W=,
0 0
T T
1 g 1 >
in T , Gv:— T . 4
' Re W Re y )
Ty T,
T U T VT WG, T+ TN+ T, WG,

In these equations, the components of the viscous
stress tensor are defined as:

T = 2ty A K= 2f3pay, (AU X+ 0 &+ A ) (58)
7y = 2ty K& ~2/3 1y, (U] X+ Al &y + A ) (5b)
T = 2ty AN 2=2/3 11y, (] &+ Al &y + A ) (Bc)

Ty = Ty = g (/O + A ) ; (62)
Ty = T = iy (AU 02+ AN ) ; (6b)
Ty =Ty =ty (&0z+ANF) ; (6¢)

The components of the conductive heat flux vector
are defined asfollows:

Ay =—7(uy [Prd)ag [ ; (78)
dy =—7{uy /Prd)ce /& (7b)
d, =—7(uy /Prd)ce /. (7b)

The quantities that appear above are described as
follows. p is the fluid density, u and v are the
Cartesian components of the flow velocity vector in
the x and y directions, respectively; e is the tota
energy per unit volume of the fluid; p is the fluid
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datic pressure; e is the fluid internal energy,
defined as:

:e/p—0.5(u2+v2+wz); (8)
the ©’'s represent the components of the viscous
stress tensor; Prd is the laminar Prandtl number,
which assumed a value of 0.72 in the present
simulations; the q's represent the components of the
conductive heat flux; py is the fluid molecular
viscosity; y is the ratio of specific heats at constant
pressure and volume, respectively, which assumed a

value 1.4 to the atmospheric air; and Re is the
Reynolds number of the viscous simulation, defined

by:

Re= pUgeel/ty 9
where Uger is a characteristic flow velocity and | isa
configuration characteristic length. The molecular
viscosity is estimated by the empiric Sutherland
formula:

wy =bT¥?2/(1+S/T), (10)
where T is the absolute temperature (K), b =
1,458x10° Kg/(m.sK'?) and S = 110,4 K, to the
atmospheric ar in the standard atmospheric
conditions ([32]). The Navier-Stokes equations were
nondimensionalized in relation to the freestream
density, p., and the freestream speed of sound, a.,
for the al problems. For the viscous compression
corner problem it is also considered the freestream
molecular viscosity, z... To alow the solution of the
matrix system of four eguations to four unknowns
described by Eq. (1), it is employed the state
equation of perfect gases presented below:

p=(r-Dle-05pW? +v2 +w?)]. (1)
Thetotal enthalpy is determined by:
H =(e+p)/p (12)

3 Lax and Wendroff Algorithm

The [7] TVD agorithm, second order accurate in
space, is specified by the determination of the
numerical flux vector at the (i+Y4],k) interface. The
extension of this numerical flux to the (i,j+%¥2k) and
(i,j,k+%%) interfaces is straightforward, without any
additional complications.
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The right and left cell volumes, as well the
interface volume, necessary to coordinate change,
following the finite volume formulation, which is
equivalent to a generalized coordinate system, are
defined as:

Ve =Viijio V=V and Vi, = 0.5(Vg +V, ). (13)
The cell volume is calculated according to [33-34].

The metric terms to this generalized coordinate
system are defined as:

h x int / Vint hy = Sy_int int 1 (14a)
h Sz int / Vint and hn = S/Vint ) (14b)
where S, ;, =n,S, S, ,=nS, S, ;; =n,S

are the Cartesian components of the flux area
and Sisthe flux area, calculated as described in
[33-34].

The calculated properties at the flux interface are
obtained by arithmetical average or by [35] average.
The [35] average was used in this work:

Pint =APLPR » Uy :(UL+UR\/pR/pL)/(1+\/pR/pL)’ (15)

Vit = (VL "’VR\IPR/PL )/(l"'\lPR/PL)v (16)
Wiy = (WL +Wey/ Pr/ 1 )/(1+\//7R/PL ); (17)

Hiy = (HL +Heq/Pr/PL )/(1+\/pR/pL ): (18)

aint :\/(7 _1)lHint 05(u|nt +V|nt + Vvlnt )J (19)

The eigenvalues of the Euler equations, in the &£
direction, to the convective flux are given by:

U ot =Uine Ny + Vi, +Wiih,, A, =U

int' T Vint'ly int''z 1

—a,h,, (208)

cont

12 =/13 =ﬂ“4 =U and 2’5 =Ucont + a1‘nthn' (20b)

cont

The jumps in the conserved variables, necessary
to the construction of the [7] TVD dissipation
function, are given by:-

A=V, (. -€ ), Ap=Vi,(pr—p.); (219)
Apu)=Vig[(pu)e - (pu). ] (21b)
AMpv)=Vig[(pv)s = (pv), | (210)

A(pw) = Vi [(ow)e = (ow), ], (21d)
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The « vectors to the (i+%,,k) interface are
calculated by the following expressions:
{ai+ll 2,j,k}: [Rfllu/ 2,j,k{Ai+ll Z,j,kQ}v (22)
with [R™1] defined according to [36].

The [7] TVD dissipation function is constructed
using the right eigenvector matrix of the Jacobian
matrix in the normal direction to the flux face. This
matrix is also defined in [36].

According to [9], five different limiters are
implemented which incorporate the TVD properties

to the origina [7] scheme. The limited dissipation
function Q is defined to the five options as:

Q(r‘,r+): minmod(l,r‘)+minmod(l,ﬂ)—l; (23)
Q(r’,r*):minmod(l,r’,r*); (24)
Q(r‘ ,r*)z minmod[2,2r‘ 2r° ,0,5(r‘ + r+)]; (25)

Q(r.r*)=MAX[o,MIN(2r~ 1) MIN(r~ 2)]+

MAX[0,MIN(2r* 1) MIN(r* 2)] - 1; (26)
. r‘+‘r“ r‘+r*
Q(r ! )_ ir o 1ar - @7
where:
(ri11/2,j,k) = ail—llz,j,k/ail+1/2,j,k ; (28)
(ri:llz,j,k) = ai|+3/2,j,k/ail+1/2,j,ka (29)

“I” assuming values from 1 to 5. Equations (23) to
(25) are referenced by these authors as Minmodl,
Minmod2 and Minmod3, respectively. Equation (26)
is referred in the CFD literature as the “ Super Beg”
limiter due to [37] and EqQ. (27) is referred as the
Van Leer limiter due to [38].

The [7] TVD dissipation function is finally
constructed by the following matrix-vector product:

{DLW }i+l/ 2,k = [R]i+1/2vj,k{[Ati,i,k’izQ+|’l|(1_ Q)]a}iu/ 2,k °

(30)
The complete numerical flux vector to the (i+%,,k)
interface is described by:

F = ([EQN +FOh, +GOh, W, -05DY,

int ' 'x int 'y

(31)

with:
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EY =08(EY +EVLHEY ) @2
RO =05 +FO)-(FO).. @3
cY =050 +6"),]-(c") . (34)

The viscous vectors at the flux interface are
obtained by arithmetical average between the
primitive variables at the left and at the right states
of the flux interface, as also arithmetical average of
the primitive variable gradients also considering the
left and the right states of the flux interface.

The right-hand-side (RHS) of the [7] TVD
scheme, necessaries to the resolution of the implicit
version of thisalgorithm, is determined by:

RHS(LW)in,j,k =—At ¢ Vi,j,k[Fik\lAllZ,j,k - Fil—_\ll\/lz,j,k +

F L Y 5

LW LW
in1/2,)k ~ Fi i

i-1/2.jk T Fijker2

The time integration to the viscous simulations
follows the time splitting method, first order
accurate, which divides the integration in three steps,
each one associated with a specific spatial direction.
In the initial step, it is possible to write for the &
direction:

AQi*,j,k =—At Vi ik (Fi21/2,j,k - FiTllz,j,k);

Quix =Ql +AQ i (36)
in the intermediate step, n direction:

AQi*,*j,k ==At Mk (FiTj+1/2,k - Fifj—llz,k);
Qi = Qi +AQ k- (37)

and at the final step, ¢ direction:

AQir,]j+,1k ==At Mk (Fij,kﬂ/z - Fif;,k—llz);
Qlik = Qi +AQ k- (39)

4 Yee,
Algorithm

The [12] numerical algorithm, second order accurate
in space, is specified by the determination of the
numerical flux vector at the (i+%,j,K) interface. This
scheme employs Egs. (13-22). The g numerical flux
function, which is a limited function to avoid the
formation of new extrema in the solution and is
responsible by the second order spatial precision of
the scheme, is defined by:

Warming and Harten
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gil,j,k =signal, x MAX[O-O; MIN(Gil+1/2,j,k‘ail+1/2,j,k‘l

| (39)

. |
signaly X o_y5 k@i 172, )] ,

where signdl is equal to 1.0 if aj,y,, > 0.0 and -

1.0 otherwise; o'(r,)=05Q,(%,) ; and Q, the
entropy function, is defined as:

Q.(VV|)={|W'|’

05?2 +8 )5, ,

if Wj|=5,
if W | <3,

where “I” varies from 1 to 5 (three-dimensional
space) and &; assuming values between 0.1 and 0.5,
being 0.2 the value recommended by [12].

The 6 term, responsible by artificia
compressibility, which improves the scheme
resolution in discontinuities like shock wave and
contact discontinuities, is defined by

|

| | | ;
URTPAY _ai—ﬂz,j‘k‘/qawllz,j‘k‘ + ‘ai—llz,j‘k ), if
00, if

» (40)

! !
ai+l/2‘j,k‘ T ‘ai-uz@,k‘ #00

Hi“j,k =

! TS
ai+1/2,j‘k‘ T ‘ai-llzj‘k‘ =00

(41)
The B parameter at the (i+%),k) interface, which
introduces the artificial compressibility term in the
algorithm, is given by the following expression:

B =10+ w6

i,j,k (42)

in which o, assumes the following values: m; = ws =
0.25 (non-linear fields) and w, = w3z = ws = 1.0
(linear fields). The g function is defined by:

gil,j =p gil,j,k' (43)

The numerical characteristic velocity, @, , at the

(i+%),K) interface, which is responsible by the
transport of numerical information associated with
the numerical flux function g, or indirectly through
the g, is defined by:

ng z{(§i|+l,j,k_gil,j,k)/al' |f Oll ioo

if ' =0.0° (44)

0.0,

Finaly, the [12] dissipation function, to second
order spatial accuracy, is constructed by the
following matrix-vector product:

{DYWH /85}i+1/ 20k = [R]i+1/2,j,k{(gi,j,k + gi+lj,k)_ Q(/1 + ¢))a}i+1/2‘jyk :

(45)
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The numerical flux vector a the (i+%),k)
interface is described by:

Figl)lz,j,k = (Ei(rln) h, + Fir(1|t) h, + G'(I)hz )‘/int + O-5D\(ruH/85-

int
(46)
The Equations (32-34) are employed to conclude
the numerical flux vector of the [12] scheme and the
time marching is performed by the implicit ADI
factorization to be discussed in section 7. The RHS
to this scheme is defined as:

RHS(Y\NH)in,j,k == Ak i,j,k[Fim,j,k ~F 2kt

Y

YWH
ij+1/2k — Fi

YWH n
i,j-1/2,k -F

YWH
+F k2 i,j.k-1/2

(47)

The time splitting method, defined by Egs. (36-38),
is employed to the explicit viscous simulations.

5 YeeAlgorithm

The symmetric TVD scheme of [9], second order
accurate in space, employs the Egs. (13-29). The
dissipation function to the [9] symmetric TVD
scheme is defined as follows:

(¢il+1/ 2,jk )Yee = \P(ﬂ’:Jrl/Z,j,k Xl_ Qi|+1/2,j,k )ai|+1/ 2,j,k? (48)

with the ¥ entropy function defined by:

1z if7>¢
lI’(Z)_{(Zz +82)/28, if |Z|<8 ' (49)
where z, € are scalars.
The [9] TVD dissipation function is finally

constructed by the following matrix-vector product:

{DYee}i+1/2,j,k:[R]i+l/2,j,k{ ee}i+1/2,j,k’ (50)

The complete numerical flux vector to the (i+%,j,K)
interface is described by:

FiErll)/Z,j,k = (Ei(rln) h, + Fir(1|t)hy + Gi(rln) h, Mine — O'SD\((le)e’
(51)
with E{), F{) and G{) defined according to Egs.

(32-34). The viscous terms are calculated in the
same way as described in section 3.

The right-hand-side (RHS) of the [9] TVD
symmetric scheme, necessaries to the resolution of
theimplicit version of this algorithm, is defined by:

RHS(Yee)in,j,k = _Ati,j,k/Vi,j,k[FiIf;Z,j,k - Fiﬁ?Z,j,k +
F e (52)

Yee Yee Yee n
P2k~ Fijak + Fijkewe — Fi,j,k—llz] .
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The explicit version to the viscous simulations is
defined by Egs. (36-38).

6 Harten and Osher Algorithm

The [13] algorithm, second order accurate in space,
employs Egs. (13-22). The next step consists in
constructing the TVD/ENO numerical flux vector.

Initialy, it is necessary to define the o parameter
a the (i+%,k) interface to calculate the numerical
velocity of information propagation, which
contributes to the second order spatial accuracy of
the scheme:

o(2)=08%(2)- A, 2%); (53)

with W(z) defined according to EqQ. (49). The non-
linear limited flux function, based on the idea of a
modified flux function of [3], is constructed by:

1 | | [
ﬂi,j,k = m[ai+l/2,j,k _m(A+ai+1/2,j,k1A—ai+1/2,j,k )'

ail—llz,j,k + é’m(A+ail—1/2,j,k ) A—ail—llz,j,k )]' (54)

where the mand m limiters are defined as:

my,2)= {SX MIN(y}|2). i signal(y)= signal(z)=s.

0, otherwise
(55)
, If |y <
m(y,z)={i » ||’y’||>||§|| (56)

and the forward and backward operators are defined
according to:

A, :(')i+1,j,k _(')i,j,k and A_ :(')i,j,k _(')i—l,j,k' (57)

The numerical velocity of information propagation
iscalculated by:

i =a(/1'- _ (,Eilu,j,k‘Bil,j,k)/ailmz,j,kv if ai|+1/2,j,k¢0;
i+1/2,j,k i+1/2,},k 0’ OthEl’WiSE

(58)
The dissipation function to the TVD and ENO
versions of the [13] schemeis defined as:

(¢|I+1/2‘j,k)|.|o = 0(}‘!+1/2,j,kXE,j,k + ﬁilﬂ,j,k)_ T(ﬂw!u/ 2k T 77i|+1/2,j‘k)
ai|+1/2, jko (59)
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with: “I” assuming vaues from 1 to 5 (three-
dimensional space), € assuming the value 0.2
recommended by [13], ¥ is the entropy function to
guarantee that only relevant physical solutions are
admissible, and ¢ assumes the value 0.0 to obtain
the TVD scheme of [3], second order accurate, and
0.5 to obtain the essentially non-oscillatory scheme,
uniform second order accuracy in the field, of [13].
Finaly, the dissipation operator of [13], to
second order of spatial accuracy, in its TVD and
ENO versions, is constructed by the following
matrix-vector product:
(60)

{DHO }i+1/2,j,k = [R]i+1/2,j,k{ HO }i+1/2,j,k .

The complete numerical flux vector to the
(i+%,),K) interface is described by:

FU2 0 =(EQh + FOh, + G0N, M,y +05DY,,

int int
(61)
with E{), F{) and G{) defined according to Egs.
(32-34). The viscous terms are calculated in the
same way as described in section 3.
The RHS of the [13] agorithm, necessaries to
the resolution of the implicit version of this scheme,

is determined by:

HO
Flojkt

I ()

RHS(HO)in,j,k = _Ati,j,k i,j,k[FiTBZ,j,k -

E.HO

HO
ij+1/2k ~ Fij

HO
i,j-1/2,k +F

i,jk+l/2

The explicit verson to the viscous simulations
employs atime splitting method, first order accurate
in time, which divides the integration in three parts,
each one associated with a specific spatial direction.
This explicit version is defined by Egs. (36-38).

7 Implicit Formulations

All schemes tested in this work employed an ADI
formulation to solve the system of non-linear
algebraic equations. Initially, the system of non-
linear equations is linearized considering the
implicit operator evaluated a time “n” and,
posteriorly, the five-diagonal system of linear
algebraic equations is factored in two systems of
three-diagonal linear algebraic equations, each one
associated with a particular spatia direction. The
Thomas algorithm is employed to solve the two
three-diagona systems. The implicit formulation is
employed to solve only the Euler equations, which
implies that only the convective flux contributions
are taken into account.
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All implemented schemes used the backward
Euler method and an ADI or LNI approximate
factorization to solve the three-diagonal system in
each direction.

7.1 Implicit Scheme to the TVD symmetric
algorithmsof [7] and [9]

An ADI form of the implicit TVD symmetric
algorithms of [7] and [9] is represented by:

ElAQi*—l,j,k + EZAQi*,j,k + EsAQi*+1,j,k Z[RHS]in,j,kv
tothe & direction;
FlAQi*,*j—l,k + FZAQi*,*j,k + F3AQi*,*j+l,k

(63)
=AQij . (64)
to then direction;
GlAQir,T,lk—l + GzAQir,Tk

+ G3AQir,1]+,lk+1 = AQi*,*j,k , (65)

to the ¢ direction;

Qn+1 — QI i +Aan;rl, (66)
where:
Ati"'ke
E = 21 (_ Ak —Kisjk )n ;. (67)
Ati,j,ke n .
E,=1+ > (Ki—l/z,j,k + Ki+1/2,j,k) ; (68)
Atl,,kg
E; = 21 (Au/z,j,k - Kii2k )n; (69)
At 0 n
F = 21 (_ Bi,j—l/2,k - ‘]i,j—1/2,k) ; (70)
Ati H 6
F =1 +;’k(‘]i,j—1/2,k +Ji a2k )n; (71)
At 0
Fs = I;’ (Bi,j+1/2,k —Ji 2k )n; (72)
At ;0 n
= (_Ci,j,k—llz_Li,j,k—llz) ; (73)
At ;O
G,=1+ |21 (Li,j,k—llz+Li,j,k+1/2)n; (74)
At; ;0 n
G; = 2] (Ci,j,k+1/2 - Li,j,k+l/2) ; (75)
. n
Al = [R]inﬂ/z,j,k d'ag(ilg )iﬂ,z,,-,k[R 1]|+1/2 jko
(76)
n n -
By 112k Z[R]u ,+1/2kd|3-9(/1| ) ]ﬂ,Zk[R 1] j+1/2.k 0
(77)
. n _
Clikerz = [R]in,j,kil/Zdlag(;Ug )iyjykﬂ,z[R l] j ke1/29
(78)
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n

Kin+1/21 K = [R]in+l/2,j,innﬂ/2,j,k [Ril]iﬂ/&j,k; (79)
_1n

J; ]+1/2k _[R]lnﬁl/Z,kq)in,jﬂ/Z,k[R l]i,jﬂ/z,k; (80)
_1n

Li ]k+1/2 —[ ].n, kﬂ/z@in,j,kﬂ/z[R l]i,j,kﬂ/z; (81)

Dz = diag [\P(ﬂlf )]inﬂ/ 20k’ (82)
®in’jﬂ/2’k - diag[\}’(,ﬂ” )]in,jﬂ/ 2k’ (83)
®in'j’kﬂ/2 =d ag[\l’(ﬂ,'g )]in,j,kﬂlz' (84)

In Equations (76-81), the R and R* matrices are
defined according to [36], applied to each
coordinate direction; in Egs. (76-78) and (82-84), “I”
assumes vaues from 1 to 5 (three-dimensional
space); and the interface properties are calculated by
the [33] average. The RHS operator is defined by Eq.
(35) if the [7] algorithm is solved and by Eg. (52) if
the[9] agorithmis solved.

This implementation is first order accurate in
time due to Q, ® and © definitions, as reported by
[9]. The 6 parameter defines the time integration
method to be employed. A 0.0 value to this
parameter results in the Euler explicit method; the
value 0.5 implies in the trapezoidal method; and the
value 1.0 results in the backward Euler method. In
the present study, the backward Euler method was
used. During the iterative process and at the steady
state conditions, this implementation results, due to
the employed non-linear limiters, in second order
TVD agorithms.

7.2 Implicit Scheme to the TVD and ENO
algorithmsof [12] and [13]

In the flux difference splitting cases, the [12-13]
algorithms, a Linearized Nonconservative Implicit
form is applied which, athough the resulting
schemes lose the conservative property, they
preserve their unconditional TVD properties.
Moreover, the LNI form is mainly useful to steady
state problems where the conservative property is
recovery by these schemes in this condition. This
LNI form was proposed by [12].

The LNI form is defined by the following two
step algorithm:

[I _Ati,j,k‘]i:rllz,j,kAi+1/2,j,k +Ati,j,k‘]i+—1/2,j,kAi—1/2,j,k]AQi*,j,k =
[RHS]'; . inthe & direction; (85)

[I _Ati,J kK_1+1/2kA| j+1/2,k +At| i kKIJ l/ZkAI j 1/2k]AQ| i, k=

AQ; ., inthen direction; (86)
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[l Atl ]kLI_J k+1/27%, 1k+l/2+At| i kLI j.k= 1/2 k= 1/2]AQ|Wr1
AQH,k , inthe ¢ direction; (86)

Qi?j+l =Q + AQi?j+l , (87)

where RHS is defined by Eq. (47) if the [12] scheme
is being solved, or (62), if the [13] scheme is being
solved. The difference operators are defined as:

A.ﬂ,zjk() Oraie = O

i 1/21k() ()Ijk ()i—l,j,k; (883)
A jarzp )= O g =0 o

Aj | 1/2k() ()| ik ()i,j—l,k; (88Db)
A a2 = O e =0 o

A k- 1/2() ()i,j,k ()i,j,k—l; (88c)

As aforementioned, this three-diagonal linear
system, composed of a 5x5 block matrices, is solved
using LU decomposition and the Thomas algorithm,
defined by ablock matrix system.

The separated matrices J*, J, K*, K', L™ and L°
are defined as follows:

- R.diag(D; JR:%, 3~ = R.diag(D; R, (89)

- R diag(D; JR*, K~ =R diag(D; JR™*, (90)

L* = R.diag(D} R, L = R.diag(D; R, (91)

in which the R, R, and R, matrices are defined

according to [36] applied to the respective

coordinate; and R;' R;l and R;' defined

according to [36] applied to the respective
coordinate direction.

The diagona matrices of the [12-13] schemes are
determined by:

D&t 1
D5

diag(Dg)z Ds* and

D;*

diag(Dg )z Ds™

(@2
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D} =05[W(A. + 7L )= (2 + L))
Dy =082, + 7} )= (2, + ) )|

D =08 Wi + 7t )+ (2 4L ),  (93)
where:
Y defined by Eq. (49);
., N, and ), are the eigenvalues of the Euler

equations, determined by Egs. (20a-20b), in each
coordinate direction;

(YI:) _ [(gli)nu,k _(gé)i,j,k}/(alé)i+1/z,j,k’ i (alﬁ)ullzj k ¢00
o i (alé)l+1/2,i,k:0'0 |

(94)

(Yl ) _ |:(glﬂ)i,j+1,k _(g;lyi,j,k}/(ai]),jﬂlz,k’ i (Q:T)i,jmz,k #00,
j+1 2k 00, i (alﬂ)i,j+1/2,k:0'o ’

(95)

(Ylt) _ ‘:(gé}i,j,kﬂ_(géi,j,k}/(ag)lJk+1/2' if( )um #00 :
2 g f (a'[.)iyij_o.o

(96)

(gé):J _S'gnal MAX[OO MIN( |+1/21k‘(alﬁ)i+l/2,j,k’
Sig”a'lacffl/z,j,k(o‘lé)i w2, k)J 67
6], = Signal, MAX| 00 MIN 0]y (0) ),y
Signallnc:,J—lllk(al )j 1/2k)J. (98)
(g'C):,j,k ZSignallf;MAX 0.0, MIN( Gijk+112 (alc)i,j,ku/z ’
SignaIICGile',kflm(alQ)i,j,k—l/Z)J’ (99)

o =1/2¢' (x' ) to steady state simulations. (100)

Finally, signal} = 1.0 if (oc&) w2, 200 and -1.0
otherwise; signal), = 1.0 if ( ) 12 200 and
-1.0  otherwise; and signa; = 10 if

| .
(ouC )i,j,k+1/2 > 0.0 and -1.0 otherwise.

This implicit formulation to the LHS of the TVD
scheme of [12] and TVD/ENO scheme of [13] is
second order accurate in space and first order
accurate in time due to the presence of the
characteristic numerical speed y associated with the
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numerical flux function g. In this case, the
algorithms accuracy is definitely second order in
space because both LHS and RHS are second order
accurate.

It is important to emphasize that the RHS of the
flux difference splitting implicit schemes present
steady state solutions which depend of the time step.
With this behavior, the use of large time steps can
affect the stationary solutions, as mentioned in [39].
This is an initial study with implicit schemes and
improvements in the numerical implementation of
these agorithms with steady state solutions
independent of the time step isagoal to be reached
in future work of both authors.

8 Spatially Variable Time Step

The basic idea of this procedure consists in keeping
constant the CFL number in all calculation domain,
allowing, hence, the use of appropriated time steps
to each specific mesh region during the convergence
process. According to the definition of the CFL
number, it is possible to write:

where CFL is the *“Courant-Friedrichs-Lewy”
number to provide numerical stability to the scheme;

[ 2 2 2\05 . .
Cijk =[lU"+V +w +al;x is the maximum

characteristic speed of information propagation in
the calculaion domain; and (As),, is a

characteristic length of information transport. On a
finite volume context, (As),;, is chosen as the

minor value found between the minor barycenter
distance, involving the (i,j,k) cell and a neighbor,
and the minor cell side length.

9 Initial and Boundary Conditions

9.1 Initial Condition

To the physical problems studied in this work,
freestream flow values are adopted for all properties
asinitial condition, in the whole calculation domain
([33;40]). Therefore, the vector of conserved
variables is defined as:

;
Qm.:{l M, cosa M, sina +0-5M§} )
1(r=1)

being a the flow attack angle. (102)

9.2 Boundary Conditions
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The boundary conditions are basically of four types.
solid wall, entrance, exit and lateral frontiers. The
far field condition is a case of entrance and exit
frontiers. These conditions are implemented in
specia cells named ghost cells.

(a) wall condition: This condition imposes the flow
tangency at the solid wall. This condition is satisfied
considering the wall tangent velocity component of
the ghost volume as equal s to the respective velocity
component of its real neighbor cell. At the same
way, the wall normal velocity component of the
ghost cell is egualed in value, but with opposite
signal, to the respective velocity component of the
real neighbor cell. According to [41], it resultsin:

ug = (1_2nxnx)ureal +(_2nxny)vred +(_2nxnz)wreal;

(103)
Vg =(=2n,N)Uigy +(1=2nN )V ey + (=20 N, )W o5 ;
(104)
Wy =(=2n,N Uiy + (=200 )V, +(L=2n,0 )W o,
(105)

with “g” related with ghost cell and “r” related with
rea cell. To the viscous case, the boundary
condition imposes that the ghost cell velocity
components be equal to the rea cell velocity
components, with the negative signal:

Ug = —Ureals (106)
Vg = —Vreal> (107)
Wg = ~Wreal- (108)

The pressure gradient normal to the wall is
assumed be equa to zero, following an inviscid
formulation and according to the boundary layer
theory. The same hypothesis is applied to the
temperature gradient normal to the wall, considering
adiabatic wall. The ghost volume density and
pressure are extrapolated from the respective values
of the read neighbor volume (zero order
extrapolation), with these two conditions. The total
energy is obtained by the state equation of a perfect
gas.

(b) Entrance condition:

(b.1) Subsonic flow: Four properties are specified
and one is extrapolated, based on analysis of
information  propagation along characteristic
directions in the calculation domain ([33]). In other
words, four characteristic directions of information
propagation point inward the computational domain
and should be specified. Only the characteristic
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direction associated to the “(q,-a)” velocity cannot
be specified and should be determined by interior
information of the calculation domain. The pressure
was the extrapolated variable from the real neighbor
volume, to the studied problems. Density and
velocity components had their values determined by
the freestream flow properties. The total energy per
unity fluid volume is determined by the state
equation of aperfect gas.

(b.2) Supersonic flow: All variables are fixed with
their freestream flow values.

(c) Exit condition:

(c.1) Subsonic flow: Four characteristic directions
of information propagation point outward the
computational domain and should be extrapolated
from interior information ([33]). The characteristic
direction associated to the “(q,-a)” velocity should
be specified because it penetrates the calculation
domain. In this case, the ghost volume's pressure is
specified by its freestream value. Density and
velocity components are extrapolated and the total
energy is obtained by the state equation of a perfect
gas.

(c.2) Supersonic flow: All variables are extrapolated
from the interior domain due to the fact that al five
characteristic directions of information propagation
of the Euler equations point outward the calculation
domain and, with it, nothing can be fixed.

10 Results

Tests were performed in a personal computer
(notebook) with Pentium dual core processor of
2.20GHz of clock and 2.0Gbytes of RAM memory.
Converged results occurred to 3 orders of reduction
in the value of the maximum residual. The
maximum residual is defined as the maximum value
obtained from the discretized conservation
equations. The value used to y was 1.4. To dl
problems, the attack or entrance angle was adopted
equal to 0.0°.

The physical problems to be studied are the
supersonic flows along a compression corner and
along a ramp, to the inviscid case, and the transonic
flow along a convergent-divergent nozzle, viscous
case.

10.1 Ramp Physical Problem —Inviscid Case

The ramp configuration is described in Fig. 1.
The ramp inclination angle is 20°. An algebraic
mesh of 61x60x10 points or composed of
31,860 hexahedrons and 36,600 nodes was used
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as shown in Fig. 2. The points are equally
spaced in both directions.

Fy
Far Field
8 _
f?"-_ Entrance Exit
L]
Wall —
4

< > 015m

0.15m 0.12m

Figure 1. Ramp configuration.

Figure 2. Ramp mesh (61xébx10).

This problem consists in a low supersonic flow
impinging a ramp, where an oblique shock wave
and an expansion fan are generated. The freestream
Mach number is equal to 2.0. The solutions are
compared with the oblique shock wave theory and
the Prandtl-Meyer expansion fan theory.

10.1.1 Lax and Wendr off solutions

Figures 1 to 7 exhibits the pressure contours of the
[7] scheme in its five versions, namely: Minl
(Minmod1), Min2 (Minmod2), Min3 (Minmod3),
SB (Super Bee), and VL (Van Leer). The contours
present good characteristics, without oscillations,
and the most severe pressure field is due to the [7]
scheme in its SB variant. The SB variant aso
captures the shock with the smallest width.
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Pr. 0.80 0.95‘1.‘13 1289 146 163 179 196 Prr 079 096 113 130 146 163 180 197
P

Figure 6. Pressure contours ([7]-SB).

Prr 079 096 113 129 146 1632 180 196

Figure 3. Pressure contours ([7]-Minl).

|
Pr. 0.80 0896 A 130 146 163 179 1
W

Rl

Figure 7. Pressure contours ([7]-VL).

Figure 4. Pressure contours ([7]-Min2).

Pr. 080 086 113 130 1.46 162 180 196

Figure 8 presents the pressure distribution
at wal, at k = KMAX/2, where KMAX is the
maximum number of nodes in the k direction.
These pressure distributions are compared with
the oblique shock wave theory and the Prandtl-
Meyer expansion wave theory results. As can
be observed, the pressure plateau is well
captured by the scheme in its five variants. A
better behavior is observed at the expansion fan
captured by the SB non-linear limiter. It detects
the fan closer to the theory profile. All solutions
capture the shock discontinuity with four cells,
which is a reasonable solution to a high
resolution scheme.

Figure 5. Pressure contours ([ 7]-Min3).
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Figure 8. Wall pressure distribution.

10.1.2 Yee, Warming and Harten solutions

Figure 9 exhibits the pressure contours obtained by
the [12] scheme. As can be observed, a pressure
peak exists at the corner beginning which results in
a severe pressure peak a the wall pressure
distribution, damaging the solution quality of this
scheme.

Pr. 0.81 1200 1.40 159 179 1.98 218

1.01

Other consequence is the value of the maximum
field pressure, which is a numerical value, but not a
physical value. This solution loses in quality in
comparison with the other solutions.

Figure 10 presents the pressure distribution at
wall in k = KMAX/2. As aforementioned, it exists a
pressure peak at the shock discontinuity. It is very
strength and prejudices the solution quality of this
scheme. The shock discontinuity is captured using
four cells, which is a reasonable result for a high
resolution scheme.
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Figure 10. Wall pressure distribution.

10.1.3 Yeesolutions

BT T TTTTTTTTTN

Pr. 0.81 117 136 154 172 191 209

0.99

Figure 11. Pressure contours ([9]-Min1).

Figures 11 to 14 show the pressure contours to the
[9] scheme in its four variants: Minl, Min2, Min3,
and VL. The SB variant did not present converged
results. Figure 11 presents a discrete pressure peak
a the corner beginning. Observing all other
solutions, it is aso possible to note that al of them
present pressure oscillations at the corner. The
worseresult isin Fig. 13, with Min3 variant.
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117
»

Pr. 0.80 099 135 153 171 189 207

Figure 12. Pressure contours ([9]-Min2).

082 1.08 133 1.83 208 233 258

Pr:

Figure 13. Pressure contours ([9]-Min3).

080 100 121 141 161 182 202 223

Pr:

X

Figure 14. Pressure contours ([9]-VL).

Figure 15 shows the wall pressure distribution
obtained by the four variants of the [9] scheme. The
solution with the variant Min2 is that present the
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smallest peak, even so very strength than the [7]
solutions. Moreover, the shock wave discontinuity is
captured using four cells.

HEORY
— = |er-mint
——]

X
Figure 15. Wall pressure distributions.

10.1.4 Harten and Osher solutions

Figures 16 and 17 exhibit the pressure contours
obtained by the [13] scheme, in its two versions.
There are not pressure oscillations and these ones
are clear and sharp defined. Good homogeneity
properties are observed at the k planes.

Pro 0.80 086 113 129 146 162 179 1.95

x

Figure 16. Pressure contours ([13]-TVD).

Figure 18 exhibits the wall pressure
distributions of the [13] scheme in its two versions,
namely: TVD and ENO. As can be observed, these
solutions are the best, with a little improvement to
the ENO solution at the fan region. The shock is
captured using four cells and the shock plateau is far
smooth, conducting to smoothest solutions.
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Figure 18. Wall pressure distributions,

A way to quantitatively verify if the solutions
generated by each scheme are satisfactory consists
in determining the shock angle of the oblique shock
wave, 3, measured in relation to the initial direction
of the flow field. [42] (pages 352 and 353) presents
a diagram with values of the shock angle, B, to
oblique shock waves. The value of this angle is
determined as function of the freestream Mach
number and of the deflection angle of the flow after
the shock wave, ¢. To ¢ = 20° (ramp inclination
angle) and to a freestream Mach number equals to
2.0, it is possible to obtain from this diagram a value
to B equalsto 53.0 °. Using a transfer in all pressure
contours figures, it is possible to obtain the values of
B to each scheme, as well the respective errors,
shown in Tab. 1. As can be noted, the best results
aredueto [12], [9] —Min2, and [13] — ENO. Asthe
best wall pressure distribution was due to [13] —
ENO and the best shock angle aso have the [13] —
ENO algorithm as one of the best schemes solutions,
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the [13] — ENO algorithm is the best in this ramp
problem.

Table 1. Shock angle and percentage errors.

Algorithm B (9 Error (%)
[7] = Minl 53.2 0.38
[7] = Min2 53.2 0.38
[7] —Min3 534 0.75
[7]-SB 53.2 0.38
[71-VL 535 0.94
[12] 53.0 0.00
[9] = Min1 53.1 0.19
[9] —Min2 53.0 0.00
[9] —Min3 53.1 0.19
[9] -VL 54.0 1.89
[13] -TVD 53.2 0.38
[13] —ENO 53.0 0.00

10.2 Compression Corner Physical Problem
—Inviscid Case

FarField

Exit
1 Entrance

‘ﬁ-"a]l#_,_, 10 .J
e 1.0m

4m

Pt

1.0

Figure 19. Compression corner configuration.

z ¥

Figure 20. Compression corner mesh (70x50x10).

The compression corner configuration is
described in Fig. 19. The corner inclination angle is
10°. An algebraic mesh of 70x50x10 points or
composed of 30,429 hexahedra cells and 35,000
nodes was used and is shown in Fig. 20. The points
are equally spaced in both directions.
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10.2.1 Lax and Wendr off solutions

Prr 0¥6 086 095 1.04 114 123 133 142

Figure 21. Pressure contours ([ 7]-Minl).

Prr 076 086 095 104 114 123 133 142

Figure 22. Pressure contours ([7]-Min2).

Pro 076 086 08 104 114 123 133 142

Figure 23. Pressure contours ([7]-Min3).

This problem consists in a moderate supersonic
flow impinging a compression corner, where an
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oblique shock wave is generated. The freestream
Mach number is equal to 3.0. The solutions are
compared with the oblique shock wave theory
results.

Prr 075 085 095 104 114 123 133 143

Figure 24. Pressure contours ([7]-SB).

Prr 076 085 095 104 114 123 133 142

Figure 25. Pressure contours ([7]-VL).

PrPr(fiee)

90 91 04 06 05 10 LI 14 16 LE 10

Figure 26. Wall pressure distributions ([7]).
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Figures 21 to 25 exhibit the pressure contours
obtained by the [7] scheme, in its five variants. The
most intense pressure field is due to the “ Super Bee”
solution. All solutions are of good quality, without
pressure oscillations. The “Gibbs’ phenomenon is
not perceived in the “ Super Bee” solution.

Figure 26 presents the wall pressure distributions
obtained by [7], in its five variants, along the
compression corner. They are compared with the
oblique shock wave theory results. The reference
solution is due to the Van Leer limiter. All variants
capture the shock wave using four cells.

10.2.2 Yee, Warming and Harten solutions

Figure 27 presents the pressure contours obtained by
the [12] algorithm. A pressure peak is observed at
the corner beginning and is apparent in the wall
pressure distributions (Fig. 28). It damages the
solution quality of this scheme.

Pro 0¥7 087 087 107 147 127 1238 148

Figure 27. Pressure contours ([12]).
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Figure 28. Wall pressure distribution ([12]).

HEORY
—n— 12]

PrPr(fiee)

E-ISSN: 2224-2880

Edisson Savio De Gdées Maciel

As can be seen from Fig. 28, the wall pressure
distribution presents a oscillation a the corner,
which damages its quality. The shock profile is
captured in four cells.

10.2.3 Yeesolutions

Prr 076 086 096 105 115 125 134 1.44

Figure 29. Pressure contours ([9]-Min1).

Prr 076 086 096 105 115 125 134 144

Figure 30. Pressure contours ([9]-Min2).

Pr. 0.77 087 098 109 119 130 140 151

Figure 31. Pressure contours ([9]-Min3).
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Figures 29 to 33 show the pressure contours
obtained by the [9] algorithm in its five variants. As
can be observed, with the exception of the solutions
generated by Minl and Min2, al others present
pressure peak at the corner beginning. The solution
generated by the “Super Bee” limiter is the worse.

1.1

Pr 073 086 0.9 123 136 149 161

Figure 32. Pressure contours ([9]-SB).
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Figure 33. Pressure contours ([9]-VL).
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Figure 34. Wall pressure distributions ([9]).
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Figure 34 shows the wall pressure distributions
obtained by the [9] scheme in its five variants. The
reference solution is that due to the Min2 limiter,
presenting a small peak in comparison with the
other solutions. The shock is captured using five
cells, which is bad for a high resolution scheme.

10.2.4 Harten and Osher solutions

Finaly, Figures 35 and 36 exhibit the pressure
contours to the solutions obtained by the TVD and
ENO schemes of [13], respectively. Both solutions
are of good quality, without pressures peaks or
oscillations.

104 114 123 133 142

076 086 095

Pr:

Figure 35. Pressure contours ([13]-TVD).

Prr 076 086 095 105 114 124 133 142

Figure 36. Pressure contours ([13]-ENO).

Figure 37 shows the wall pressure distributions
resulting from [13] scheme. The solution obtained
by the ENO procedure is the reference one to the
[13] scheme. The shock is captured in four cells.

Comparing al wall pressure distributions, the
best solution isdue to [13] in its ENO version.

As said in the ramp problem, one way to
quantitatively verify if the solutions generated by
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each scheme are satisfactory consists in determining
the shock angle of the oblique shock wave, 3,
measured in relation to the initial direction of the
flow field.

THEORY
[M3]-TVD
[13]-ENO

PriPrifree )

L

P4 06 0F L0 11 14 L 1F 18
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Figure 37. Wall pressure distributions ([13]).

To the compression corner problem, ¢ = 10° (ramp
inclination angle) and the freestream Mach number
is 3.0, resulting from the [42] diagram a value to 3
equals to 27.5°. Using a transfer in the pressure
fields in the xy plane, it is possible to obtain the
values of B to each scheme, as well the respective
errors, shown in Tab. 2. As can be observed, the [9]
TVD scheme, in its Min3 version, has yielded the
best result. Errors less than 2.20% were observed in
all solutions.

Table 2. Shock angle and percentage errors.

Algotithm B (°) Error (%)
[7] —Minl 274 0.36
[7] —Min2 27.3 0.73
[7] —Min3 271 1.45
[7]-SB 28.0 1.82
[7]-VL 274 0.36
[12] 26.9 2.18
[9] —Minl 27.0 1.82
[9] —Min2 27.7 0.73
[9] —Min3 275 0.00
[9] -SB 274 0.36
[9]-VL 27.0 1.82
[13] - TVD 27.0 1.82
[13] - ENO 27.1 1.45

10.3 Conver gent-Divergent Nozzle - Viscous

To the viscous case, it was chosen the convergent-
divergent nozzle problem. The computationa
domain and the mesh configuration are described in
Figs. 38 and 39, respectively. The mesh is

E-ISSN: 2224-2880
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composed of 42,000 hexahedron cells and 43,310
nodes on a finite volume context (equivalent to a
mesh of 61x71x10 pointsin finite differences). Only
the [7] agorithm, in its Minl and Min2 variants,
yielded converged results.
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Figure 38. Nozzle configuration.

Figure 39. Mesh configuration.

The initial condition to this problem considers a
stagnation flow. The Reynolds number was
estimated in 1.32x10°, according to [32],
considering the characteristic length of 0.027m and
an atitude of 0.0m.

Pro 0.35 042 048 055 062 069 076 083

Figure 40. Pressure contours ([ 7]-Minl).
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056 062 069 076 083

» 0,35 042 049

Figure 41. Pressure contours ([7]-Min2).

Figures 40 and 41 exhibit the pressure contours
obtained by the [7] scheme, in its Minl and Min2
variants, respectively. The most severe pressure
field is due to the Min2 version of the [7] algorithm.

Figure 42 shows the wall pressure distribution
obtained by the [7] in its two variants. They are
compared with the experimental results of [42]. As
can be observed, the reasonable solution is obtained
by the [7] scheme using Minl limiter. Hence, it is
possible to conclude that for the laminar viscous
results, the [7] scheme, inits Minl version, provides
the best solution.
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Figure 42. Wall pressure distribution ([7]).
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11 Conclusion

In the present work, the [7] TVD symmetric, the [9]
TVD symmetric, the [12] TVD, and the [13]
TVD/ENO schemes are implemented, on a finite
volume context and using a structured spatial
discretization, to solve the Euler and Navier-Stokes
equations in the three-dimensional space. With the
exception of [7; 9], al others schemes are high

E-ISSN: 2224-2880
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resolution flux difference splitting ones, based on
the concept of Harten’s modified flux function. The
[7; 9] TVD schemes are symmetric ones,
incorporating TVD properties due to the
appropriated definition of a limited dissipation
function. All schemes are second order accurate in
space. An implicit formulation is employed to solve
the Euler equations, whereas a time splitting method,
an explicit method, is used to solve the Navier-
Stokes equations. An approximate factorization in
Linearized Nonconservative Implicit LNI form is
employed by the [12-13] schemes, whereas an
approximate factorization ADI method is employed
by the [7; 9] schemes. All algorithms are first order
accurate in time. The agorithms are accelerated to
the steady state solution using a spatialy variable
time step, which has demonstrated effective gainsin
terms of convergence rate ([30-31]). All schemes
are applied to the solution of physical problems of
the supersonic flows along a ramp and aong a
compression corner, in the inviscid case, whereas in
the laminar viscous case, the supersonic flow along
a convergent-divergent nozzle is solved.

The results have demonstrated that the [9]
algorithm, with Min2 non-limiter, and [13], in its
ENO version, has presented the best solutionsin the
inviscid ramp and compression corner problems; In
the viscous problem, the [7] agorithm, in its Minl
variant, has presented the best solution in the
viscous nozzle problem.

This work is the first part of this study, which
compares different TVD and ENO agorithms. The
next paper will treat more four numerical algorithms
based on the Yee' sand Y ang' s works.
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