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Abstract: In this paper we review Pontryagin’s Maximum Principle in its classical form, explain its geometric
content and formulate it in a way which applies to control problems on arbitrary manifolds. It is then shown
how this principle takes a particularly simple form in the case of left- or right-invariant control systems on Lie
groups. Finally, we describe various application examples (from areas such as continuum mechanics, spacecraft
attitude control and quantum spin systems) which show that the differential geometric version of Pontryagin’s
Principle allows one to obtain solutions for concrete problems not easily found in other ways. The presentation is
geared towards nonspecialists and strives to convey a feeling for the meaning and the applicability of the Maximum
Principle rather than to present technical details.
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1 Pontryagin’s Principle
Let us consider the simplest version of a control-
theoretical problem. We want to steer a dynamical
system

ẋ(t) = f(x(t), u(t), t) (1)

from a given initial state x(t0) = x0 to a prescribed
target state x(t1) = x1 by appropriately choosing the
control function t 7→ u(t) which is at our disposal to
influence the system. Moreover, let us try to choose
u in an optimal way in the sense that u minimizes or
maximizes, amongst all admissible control functions,
a prescribed quantity∫ t1

t0

φ(x(t), u(t), t) dt . (2)

In concrete applications, we may want to minimize
the time it takes to complete a process or the energy
expenditure during a process, or we may want to max-
imize the effect of a medical treatment or the profit
resulting from a business strategy. (See [3]-[6] and
[12] for applications of Pontryagin’s Principle in eco-
nomics.) Let us assume that the objective is to min-
imize the functional (2), which is no loss of gener-
ality, as changing φ to −φ converts a maximization
problem into a minimization problem. (At the time of
the discovery of Pontryagin’s Principle, optimization
problems where usually formulated as maximization
problems, and Pontryagin’s Principle was accordingly
called the Maximum Principle. Nowadays a more pes-
simistic mood prefers casting optimization problems

as minimization problems: one rather minimizes dam-
ages than maximizes profits.) Pontryagin’s Principle
yields a necessary condition for a control u to be opti-
mal. The formulation of this principle uses the Hamil-
tonian function

H(x, u, t, λ) := φ(x, u, t) + ⟨λ, f(x, u, t)⟩ (3)

and states that if t 7→ u⋆(t) is an optimally chosen
control and if t 7→ x⋆(t) is the resulting state trajec-
tory, then there is a function t 7→ λ⋆(t) such that the
triplet (x⋆, u⋆, λ⋆) satisfies the system

ẋ(t) =
∂H

∂λ
(x(t), u(t), t, λ(t))

λ̇(t) = −∂H
∂x

(x(t), u(t), t, λ(t)) (4)

and the optimization condition

H(x⋆(t), u⋆(t), t, λ⋆(t))

= min
u
H(x⋆(t), u, t, λ⋆(t)). (5)

Before we discuss the meaning of this theorem, let us
consider two simple examples.

Example 1 Insect pest. Consider an insect popula-
tion x with a known natural growth rate k. We want to
fight this population by using an insecticide. Denoting
by x(t) the size of the insect population at time t and
by u(t) the rate at which the insecticide is used at time
t, we obtain the dynamical system

ẋ(t) = k · x(t)− u(t) . (6)
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Assume that at some initial time t = 0 the population
size x0 = x(0) is known, and assume that at some
specified time T (for example the time of next year’s
apple bloom) the insect population should be eradi-
cated. Thus we want to choose u in such a way that
the resulting trajectory of (6) satisfies x(0) = x0 and
x(T ) = 0. Moreover, we want to minimize the toxic
effect of the insecticide on the environment and ex-
press this by the condition that the functional∫ T

0
u(t)2 dt (7)

should be minimized.

We show how Pontryagin’s Principle can be used
to solve this problem. We form the Hamiltonian

H(x, u, λ) = u2 + λ(kx− u) (8)

and supplement the system equation

ẋ(t) =
∂H

∂λ
(x(t), u(t), λ(t))

= k · x(t)− u(t) (9)

by the adjoint equation

λ̇(t) = −∂H
∂x

(x(t), u(t), λ(t))

= −k · λ(t) . (10)

This adjoint equation has the general solution

λ(t) = λ0e
−kt (11)

Since u must satisfy the minimum condition (5), we
find that

u(t) =
1

2
· λ(t) =

λ0
2
· e−kt . (12)

Plugging this into the system equation (6) yields the
equation

ẋ(t) = k · x(t)− λ0
2
· e−kt (13)

which has the general solution

x(t) =
λ0
4k
· e−kt +

(
x0 −

λ0
4k

)
· ekt . (14)

The boundary condition x(T ) = 0 yields λ0 =
4kx0/(1− e−2kT ). We have thus obtained a complete
solution:

λ(t) =
4kx0e

−kt

1− e−2kT
,

u(t) =
2kx0e

−kt

1− e−2kT
,

x(t) =
x0

1− e−2kT

(
e−kt − e−2kT · ekt

)
. (15)

We note that the Hamiltonian satisfies

H(x(t), u(t), λ(t)) =
−4k2x20e−2kT

(1− e−2kT )2
(16)

and hence is constant along the optimal trajectory.

Example 2 Rocket car. Let us denote by x(t) the po-
sition of a rocket car which can move along a straight
track, and let us denote by y(t) = ẋ(t) the velocity
of this car at time t; the state of the car at time t is
then (x(t), y(t)) ∈ R2. The force acting on this car is
u(t) = mẍ(t) where we normalize the mass to m = 1
for simplicity’s sake. Since the motor we use can pro-
duce only a limited force, we make the assumption that
|u(t)| ≤ 1 for all t. Thus we consider the controlled
dynamical system[

ẋ(t)
ẏ(t)

]
=

[
y(t)
u(t)

]
=

[
0 1
0 0

][
x(t)
y(t)

]
+u(t)

[
0
1

]
.

(17)
Assume that we want to steer the car from a given ini-
tial state (x(0), y(0)) = (x0, y0) to the target state
(0, 0) in minimal time T . Thus we want to find a func-
tion t 7→ u(t) satisfying |u(t)| ≤ 1 for all t such that
the resulting trajectory of (17) with the initial condi-
tion (x(0), y(0)) = (x0, y0) satisfies (x(T ), y(T )) =
(0, 0) in such a way that

T =

∫ T

0
1 dt (18)

becomes minimal.

To apply Pontryagin’s Principle, we form the
Hamiltonian

H(x, y, u, p, q) = 1 + py + qu (19)

and complement the system equation (17) by the ad-
joint equations

ṗ = −∂H
∂x

= 0 and

q̇ = −∂H
∂y

= −p. (20)

These adjoint equations have the general solutions

p(t) = p0, q(t) = −p0t+ q0 (21)

which, when plugged into the minimization condition
(5), yield

u(t) = −sgn(q(t)) = −sgn(−p0t+ q0) . (22)

Hence the optimal control u is necessarily a bang-
bang control, i.e., a piecewise constant function tak-
ing only the values ±1 of maximal possible absolute
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value. Now for each of the functions u(t) ≡ ±1
(defined on some interval I ⊆ R) the general solu-
tion of (17) can be easily obtained; the trajectories
t 7→ (x(t), y(t)) are arcs of the parabolas shown in
Figure 1 (where the red parabolas belong to u ≡ 1,
the blue ones to u ≡ −1).

x

y

Figure 1: Trajectories resulting from the controls u ≡
±1.

We now observe that, since t 7→ −p0t + q0 is
a (constant or) linear function and hence has at most
one sign change, (22) implies that u can switch at
most once between the values ±1, which makes it
easy to find the optimal control. This optimal con-
trol depends on whether or not the point (x0, y0) rep-
resenting the initial state lies above, below or on the
switching curve y(x) = −sign(x)

√
2|x| shown as a

dashed line in Figure 1. If (x0, y0) lies above this line,
we choose first u(t) = −1, follow the blue parabola
through (x0, y0) until we hit the red part of the switch-
ing curve and then switch to u(t) = +1, maintain-
ing this control until we reach the point (0, 0). If
(x0, y0) lies below the switching curve, we start with
u(t) ≡ +1, follow the red parabola through (x0, y0)
until we hit the blue part of the switching curve and
then switch to u(t) = −1, maintaining this control
until we reach the point (0, 0). The switching times
can be easily computed as functions of (x0, y0). If
(x0, y0) lies on the switching curve, no switch is nec-
essary, and the optimal control is a constant function.

2 Dynamical Systems on Manifolds
In the setting considered here, a dynamical system is
a differential equation

ẋ(t) = f(x(t), u(t), t) (23)

in which x(t) represents the system state at time t and
in which the function u models an external influence

which we can exert on the system in question (usu-
ally subject to various constraints). We first ignore
the question of specifying u to satisfy certain control
objectives, but simply assume that the function u has
been specified and hence can be subsumed into the ex-
plicit time dependence on the right-hand side of (23).
Classically, t 7→ x(t) is a function with values in Rn

(so that (23) represents a system of n ordinary differ-
ential equations for the functions x1, . . . , xn), but if f
is a function with assigns to each point x ∈ M of a
manifold M and each argument t and u a tangent vec-
tor f(x, u, t) ∈ TxM then we can interpret (23) as a
dynamical system on the manifold M ; see Figure 2.

Figure 2: Dynamical system on a two-dimensional
manifold (with three integral curves shown).

Example 3 Given A ∈ Rm×3 and b ∈ Rm, consider
the differential equation

ẋ(t) = f(x(t)) where

f(x) := xTAT (Ax−b)x−AT (Ax−b) (24)

on R3. Note that if t 7→ x(t) is a solution of (24) then

(d/dt)(∥x∥2/2) = xT ẋ

= xTAT (Ax− b) (xTx− 1) (25)
= (∥Ax∥2 − ⟨Ax, b⟩)(∥x∥2 − 1)

which shows that if ∥x(t0)∥ = 1 for some time t0 then
∥x(t)∥ = 1 for all t. Hence (24) can be considered as
a dynamical system on the two-sphere S2.

Example 4 With any vector ω ∈ R3 we can associate
the skew-symmetric matrix

L(ω) :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (26)

which is defined in such a way that L(ω)v = ω × v
for all v ∈ R3. Now let t 7→ ω(t) be a given function
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and consider the differential equation

ġ(t) = L(ω(t)) g(t) (27)

on the space R3×3 of all real (3 × 3)-matrices. If
t 7→ g(t) is a solution of (27) then

(d/dt)(gT g) = ġT g + gT ġ

= gT (L(ω)T + L(ω))g = 0 (28)

where the last equality holds because of the skew-
symmetry of L(ω). Thus if g(t0) is an element of the
rotation group SO(3) for some time t0, then g(t) ∈
SO(3) for all times t, which shows that (27) can
be considered as a dynamical system on the rotation
group SO(3).

Let us assume that the control function u in (23)
has been chosen so that we may simply rewrite (23)
as ẋ(t) = f(x(t), t). Given a point ξ ∈ M , consider
the initial value problem

ẋ(t) = f(x(t), t), x(s) = ξ . (29)

According to standard theorems on differential equa-
tions, this initial value problem has a unique solution
defined on some open interval containing the “initial
time” s; for each t in this interval let φts(ξ) the value
of this solution at time t. The function t 7→ φts(ξ)
is called the local flow associated with the dynamical
system (29); the function φts maps the state at time s
to the state at time t and hence can be considered as
a state transition operator. Obviously, φss = idM and
φt3t2 ◦ φt2t1 = φt3t1 at all points for which the oper-
ators on both sides are defined. We now want to as-
sociate with each such local flow two other flows, one
on the tangent bundle TM and one on the cotan-
gent bundle T ⋆M of M . As a set, TM is simply
the union

∪
p∈M TpM of all tangent spaces of M ,

whereas T ⋆M is the union
∪

p∈M (TpM)⋆ of the cor-
responding dual spaces; both TM and T ⋆M can, in a
natural way, be equipped with the structure of a man-
ifold, but we gloss over this fact here.

To start with, we note that for each smooth func-
tion f : M → N between manifolds and for each
point p ∈M there is a linear function f ′(p) : TpM →
Tf(p)N which satisfies f ′(p)v = (d/dt)f(α(t)) |t=0

where α is any curve in M satisfying α(0) = p
and α̇(0) = v. (This map is called the lineariza-
tion of f at p. Loosely speaking, if we think of
v = δx as a small disturbance of p then the equation
f(p + δx) − f(p) = f ′(p) δx holds in first-order ap-
proximation.) We apply this concept to the mapping
φts and define the tangent flow on TM associated
with the flow φts on M via

Φts(p, v) := (φts(p), φ
′
ts(p)v) (30)

Α
Β

p q

v

w

Figure 3: Geometric interpretation of the tangent flow.

where p ∈ M and v ∈ TpM . By dualization we can
also define the cotangent flow on T ⋆M via

Ψts(p, λ) := (φts(p), λ ◦ φ′
ts(p)

−1) (31)

where p ∈ M and λ ∈ (TpM)⋆. If we write the tan-
gent flow as t 7→ (xt, vt) and the cotangent flow as
t 7→ (xt, λt), then t 7→ λt(vt) is constant, because

λt(vt) =
(
λs ◦ φ′

ts(p)
−1
) (
φ′
ts(p)vs

)
= λs(vs) .

(32)
(This condition actually characterizes the cotangent
flow associated with φts.) Let us fix the initial time
s and let us write φts(p) = x(t; p) (which is the inte-
gral curve of (29) originating at the point p). Then

d
dt
φ′
ts(p) =

d
dt

∂

∂p
x(t; p) =

∂

∂p

d
dt
x(t; p)

=
∂

∂p
ẋ(t; p) =

∂

∂p
f(x(t; p), t)

=
∂f

∂x
(x(t; p), t) · ∂x(t; p)

∂p

=
∂f

∂x
(φts(p), t) · φ′

ts(p). (33)

Hence if we enhance our original differential equation
(29) with the variational equation (33), we obtain a
dynamical system on TM whose local flow is exactly
the tangent flow Φts. We want to interpret this tangent
flow geometrically. Fix a point p ∈ M and numbers
s and t and let q := φts(p). Then fix a tangent vector
v ∈ TpM ; we want to understand the meaning of the
tangent vector w := φ′

ts(p)v ∈ TqM . (See Figure 3.)
To do so, choose any curve α inM with α(0) = p

and α′(0) = v. For each value u (close enough to
zero) let τ 7→ x(τ ;u) be the solution of the initial
value problem ẋ(τ) = f(x(τ), τ), x(0) = α(u).
Then β(u) := x(t, u) = φts(α(u)) is a curve in M
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with β(0) = φts(p) = q and β′(0) = (d/du) |u=0

φts(α(u)) = φ′
ts(α(0))α

′(0) = φ′
ts(p)v = w.

Loosely speaking, if we interpret the integral curves
of the original dynamical system as the paths of pieces
of cork floating in a stream, then the tangent flow can
be interpreted as the linearized version of the flow of
virtual “cords” with which the pieces of cork are con-
nected without influencing their individual motions.

The cotangent flow – being defined by dualiza-
tion and hence more algebraically than geometrically
– cannot be as easily visualized. It is convenient to
introduce the Hamiltonian

H(x, t, λ) := λ(f(x, t)) (34)

where (x, λ) ∈ T ⋆M and t ∈ R. (Considering H
is simply a way of expressing everything that can be
said about the vector field f in terms of a real-valued
function and hence in a coordinate-free way.) Clearly,

∂H

∂λ
(x, t, λ) = f(x, t) and

∂H

∂x
(x, t, λ) • = λ

(
∂f

∂x
(x, t) •

)
. (35)

Hence if t 7→ (x(t), λ(t)) is a cotangent flow so that
t 7→ λ(t)(φ′

ts(p)v) is constant, we have

0 = λ̇(t)
(
φ′
ts(p)v

)
+ λ(t)

(
d
dt
φ′
ts(p)v

)
= λ̇(t)

(
φ′
ts(p)v

)
+ λ(t)

(
∂f

∂x
(φts(p), t) · φ′

ts(p)

)
= λ̇(t)

(
φ′
ts(p)v

)
+
∂H

∂x
(φts(p), t, λ(t))

(
φ′
ts(p)v

)
(36)

and hence λ̇(t) = −(∂H/∂x)(x(t), t, λ(t)). This
shows that (xt, λt) is a cotangent flow if and only if
the Hamiltonian equations

ẋ(t) =
∂H

∂λ
(x(t), t, λ(t))

λ̇(t) = −∂H
∂x

(x(t), t, λ(t)) (37)

hold. These equations define a dynamical system
on T ⋆M whose flow is the cotangent flow associ-
ated with the given dynamical system on M . If t 7→
(x(t), λ(t)) satisfies the Hamiltonian equations, then

d
dt
H(x(t), t, λ(t))

= ⟨∂H
∂x

, ẋ⟩+ ∂H

∂t
+ ⟨∂H

∂λ
, λ̇⟩

= −⟨λ̇, ẋ⟩+ ∂H

∂t
+ ⟨λ̇, ẋ⟩

=
∂H

∂t
(x(t), t, λ(t)). (38)

In particular, if we start with an autonomous dynami-
cal system ẋ = f(x(t)) for which f does not explic-
itly depend on time then ∂H/∂t is identically zero and
hence, due to (38), the Hamiltonian is constant along
the trajectories defined by the cotangent flow.

3 Geometric Content of Pontryagin’s
Principle

The discussion in the second paragraph had seemingly
nothing to do with Pontryagin’s Principle or with con-
trolled dynamical systems in general. To make a con-
nection here, we first ignore the fact that we eventu-
ally want to consider the problem of finding a control
u which is optimal in some sense, but simply consider
an initial value problem

ẋ(t) = f(x(t), u(t), t), x(t0) = a (39)

where the control function u can be freely chosen
from a class U of admissible controls satisfying some
mild technical assumptions (members of U are re-
quired to be measurable and bounded, and U is re-
quired to be closed under concatenations and time
shifts). The dynamical system (39) is supposed to
evolve on some state space which may be an arbitrary
manifold. Once the control function u has been speci-
fied, the problem (39) has a unique solution which we
denote by xu. Given any time t > t0, we now consider
the reachability set

R(t) := {xu(t) | u ∈ U} (40)

which is the set of those states to which the system
can be steered at time t by using an admissible control.
Since flows are local differmorphisms, it is easy to see
that if t 7→ x(t) is any trajectory of (39) such that x(t)
lies in the interior of R(t) for some t, then x(τ) lies
in the interior of R(τ) for all τ > t. Consequently, if
x(t) is in the boundary ∂R(t) of R(t) for some time
t, then x(τ) must have been in the boundary ∂R(τ)
of R(τ) for all previous times τ < t. (It helps to vi-
sualize the boundary ∂R(t) as a “wave front” evolv-
ing in time.) Now it can be shown that locally the
reachability set R(t) lies on one side of its bound-
ary, which implies that, at any given point x of ∂R(t),
there is a hyperplane through x (taken as the origin
of TxM ) such that (a local approximation of) R(t)
is completely contained in one of the two half-spaces
defined by this hyperplane. Consequently, if a control
u⋆ is such that the resulting trajectory x⋆ = xu⋆ lies in
the boundary of R(t) for all t (we call u⋆ a boundary
control in this case), there is for each t a linear form
p⋆(t) ̸= 0 on Tx⋆(t)M such that

p⋆(t) (f(x⋆(t), t, u)− f(x⋆(t), t, u⋆(t))) ≤ 0 (41)
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RHtL

p*HtL

fHx*HtL,t,u*HtLL

fHx*HtL,t,uL

Figure 4: Support hyperplane to the reachability set at
a given time.

for all u ∈ U . (See Figure 4.) This can be succinctly
rephrased by associating with the (time-varying) vec-
tor field f its control HamiltonianH = Hf : T ⋆M×
U × [t0, t1]→ R defined by

H(x, p;u, t) = p(f(x, u, t)) (42)

where u ∈ U , x ∈ M , p ∈ (TxM)⋆). (Note that we
changed notation, denoting points in T ⋆M by (x, p)
rather than (p, λ) as before.) Namely, (41) simply
reads

H(x⋆(t), p⋆(t);u⋆(t), t) ≥ H(x⋆(t), p⋆(t);u, t)
(43)

for all u ∈ U which shows that, at each t, the control
value u⋆(t) maximizes the Hamiltonian amongst all
values u ∈ U . (Of course p⋆ can be replaced by −p⋆;
it is merely a matter of convenience whether we want
the Hamiltonian to be maximized or minimized.) To
understand the situation we can identify (Tx⋆(t)M)⋆

with Tx⋆(t)M using an inner product and then visual-
ize p⋆(t) as a normal vector of the hyperplane in ques-
tion which points “outward”, i.e., away from R(t).

Now t 7→ p⋆(t) is a linear form floating along
with x⋆(t); in other words, t 7→ (x⋆(t), p⋆(t)) is
a cotangent flow as defined in the second chapter.
Thus the geometric content of Pontryagin’s Princi-
ple is readily revealed: the Hamiltonian equations
ẋ = ∂H/∂p and ṗ = −∂H/∂x which are valid
along an optimal trajectory simply express the fact
that t 7→ (x⋆(t), p⋆(t)) is a cotangent flow on T ⋆M ,
and the maximum (or minimum) condition expresses
the fact that (a local approximation of) the reachabil-
ity set R(t) of the given system is contained in one of
the two half-spaces defined by p⋆(t). The transition
from this observation to Pontryagin’s Principle for the
solution of optimal control problems as spelled out in
the first paragraph is then accomplished by consider-

a

b

Hp, p0L
R

M

Figure 5: Optimal trajectory of the original system
and associated trajectory of the augmented system.

ing the augmented system

ẋ(t) = f(x(t), u(t), t), x(t0) = a,

ẋ0(t) = φ(x(t), u(t), t), x0(t0) = 0, (44)

in which we introduced the running cost x0(t) :=∫ t
t0
φ(x(s), u(s), s) ds as an additional state variable.

(If the original system evolves on M then the aug-
mented system evolves on M × R.)

The key observation is that if the control u⋆ min-
imizes the cost and if x⋆ is the resulting trajectory,
then all trajectories of the augmented system have
their endpoint on the half-line {x1} × [x⋆0(t1),∞),
which implies that (x⋆(t1), x⋆0(t1)) lies in the bound-
ary of the reachable set of the augmented system. (See
Figure 5.) Thus there is an (augmented) cotangent
vector (p⋆(t), p⋆0(t)) which maximizes the augmented
Hamiltonian

Ĥ((x, x0), (p, p0), u, t)

= ⟨p, f(x, u, t)⟩+ p0φ(x, u, t) (45)

Since (p, p0) must be outward-pointing, this implies
that p0 must be nonpositive; in fact, strictly nega-
tive except in abnormal cases. Since the linear form
(p, p0) is determined only up to a scalar multiple any-
way, we may assume that this linear form is normal-
ized in such a way that p0(t) ≡ −1. Using this con-
vention and writing −p instead of p, we see that Pon-
tryagin’s Principle for boundary controls, applied to
the augmented system, yields exactly the solution of
the optimal control problem given in the first para-
graph.

4 Control Problems on Lie Groups
Our geometric derivation immediately shows that
Pontryagin’s Principle is applicable not only to con-
trol problems on Rn (which is the classical setting),
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Figure 6: Equilibrium condition for elastica as a con-
trol problem.

but to control problems on arbitrary manifolds. In this
paragraph we want to present four application prob-
lems in which the state space is indeed not a Euclidean
space, but a nonlinear manifold (in fact, a Lie group),
and in which the key to the solution is the “geometric”
version of Pontryagin’s Principle.

Example 5 Euler’s theory of elastic beams. Euler
studied flexible rods or beams and asked into what
shapes they could be deformed. His main tool to
answer this question was Bernoulli’s insight that the
shapes of such rods are characterized by the fact that
the total squared curvature takes an extremal value
amongst all curves of the given length of the rod con-
necting the given endpoints and having specified tan-
gent directions at these endpoints. This led Jurdjevic
(see [7]) to recast the problem of elastica as an opti-
mal control problem.

We will carry out Jurdjevic’s analysis in the pla-
nar case and treat the rod as a curve s 7→ (x(s), y(s))
parametrized by arclength and call φ(s) the angle
which the tangent at the point (x(s), y(s)) makes with
the horizontal. Let us denote the tangent vector of the
curve by T (which is a unit vector, since the curve is
parametrized by arclength) and the normal vector by
N . (See Figure 6.) The tangent vector is given by

T (s) =

[
x′(s)
y′(s)

]
=

[
cosφ(s)
sinφ(s)

]
, (46)

and φ′(s) = κ(s) is the oriented curvature of the
curve. Now let us introduce the matrix

g(s) :=

 cosφ(s) sinφ(s) 0
− sinφ(s) cosφ(s) 0

x(s) y(s) 1

 (47)

for which we find that g′(s) equals−φ′(s) sinφ(s) φ′(s) cosφ(s) 0
−φ′(s) cosφ(s) −φ′(s) sinφ(s) 0

x′(s) y′(s) 0

 =

−κ(s) sinφ(s) κ(s) cosφ(s) 0
−κ(s) cosφ(s) −κ(s) sinφ(s) 0

cosφ(s) sinφ(s) 0

 =

 0 κ(s) 0
−κ(s) 0 0

1 0 0

 cosφ(s) sinφ(s) 0
− sinφ(s) cosφ(s) 0

x(s) y(s) 1

 .(48)

Using the matrices

E0 =

 0 1 0
−1 0 0
0 0 0

 , E1 =

 0 0 0
0 0 0
1 0 0

 ,
E2 =

 0 0 0
0 0 0
0 1 0

 (49)

this can be succinctly written as

g′(s) = (κ(s)E0 + E1) g(s) . (50)

We note that (50) is a dynamical system evolving on
the group G = SE(2,R) of planar motions, which we
represent as the matrix Lie group

G =

{(
D 0
vT 1

)
| D ∈ SO(2,R), v ∈ R2

}
. (51)

Now specifying an initial point and an initial tan-
gent direction and an endpoint and a tangent direction
at the endpoint is tantamount to specifying matrices
g0 and g1. Using Bernoulli’s result that

∫ L
0 κ(s)2ds

becomes minimal (where L is the given length of
the rod), this shows that the problem of elastica can
be recast as a problem in optimal control: Given
g0, g1 ∈ SE(2,R) and L > 0, find a control func-
tion κ : [0, L] → R such that the solution of (50)
which satisfies g(0) = g0 also satisfies g(L) = g1 and
minimizes the cost functional∫ L

0
κ(s)2ds . (52)

Example 6 Spacecraft attitude control. The atti-
tude or orientation of a spacecraft (modelled as a
rigid body) is the matrix g ∈ SO(3) whose columns
form an orthonormal frame rigidly attached to the
spacecraft, expressed in coordinates with respect to
a space-fixed frame.

If t 7→ ω(t) denotes the angular velocity of the
spacecraft then we have ġ = L(ω)g where L is de-
fined as in Example 3 of the second paragraph. Writ-
ing

E1 =

 0 0 0
0 0 1
0 −1 0

 , E2 =

 0 0 −1
0 0 0
1 0 0

 ,
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E3 =

 0 1 0
−1 0 0
0 0 0

 , (53)

this reads

ġ(t) = (ω1(t)E1 + ω2(t)E2 + ω3(t)E3) g(t) . (54)

A common problem in spacecraft attitude control is
now to perform an attitude maneuver which moves
the spacecraft from rest to rest between a given ini-
tial attitude g(t0) = g0 and a prescribed target attitude
g(t1) = g1. Since it is sensible to try to perform such
a maneuver while keeping the overall angular veloci-
ties low, we consider a cost functional of the form∫ t1

t0

q(t)(ω1(t)
2 + ω2(t)

2 + ω3(t)
2) dt (55)

where q is a positive function with q(t) → ∞ for
t → t0 and t → t1 to ensure that ω(t0) = ω(t1) = 0.
(These conditions express that the spacecraft is at
rest both at the start and at the end of the maneu-
ver.) Thus we have arrived at an optimal control prob-
lem on the rotation group SO(3): Find control func-
tions t 7→ ωi(t) such that the solution of (54) with
g(t0) = g0 also satisfies g(t1) = g1 and such that (55)
becomes minimal. (Note that the physically realizable
control variables in attitude control are not the angular
velocities, but the torques. However, once the angular
velocities are determined as the solutions of the opti-
mal control problem just described, we can use Euler’s
equations to determine the torques which effect these
angular velocities. This can be worked into a practi-
cally realizable attitude control algorithm; see [17].)

Example 7 Optimal parking of a vehicle. We con-
sider the problem of parking a car.With respect to a
fixed Cartesian coordinate system, we denote by (x, y)
the position of the car’s center of mass and by φ the
angle between the car’s axis and the horizontal; see
Figure 7. Moreover, we denote by u the velocity and
by ω the angular velocity of the car. Then a simplified
model for the car kinematics is given by the equations[

ẋ(t)
ẏ(t)

]
= u(t)

[
cosφ(t)
sinφ(t)

]
, φ̇(t) = ω(t).

(56)

To exhibit the symmetry of this control system, it
is useful to recast it as a control system on the group
G = SE(2,R) introduced in Example 1. Associating
with each trajectory t 7→ (x(t), y(t), φ(t)) of (56) the
trajectory t 7→ g(t) in G defined by

g(t) :=

 cosφ(t) sinφ(t) 0
− sinφ(t) cosφ(t) 0

x(t) y(t) 1

 , (57)

xHtL

yHtL

jHtL

Figure 7: Geometry of the parking problem.

and carrying out a calculation completely analogous
to (48), we find that

ġ(t) = (ω(t)E0 + u(t)E1)g(t) (58)

which is a control system on the Lie groupG. We now
ask for the controls t 7→ u(t) and t 7→ ω(t) which
steer (58) from a given initial state g(t0) = g0 to a
given target state g(t1) = g1 while minimizing a cost
functional of the form∫ t1

t0

q(t)(αu(t)2 + βω(t)2)dt (59)

with a given function q : (t0, t1) → (0,∞) with
q(t) → ∞ for t → t0 and t → t1 and given posi-
tive constants α, β ∈ R. (A typical choice would be
the mass of the vehicle for α and its moment of inertia
about the z-axis for β.)

Example 8 Control of a quantum spin system. The
spin of a quantum-mechanical system can be de-
scribed by a vector[
α
β

]
= α ·

[
1
0

]
+β ·

[
0
1

]
(|α|2+ |β|2 = 1) (60)

where |α|2 and |β|2 can be interpreted as the proba-
bilities for the spin to be in either of the two possible
states after a measurement is performed. The transi-
tion of a single quantum bit through a quantum gate
can thus be described by a unitary transformation,
and the evolution of a quantum spin system acting on
a single quantum bit is governed by the Schrödinger
equation

U̇(t) = (c(t)A+ u(t)X + v(t)Y )U(t) (61)

where

A :=

[
i 0
0 −i

]
, X :=

[
0 −1
1 0

]
,

Y :=

[
0 i
i 0

]
(62)
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and where c, u and v are functions of time describing
the temporal variations of the external field.

In [9] we studied the situation that t 7→ u(t) and
t 7→ v(t) are treated as control variables whereas c
is a constant (so that cA is a drift term in the system
dynamics). There are two sensible control objectives
in this situation. We can either try to find a time-
optimal control under given energy bounds, i.e., we
try to transform an initial state U(0) = U0 into a spec-
ified target state U1 in minimal time under given con-
straints of the form u2+v2 ≤ 1 or max{|u|, |v|} ≤ 1;
or we can try to achieve the transformation from U0 to
U1 in a given time T while minimizing the energy ex-
penditure ∫ T

0
(u(t)2 + v(t)2) dt. (63)

In both situations we have an optimal control problem
on the special unitary group

SU(2) =

{[
a −c
c a

]
| a, c ∈ C, |a|2 + |c|2 = 1

}
.

(64)
All four problems have the same mathematical

structure: The state space is a matrix Lie group G,
and the system dynamics are given by an equation of
the form

ġ(t) = U(t)g(t) with

U(t) =

m∑
i=1

ui(t)Ei +

n∑
i=m+1

uiEi (65)

where (E1, . . . , En) is a basis of the Lie algebra
L(G), where the functions u1, . . . , um are control
variables and where um+1, . . . , un are constants (rep-
resenting drift terms in the system dynamics). We
note that each system of the form (65) is right-
invariant in the sense that if t 7→ g(t) is any solution
then so is t 7→ g(t)x for any fixed element x ∈ G.
Since for a Lie group G the cotangent bundle T ⋆G
can be identified with the direct product of G with its
Lie algebra, the Hamiltonian equations can be written
down in a very explicit way, which allows Pontrya-
gin’s Principle to be applied in a way which is much
easier than on an arbitrary manifold. This will be elab-
orated in the next paragraph.

5 Lie Group Version of Pontryagin’s
Principle

Recall that the Lie algebra of a matrix Lie group G ⊆
Rn×n is given by

L(G) = TeG = {X ∈ Rn×n | exp(RX) ⊆ G}
(66)

where the exponential function for matrices is given
by the usual exponential series. The tangent space of
G at an arbitrary element g ∈ G can be identified with

TgG = {Xg | X ∈ L(G)} . (67)

Consequently, each element λ ∈ (TgG)
⋆ is associated

uniquely with an element p ∈ (TeG)
⋆ = L(G)⋆ such

that λ(Xg) = p(X) for all X ∈ L(G), i.e., λ(Y ) =
p(Y g−1) for all Y ∈ TgG. This can be succinctly
expressed as

(TgG)
⋆ = {p ◦R(g−1) | p ∈ L(G)⋆} (68)

where, for each u ∈ G, we denote by R(u) the right-
multiplication X 7→ Xu. It is a crucial fact that TeG
is not simply a vector space, but has an additional al-
gebraic structure; namely, it is closed under the Lie
bracket

[A,B] := AB −BA. (69)

Now given an initial value problem

ġ(t) = U(t)g(t), g(s) = g0 (70)

with associated flow

φts(g0) = g(t; g0), (71)

the variational equations are given by

d
dt
φ′
ts(g0) =

d
dt

∂

∂g0
g(t; g0) =

∂

∂g0

d
dt
g(t; g0)

=
∂

∂g0
ġ(t; g0) =

∂

∂g0
U(t)g(t; g0)

= U(t)
∂

∂g0
g(t; g0) = U(t)φ′

ts(g0) (72)

Now if (gt, λt) is a cotangent flow associated with
(70) and if X ∈ L(G) is a fixed element, then, as
we saw in the second paragraph, the function

t 7→ λ(t)
(
φ′
ts(g0)Xg0

)
= p(t)

(
φ′
ts(g0)Xg0g(t)

−1
)

(73)

is constant. Since the derivative of

ξ(t) := φ′
ts(g0)Xg0g(t)

−1 (74)

is (
d
dt
φ′
ts(g0)

)
Xg0g(t)

−1

+φ′
ts(g0)Xg0

(
d
dt
g(t)−1

)
= U(t)φ′

ts(g0)Xg0g(t)
−1

−φ′
ts(g0)Xg0g(t)

−1ġ(t)g(t)−1 (75)
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so that

ξ̇(t) = U(t)ξ(t)− ξ(t)U(t) = [U(t), ξ(t)] , (76)

the condition that t 7→ p(t)(ξ(t)) is constant implies
that 0 = ṗ(ξ) + p(ξ̇) = ṗ(ξ) + p([U, ξ]) for all ξ and
hence that

ṗ(t) = −p(t) ◦ ad(U(t)) (77)

where ad(A)(B) := [A,B] = AB − BA defines the
adjoint representation of the Lie algebra L(G). Hence
in the case of right-invariant systems on Lie groups
the adjoint equation becomes a differential equation
on the dual of the Lie algebra of G. The explicit
form (77) of the adjoint equation will allow us to solve
all four control problems described in the examples
above.

Example 9 Euler’s theory of elastic beams. Since
U = κE0 +E1, the adjoint equation ṗ = −p ◦ ad(U)
means that

ṗEi = −p([U,Ei])

= −κp([E0, Ei])− p([E1, Ei]) (78)

for i = 0, 1, 2. Using the bracket relations

[E0, E1] = −E2, [E0, E2] = E1, [E1, E2] = 0
(79)

and writing pi(t) := p(t)Ei for all i, the equations
(78) become

ṗ0 = −p2, ṗ1 = κp2, ṗ2 = −κp1. (80)

Since the optimal control κ minimizes the Hamil-
tonian H = κ2 + p(U) = κ2 + p(κE0 + E1) =
κ2 + κp0 + p1, we have 2κ + p0 = 0 and hence
p0 = −2κ; thus the first equation in (80) becomes
p2 = 2κ̇. Plugging this into the other two equations
in (80) results in

ṗ1 = 2κκ̇, 2κ̈ = −κp1. (81)

The first of these equations can be integrated to yield
p1 = κ2 + c1 for some constant c1; the second equa-
tion then becomes 2κ̈ = −κ3 − c1κ. This last equa-
tion, after being multiplied with κ̇, becomes

d
ds

(κ̇2) =
d
ds

(
−κ

4

4
− c1

2
κ2
)

(82)

so that

κ̇2 = −κ
4

4
− c1

2
κ2 + c2 (83)

for some constant c2. This differential equation de-
scribes the possible shapes of elastica; it can be solved
in terms of elliptic integrals. Solving for κ intro-
duces a constant of integration c3; hence there are
three free parameters in the solution. Given the end-
points and the tangent directions at the endpoints
of the rods, these three constants are determined by
matching the solution of the initial value problem
g′ = (κE0 + E1)g, g(0) = g0 with the endpoint con-
dition g(L) = g1, which works generically because
SE(2,R) is a three-dimensional group.

Example 10 Spacecraft attitude control. Since
U =

∑3
k=1 ωkEk, the adjoint equation ṗ = −p ◦

ad(U) yields

ṗEi = p([U,Ei]) = −
3∑

k=1

ωkp([Ek, Ei]) (84)

for k = 1, 2, 3. Using the bracket relations

[E1, E2] = E3, [E2, E3] = E1,

[E3, E1] = E2 (85)

and writing pi(t) := p(t)Ei for i = 1, 2, 3, this be-
comes

ṗ1 = ω2p3 − ω3p2,

ṗ2 = −ω1p3 + ω3p1,

ṗ3 = ω1p2 − ω2p1. (86)

Since the optimal angular velocities ωi minimize
the HamiltonianH = q(ω2

1+ω
2
2+ω

2
3)+ω1p1+ω2p2+

ω3p3, we have 2qωi + pi = 0 and hence pi = −2qωi

for i = 1, 2, 3. Plugging this into (86) shows that
ωi(t) = ci/q(t) for some constant ci. The constants
ci are then found by solving the differential equation
ġ(t) = ((c1E1 + c2E2 + c3E3)/q(t))g(t) with the
boundary values g(t0) = g0 and g(t1) = g1. (See
[13]-[16] for details.) Modifications are possible, for
example for underactuated spacecraft or in the pres-
ence of state constraints; see [18] and [19].

Example 11 Optimal parking of a car. Here we
have U(t) = ω(t)E0 + u(t)E1. The adjoint equation
ṗ = −p ◦ ad(U) results in

ṗ(t)E0 = −ω(t)p(t)([E0, E0])

−u(t)p(t)([E1, E0]),

ṗ(t)E1 = −ω(t)p(t)([E0, E1])

−u(t)p(t)([E1, E1]),

ṗ(t)E2 = −ω(t)p(t)([E0, E2])

−u(t)p(t)([E1, E2]). (87)
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Writing pi(t) := p(t)Ei and observing the bracket
relations

[E0, E1] = −E2, [E0, E2] = E1,

[E1, E2] = 0, (88)

this becomes

q̇0 = −uq2, q̇1 = ωp2, q̇2 = −ωq1. (89)

Since u and ω must minimize the Hamiltonian

H = q(αu2 + βω2) + p(ωE0 + uE1)

= q(αu2 + βω2) + ωp0 + up1, (90)

we have p0 = −2βqω and p1 = −2αqu. Plugging
this into (89) leads to a system of differential equa-
tions which can be explicitly integrated in terms of
elliptic functions; see [8] for details.

Example 12 Control of a quantum spin system.
The Lie algebra of SU(2) is generated by the elements

A :=

[
i 0
0 −i

]
, X :=

[
0 −1
1 0

]
,

Y :=

[
0 i
i 0

]
(91)

which satisfy the bracket relations

[A,X] = −2Y, [A, Y ] = 2X,

[X,Y ] = −2A . (92)

The adjoint equation ṗ = −p◦ad(U) is equivalent
to the three equations

ṗ(t)A = −p(t)(2u(t)Y − 2v(t)X),

ṗ(t)X = −p(t)(−2cY + 2v(t)A),

ṗ(t)Y = −p(t)( 2cX − 2u(t)A). (93)

Writing a(t) := p(t)A, x(t) := p(t)X and y(t) :=
p(t)Y this means ȧẋ

ẏ

 = 2

 0 v −u
−v 0 c
u −c 0

 ax
y

 (94)

which is an equation on the rotation group with con-
stants coefficients which can be explicitly solved.
(See [9] for details.) As a result, the energy-minimal
control is found to be of the form

u(t) = −r cos(φ0 − 2(c+ a)t)

v(t) = −r sin(φ0 − 2(c+ a)t) (95)

whereas the time-optimal control under the constraint
u2 + v2 ≤ 1 is found to be of the form

u(t) = − cos
(
Φ0 − 2(c+

a

r
)t
)
,

v(t) = − sin
(
Φ0 − 2(c+

a

r
)t
)
. (96)

In each case, the constants can be found from the pre-
scribed boundary conditions. For more details and
further results see [9].

6 Summary
We formulated Pontryagin’s Principle for optimal
control problems with prescribed target states and
demonstrated its use in two simple examples. Then
we introduced the differential-geometric ideas and
concepts necessary to explain the geometric meaning
of Pontryagin’s Principle. In particular, the Hamilto-
nian equations were realized to be the equations of the
cotangent flow associated with the original dynamical
system. These equations become particularly simple
for invariant control systems on Lie groups, because
for such systems the adjoint equation can be formu-
lated as a differential equation on the dual of the asso-
ciated Lie algebra. Four examples were given which
show that the abstract machinery developed can be
successfully used to solve concrete application prob-
lems. These examples encompassed Euler’s theory of
elastic beams, spacecraft attitude control, the optimal
parking of a car and the control of quantum spin sys-
tems.
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