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Abstract: Kernel methods provide an efficient mechanism to derive nonlinear algorithms. Using a kernel function,
original data can be implicitly mapped to a very high or even infinite dimensional feature space where the data
is approximately linearly separable. For it, a main challenge is to select an appropriate kernel. In this paper, we
optimize combinative weight coefficients and combination kernel is constructed by two methods. one method is
learning optimal kernel for kernel fisher discriminant analysis (KFDA) for finding optimally combinative weight
coefficients. In this method, we treat optimizing combinative weight coefficients as optimization problem over
the convex set of finitely many basic kernels. Besides, in order to solve the optimization problem, we use a new
iterative method. Another method is a feature space based class separability measure which is introduced in order
to further show the efficacy of combination kernel .With this measure, the weight coefficients of combination
kernel were optimized. Experiments on five real-words data sets are performed to test and evaluate the efficacy
of combination kernel on classification accuracy. The results show that the efficacy of combination kernel is very
significant.

Key–Words: Fisher discriminant analysis; kernel function; support vector machines; combination kernel; kernel
optimization; iterative method;

1 Introduction

In the area of pattern recognition, kernel methods have
attracted much attention [1-5]. The kernel machine
technique has been widely used to tackle complicated
classification problems by a nonlinear mapping from
the original input space to a kernel feature space. Al-
though in general the dimensionality of the kernel fea-
ture could be arbitrarily large or even infinite, which
makes direct analysis in this space very difficult, the
nonlinear mapping can be specified implicitly by re-
placing the dot products in the kernel feature space
with a kernel function defined in the original input
space. Therefore, the key task of a kernel-based so-
lution is to generalize the linear representation in the
form of dots products. In kernel-based learning al-
gorithms, choosing an appropriate kernel, which is
model selection problem, is crucial to ensure good
performance since the geometrical structure of the
mapped samples is determined by the selected ker-
nel and its parameters. Thus, this paper focuses on
optimal combinative kernels for pattern classification
in supervised setting, that is, considering to optimize
combinative weight coefficients of combinative ker-
nels.

KFDA finds a direction in feature space, defined

implicitly by a kernel, onto which the projections of
positive and negative classes are well separated in
terms of Fisher discriminant ratio. The performance
of KFDA depends on the choice of a kernel func-
tion. The kernel selection problem has been studied
by several authors [6-10]. They proposed the use of
a non-negative linear combination of kernels chosen
from families of different kernel functions and found
an optimal combination kernel by means of an opti-
mization problem. With the optimal combination ker-
nel, the prediction accuracy of a specific classification
problem can be improved, which is the ultimate goal
of classification.

In kernel combination methods, the semi-definite
programming is usually used to learn the composite
kernel matrix [6]. A hyper-kernel space is defined on
the space of kernels in order to learn the composite
kernel within a specific parametric family [11]. Gaus-
sian kernels under a support vector machine (SVM)
frame-work are combined into an expanded compos-
ite kernel [12] and a non-stationary kernel combina-
tion approach is presented which allows for variation
on the relative weights of the base kernels among the
input examples [13]. When using a kernel method
for classification, such as nonlinear SVM, the perfor-
mance of the algorithm highly depends on the data
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distribution structure in kernel induced feature space.
SVM is a state-of-the-art machine learn method

which has gained popularity due to promising perfor-
mance in a wide range of applications [14-16]. The
training algorithms based on SVMs try to find an opti-
mal separating hyperplane by maximizing the margin
between different class data. Delivering promising re-
sults makes the SVMs extensively applicable in many
information processing tasks, including data classifi-
cation, pattern recognition and function estimation.
SVMs are ordinarily used as binary classifiers that
separate the data space into two areas. The separat-
ing hyperplane is not explicitly given, which is repre-
sented by a small number of data points called support
vectors (SVs).

The rest of this paper is organized as follows. In
Section 2, we provide a brief review for linear dis-
criminant analysis (LDA) and SVM. In Sections 3 and
4, we learn an optimal kernel for KFDA by means
of an iterative method and class separability measure
(CSM), respectively. In section 5, a series of experi-
ments are carried out in order to show the classifica-
tion performance of optimal combination kernels ob-
tained by our methods. Finally, we conclude the paper
in Section 6.

2 Related works
2.1 Fisher discriminant analysis (FDA)
FDA is a well known linear classification method,
which mainly finds a direction that maximizes the
projected class mean, while minimizing the projected
class variance in this direction [17]. Given a training
data {(xi, yi)}Ni=1 with k classes, where xi ∈ Rn and
yi ∈ {1, · · · , k} is the class label of xi, i = 1, · · · , N .
Let Ni is the sample number belonged to class i and
N =

∑k
i=1Ni. Let X = [X1, · · · , Xk] and Xi =

[xi1, x
i
2, . . . , x

i
Ni
] with samples belonging to class i.

LDA is to find a vector ω ∈ Rn by maximizing the
following Fisher discriminant ratio:

J(ω) = ωTSbω
ωTSwω

, (1)

where Sw and Sb are within-class and between-class
scatter matrixes, respectively. They are defined by

Sb =
k∑

i=1
Ni(mi −m)(mi −m)T ,

Sw =
k∑

i=1

∑
x∈Xi

(x−mi)(x−mi)
T ,

where m = (1/N)
∑N

l=1 xl and mi = 1/Ni
∑Ni

l=1 x
i
l .

Due to St = Sb+Sw, we can see that the criterion (1)

is equivalent to

J(ω) = ωTSbω
ωTStω

,

where St =
∑N

j=1 (xi −m)(xi −m)T is the total
scatter matrix.

2.2 Kernel support vector machine (KSVM)
SVM is a well-known machine learning method and
used widely in many domains, such as classifica-
tion and regression. We here consider soft margin
KSVM [18-19] for binary classification problems. Let
{(xi, yi)}Ni=1 be a given sample set and yi ∈ {1,−1}
is the class label of xi, i = 1, · · · , N . The samples xi
can be mapped into a high dimensional feature space
H by using a nonlinear feature function ϕ : X → H
of a kernel function k : Rn × Rn → R. Soft mar-
gin KSVM is to find an optimal separating hyperplane
ω ·ϕ(x)+b = 0 by solving the following optimization
problem:

max
ω,b,ξ

1
2∥ ω ∥

2
2 + C

N∑
i=1

ξi

s.t. yi(⟨ω, ϕ(xi)⟩+ b) ≥ 1− ξi, i = 1, 2, . . . , N,
ξi ≥ 0, i = 1, 2, . . . , N,

where ω =
∑N

i=1 yiρiϕ(xi) is a weight vector, b =

yj −
∑N

i=1 yiρik(xj , xi) is a bias, C is a regulariza-
tion parameter and {ξi}Ni=1 is slack variable. This op-
timization problem can be solved by solving its dual
optimization problem:

min
ρ

1
2

N∑
i=1

N∑
j=1

ρiρjyiyjk(xi, xj)−
N∑
i=1

ρj

s.t.
N∑
i=1

yiρi = 0, i = 1, 2, . . . , N,

0 ≤ ρj ≤ C, j = 1, 2, . . . , N,

where the kernel function k(xi, xj) = ϕ(xi) · ϕ(xj)
defines implicitly the feature mapping ϕ : X → H
and the weight ω and bias b can be determined based
on the solution ρi, that is . Then, we can obtain a
decision function f(x) =

∑N
i=1 yiρik(xi, xj) + b and

a separating hyperplane
∑N

i=1 yiρik(xi, xj) + b = 0.
If f(x) > 0 for a sample x, we can predict that it
belongs to class 1. Otherwise, to class -1.

3 Learning an optimal kernel with
an iterative method

In this section, we learn an optimal kernel for KFDA
by means of an iterative method.
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3.1 Combination of kernels

A good combination kernel can perform better trans-
formation from the initial data space to a higher di-
mensions feature space. A combination kernel is
a linear combination of several basic kernels. Let
ki, i = 1, · · · , γ be γ positive basic kernels, then the
combination kernel k can be defined as

k =
γ∑

i=1
βiki

where βi is combinative coefficients. The perfor-
mance of the combination kernel mainly depends on
the choice of combinative coefficients. So, optimiza-
tion problem of combinative coefficients becomes
very important.

3.2 Optimization of combinative coefficients

In this subsection, we use KFDA to select optimal
combinative coefficients. KFDA is a kernel ver-
sion of FDA [17,20-21]. For a given training data
{(xi, yi)}Ni=1 with k classes, where xi ∈ Rn and
yi ∈ {1, · · · , k} is the class label of xi, i = 1, · · · , N .
Let Ni is the sample numbers belonged to class i
and N =

∑k
i=1Ni. Let X = [X1, · · · , Xk] and

Xi = [xi1, . . . , x
i
Ni
] with samples belonging to class

i. Let k : Rn × Rn → R be a kernel func-
tion, ϕ : Rn → H and H be the feature map-
ping and Reproduce Kernel Hilbert Space (RKHS)
of the kernel k, respectively. By means of the fea-
ture mapping ϕ, the training data {xi}Ni=1 can be
mapped into the RKHS H . Let mϕ

i = 1
Ni

∑Ni
l=1 ϕ(x

i
l)

and mϕ = 1
N

∑N
l=1 ϕ(xl) be class and global cen-

troids of the data {ϕ(xi)}Ni=1, respectively. Let
ϕ(X) = [ϕ(x1), . . . , ϕ(xN )], D = [ 1N ]N×N , Bi =

[ 1
Ni

]Ni×Ni and B = diag(B1, . . . , Bk). Let K =

[k(xi, xj)]N×N denote the kernel matrix of the ker-
nel k. The between-class and global scatter matrixes
Sϕ
b and Sϕ

t of the data {ϕ(xi)}Ni=1 are given by (see
[22])

Sϕ
b =

k∑
i=1

Ni(m
ϕ
i −mϕ)(mϕ

i −mϕ)T

= QBQT

= ϕ(X)(I −D)B(I −D)ϕ(X)T ,

Sϕ
t =

N∑
j=1

(ϕ(xj)−mϕ)(ϕ(xj)−mϕ)T

= QQT

= ϕ(X)(I −D)(I −D)ϕ(X)T ,

where Q = [ϕ(x1) − mϕ, . . . , ϕ(xN ) − mϕ] =
ϕ(X)(I −D). The optimal transformation vector ωϕ

for KFDA can be obtained by maximizing the Fisher
criterion in RKHS H:

max
ωϕ∈H

ωϕT
Sϕ
b
ωϕ

ωϕTSϕ
t ω

ϕ
. (2)

Since H is RKHS, we can let that

ωϕ = α1ϕ(x1) + α2ϕ(x2) + . . .+ αNϕ(xN )
= ϕ(X)α,

where α = (α1, . . . , αN )T . We can deduce that the
Fisher criterion (2) is equivalent to

max
α∈RN

αTuuTα
αTNα

, (3)

where u = K(I −D)B1/2 and N = K(I −D)2K.
According to works in [17, 23-24], the optimization
problem (3) is equivalent to

min
α
{αTNα+ CP (α)}

s.t. αTu = 2.
(4)

where 2 ∈ RN is the vector of all two. Putting ξ =
(I −D)Kα, the problem (4) can be written as

min
α,ξ,b
{12∥ ξ ∥

2 + 1
2(α

Tα+ b2)}

s.t. ξ = (I −D)Kα.
(5)

Let 1b = (2I −D)Kα− y, then ξ = −Kα+ 1b+ y
and the problem (5) can be transformed into

min
α,ξ,b
{12∥ ξ ∥

2 + 1
2(α

Tα+ b2)}

s.t. Kα− 1b+ ξ = y.
(6)

where y = [y1, . . . , yN ]T , b ∈ R, 1 ∈ RN is the
vector of all ones. The Lagrangian function associated
with the problem (6) is given by

L(ξ, α, b, P ) = 1
2∥ ξ ∥

2 + 1
2(α

Tα+ b2)
−P T (Kα− 1b+ ξ − y), (7)

where P ∈ RN is the Lagrangian multiplier vector.
The Karush-Kuhn-Tucker (KKT) necessary and suffi-
cient conditions for the problem (7) is

∇ξL(ξ, α, b, P ) = ξ − P = 0,
∇α(ξ, α, b, P ) = α−KTP = 0,
∇P (ξ, α, b, P ) = Kα− 1b+ ξ − y = 0,
∇b(ξ, α, b, P ) = b+ 1TP = 0.

Consequently, we obtain the Wolfe dual problem of
the problem (7) (see [25]):

max
P

P T y − P T (12KK
T + 1

211
T − I

2)P. (8)
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From practical considerations, we can assume that
−M1 ≤ P ≤ M1, where M is a large positive (fi-
nite) number. Thus, the problem (8) can be rewritten
as

max
−M1≤P≤M1

P T y − P T (12KK
T + 1

211
T − I

2)P.

(9)
According to [17], we can interpret that the objection
function of the problem (9) is an upper bound on the
misclassification probability for a given kernel matrix
K. Thus, solving (9) for a given kernel matrix is a way
for optimizing an upper bound on error probability.
We can transform the problem (9) into the following
problem

min
V

max
−M1≤P≤M1

{2P T y − P T (11T − I + V )P}

s.t. T race(V ) = m,

V =
q∑

j=1
βjGj

βj ≥ 0, j = 1, 2 . . . , q,
(10)

where G = KKT , T race(Gj) = rj > 0, r =
(r1, . . . , rq)

T , β = (β1, . . . , βq)
T , V =

∑q
j=1 βjGj

and βT r = m. The problem (10) is also equivalent to

min
βT r=m,β≥0

max
−M1≤P≤M1

2P T y − P T (11T − I)P−

P T (
q∑

j=1
βiGi)P.

(11)
By the standard min-max theorem, the problem (11)
is equivalent to the following optimization problem

max
−M1≤P≤M1

min
βT r=m,β≥0

2P T y − P T (11T − I)P

−P T (
q∑

j=1
βiGi)P.

(12)
In order to solve the problem (12), we use an iterative
method to get optimal weight coefficient β1, . . . , βq.
For a fixed P , we can obtain the following optimiza-
tion problem from the problem (12)

min
β
βT t

s.t. βT r = m,β ≥ 0,
(13)

where t = [−P TG1P, . . . ,−P TGqP ]
T . If an opti-

mal solution of the problem (13) is β, then the prob-
lem (12) becomes

max
P
{2P T y − P T (11T − I +

q∑
j=1

βGj)P}

s.t.−M1 ≤ P ≤M1.
(14)

By solving iteratively problems (13) and (14), we
can get a group of optimal combinative coefficients
β∗1 , · · · , β∗

q . We note that the kernel matrix corre-
sponding to large β∗j , (j = 1, · · · , q) are important in
describing the data and are significant in characteriz-
ing of the properties and structure of the data, while
kernel matrices corresponding to small coefficients β∗j
are not very significant. The specific algorithm is as
follows

Algorithm 1.
• Step0. Initialization. Any fixed P 0 and a sufficiently
small positive number ε. Let n = 0.
• Step1. solve the problem (13) with Pn and get a
solution βn.
• Step2. solve the problem (14) with βn and get a
solution Pn+1.
• Step3. solve the problem (13) with Pn+1 and get a
solution βn+1.
• Step4. If ∥βn+1 − βn∥ ≤ ε, stop the algorithm and
let β∗ = βn+1. Otherwise, fix n ← n + 1 and return
Step 2.

4 Learning an optimal kernel with a
class separability measure

In this section, we introduce another method for learn-
ing an optimal kernel by means of a class separa-
bility measure (see [24-25]), which is different from
Algorithm 1. Given a binary data {(xi, yi)}Ni=1 with
xi ∈ Rn and yi ∈ {1,−1}. Without loss of gener-
ality, let the first N+ samples belong to positive class
and the rest samples belong to negative class. Let N+

and N− denote the sample numbers of positive and
negative classes, respectively, and N = N+ + N−.
Let k : Rn × Rn → R be a kernel function, ϕ :
Rn → H and H be the feature mapping and Repro-
duce Kernel Hilbert Space (RKHS) of the kernel k,
respectively. By means of the feature mapping ϕ, the
data {xi}Ni=1 can be mapped into the RKHS H . Let
φ+ = 1

N+

∑N+

i=1 ϕ(xi), φ− = 1
N−

∑N
i=N++1 ϕ(xi)

and φ = 1
N

∑N
i=1 ϕ(xi). We denote by Ii the i-th col-

umn vector of the identity matrix and by 1N×1 ∈ RN

the vector consisting of 1. Consider a combinative
kernel k =

∑q
i=1 βiki, corresponding kernel matrix

beingK =
∑q

i=1 βiKi, and let β = (β1, · · · , βq)T . In
RKHS H , the variance of data {ϕ(xi)}Ni=1 is defined
by

var = 1
N

N∑
i=1
∥ ϕ(xi)− φ ∥2

= 1
N

N∑
i=1

[ϕ(xi)]
Tϕ(xi)− 2[ϕ(xi)]

Tφ+ φTφ
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= 1
N

N∑
i=1

k(xi, x)− φTφ

= 1
N

N∑
i=1

k(xi, x)−
N∑

i,j=1

1
N

1
N k(xi, xj)

= 1
N

N∑
i=1

ITi KIi − 1
N2 1

TK1,

and the class separability measure (CSM) is defined
by (for details, see [26-27])

CSM(K) = var
∥φ+−φ−∥2 .

We can deduce that

∥ φ+ − φ− ∥2
= φ+

Tφ+ − 2φ+
Tφ− + φ−

Tφ−

= 1
N+

2

N+∑
i=1

[ϕ(xi)]
T

N+∑
j=1

ϕ(xj)

− 2
N+N−

N+∑
i=1

[ϕ(xi)]
T

N∑
j=N++1

ϕ(xj)

+ 1
N−2

N∑
i=N++1

[ϕ(xi)]
T

N∑
j=N++1

ϕ(xi)

=
N+∑
i=1

N+∑
i=1

1
N+

2k(xi, xj)

−2
N+∑
i=1

N∑
j=N++1

1
N+N−

k(xi, xj)

+
N∑

i=N++1

N∑
j=N++1

1
N−2k(xi, xj)

= υTKυ,

where v ∈ RN with the firstN+ elements being 1/N+

and the others being 1/N−. Consequently, the weight
coefficients β1. · · · , βq of the combination kernel k are
optimized by solving the following optimization prob-
lem

βopt = argmin
βi

CSM[
q∑

i=1
βiKi]. (15)

We can’t solve the problem (15) directly. So, an itera-
tive method based on gradient is presented for finding
the optimal combination weight coefficients. The spe-
cific algorithm is as follows (for details, see [26]).

Algorithm 2.
• Step0. Initialization. Let β0 = (1, 0, . . . , 0)T , M be
a given maximal iterative time, η(t) be a learning rate
and iterative time t = 0.
• Step1. Select η(t) = 0.01[1 − t

M ] and compute
βt+1
i = βti + η(t)[∂CSM(K)

∂βt ]iβ
t
i , i = 1, · · · , q, where

∂CSM(K)
∂βt = ∂CSM(K)

∂β |βt .
• Step2. Normalize βt+1 and get Σq

i=1β
t+1
i = 1.

• Step3. If t < M , fixing t = t + 1 and return step1.
Or else, end cycling procedure and get the optimal
weight coefficient β∗ = βt+1.

5 Experiments and analysis
In this section, in order to evaluate the efficacy of the
proposed methods and illustrate the effect of combi-
nation kernel for classification result, we conduct a
series of experiments with five different data sets and
three kernel functions. We perform the experiments
on E.coli, Iris, Wine, Yeast and Breast Cancer Wis-
consin data Sets, respectively, which are taken from
UCI machine learning repository [28]. The three ker-
nel functions are respectively two Gaussian RBF ker-
nels with different kernel parameters

k(x, y) = exp(−∥ x− y ∥2/σ2), σ ≥ 0

and a polynomial kernel

kpoly(x, y) = (< x.y > +c)m, c ≥ 0,m > 0.

In the experiments, We select η(t) = 0.01[1− t
M ] for

a sufficiently large natural number M . We don’t con-
sider the optimization problem of kernel parameters
and select σ ∈ {10−3, 10−2, . . . , 105}. We use the
fivefold cross validation when using SVM models for
binary-class classification problems.

5.1 Experiments on Iris data set
The Iris date set includes 3 classes, 4 features and
150 instances. In this experiment, we select 4 fea-
tures, 100 instances and 2 classes: Iris Versicolour
concluding 50 instances and Iris Virginica conclud-
ing 50 instances. Firstly, we consider a combination
kernel function

k(x, y) = β1k1 + β2k2 + β3k3

with two Gaussian RBF kernels with different param-
eters σ = 2 and σ = 10:

k1 = exp(−∥x− y∥2/22),
k2 = exp(−∥x− y∥2/102),

and a polynomial kernel with parameter c = 0.01 and
m = 0.1:

k3 = (< x.y > +0.01)0.1.

By using Algorithm 1, we get optimal weight coef-
ficients β1 = 0.6732, β2 = 0.3266, β3 = 0.0002.
Because of weight coefficient β3 = 0.0002, the per-
formance of kernel k3 is very small for this data sets
. So we select kernel k1 and kernel k2 for combina-
tion kernel and normalize β1 and β2.then we get an
optimal kernel function:

k(x, y) = 0.6733k1 + 0.3267k2. (16)

Secondly, we classify iris data using SVM with C =
100 and optimal kernel (16). The result can be found
in Table 1.
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Table 1. Misclassification rate of Iris data

Kernel Kernel parameters Error rate(%)

RBF 2 8

RBF 10 5

Poly 0.01, 0.1 30

Combination kernel - 2

From Table 1, we can see that, for classification result,
kernel k2 is better than kernels k1 and k3 and k1 is
better than k3. However, the combined kernel k is
obviously superior kernels k1, k2 and k3.

In Algorithm 2, firstly, we fix M = 104 and con-
sider a combination kernel function

k(x, y) = β1k1 + β2k2 + β3k3

with two Gaussian RBF kernels with different param-
eters σ = 0.1 and σ = 2:

k1 = exp(−∥x− y∥2/0.12),
k2 = exp(−∥x− y∥2/22),

and a polynomial kernel with parameter c = 2 and
m = 0.1:

k3 = (< x.y > +2)0.1.

By using the Algorithm 2, we get optimal weight co-
efficients β1 = 0.4276, β2 = 0.3369, β3 = 0.2355.
And we normalize β1 and β2. Then we get an optimal
kernel function:

k(x, y) = 0.5593k1 + 0.4407k2. (17)

Secondly, we classify iris data using SVM with C =
100 and optimal kernel (17). The result can be found
in Table 2.

Table 2. Misclassification rate of Iris data

Kernel Kernel parameters Error rate(%)

RBF 0.1 7

RBF 2 8

Poly 2, 0.1 27

Combination kernel - 0

From Table 2, we can see that, for classification result,
kernel k1 is better than kernels k2 and k3 and k2 is
better than k3. However, the combined kernel k is
obviously superior kernels k1, k2 and k3.

5.2 Experiment on E.coli data set
E.coli data set includes 8 classes, 7 features, 336 in-
stances. We select 6 features, and 220 instances and
2 classes: cytoplasm concluding 143 instances and in-
ner membrane without signal sequence concluding 77
instances in the experiment. Firstly, we consider a
combination kernel function

k(x, y) = β1k1 + β2k2 + β3k3

with two Gaussian RBF kernels with different param-
eters σ = 1 and σ = 100:

k1 = exp(−∥x− y∥2/12),
k2 = exp(−∥x− y∥2/104),

and a polynomial kernel with parameter c = 0.01 and
m = 0.1:

k3 = (< x.y > +0.01)0.1.

By using Algorithm 1, we get optimal weight coeffi-
cients β1 = 0.8543, β2 = 0.0011, β3 = 0.1446. Be-
cause of weight coefficient β2 = 0.0011, the perfor-
mance of kernel k2 is very small for this data sets . So
we select kernel k1 and kernel k3 for combination ker-
nel and normalize β1 and β3. Then we get an optimal
kernel function:

k(x, y) = 0.8552k1 + 0.1448k3. (18)

Secondly, we classify e.coli data using SVM with
C = 2 and optimal kernel (18). The result can be
found in Table 3.

Table 3. Misclassification rate of E.Coli data

Kernel Kernel parameters Error rate(%)

RBF 1 22.29

RBF 100 47.71

Poly 0.01, 0.1 46.84

Combination kernel - 14.57

From Table 3, we can see that, for classification result,
kernel k1 is better than kernels k2 and k3 and k3 is
better than k2. However, the combined kernel k is
obviously superior kernels k1, k2 and k3.

In Algorithm 2, firstly, we fix M = 103 and con-
sider a combination kernel function

k(x, y) = β1k1 + β2k2 + β3k3

with two Gaussian RBF kernels with different param-
eters σ = 1000 and σ = 100:

k1 = exp(−∥x− y∥2/106),
k2 = exp(−∥x− y∥2/104),
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and a polynomial kernel with parameter c = 0.01 and
m = 0.1:

k3 = (< x.y > +0.01)0.1.

By using the Algorithm 2, we get optimal weight co-
efficients β1 = 0.3333, β2 = 0.3308, β3 = 0.3359
and then we get an optimal kernel function:

k(x, y) = 0.3333k1 + 0.3308k2 + 0.3359k3.
(19)

Secondly, we classify e.coli data using SVM with
C = 100 and optimal kernel (19). The result can be
found in Table 4.

Table 4. Misclassification rate of E.Coli data

Kernel Kernel parameters Error rate(%)

RBF 1000 47.71

RBF 100 47.71

Poly 0.01, 0.1 38.57

Combination kernel - 14.57

From Table 4, we can see that, for classification result,
kernel k3 is better than kernels k1 and k2. However,
the combined kernel k is obviously superior kernels
k1, k2 and k3.

5.3 Experiment on Wine data set
Wine data set includes 178 instances, 13 features, 3
classes. we only use class 1 concluding 59 instances
and class 2 concluding 71 instances. We have 130
instances, 11 features and 2 classes in this experiment.
Firstly, we consider a combination kernel function

k(x, y) = β1k1 + β2k2 + β3k3

with two Gaussian RBF kernels with different param-
eters σ = 2 and σ = 100:

k1 = exp(−∥x− y∥2/22),
k2 = exp(−∥x− y∥2/104),

and a polynomial kernel with parameter c = 0.01 and
m = 0.1:

k3 = (< x.y > +0.01)0.1.

By using Algorithm 1, we get optimal weight coeffi-
cients β1 = 0.7721, β2 = 0.2279, β3 = 0 and then
we get an optimal kernel function:

k(x, y) = 0.7721k1 + 0.2279k2. (20)

Secondly, we classify wine data using SVM with C =
100 and optimal kernel (20). The result can be found
in Table 5.

Table 5. Misclassification rate of Wine data

Kernel Kernel parameters Error rate (%)

RBF 2 41.6

RBF 100 28

Poly 0.01, 0.1 51.6

Combination kernel - 5.2

From Table 5, we can see that, for classification
result, kernel k2 is better than kernels k1 and k3 and
k1 is better than k3. However, the combined kernel k
is obviously superior kernels k1, k2 and k3.

In Algorithm 2, firstly, we fix M = 103 and con-
sider a combination kernel function

k(x, y) = β1k1 + β2k2 + β3k3

with two Gaussian RBF kernels with different param-
eters σ = 10000 and σ = 0.01:

k1 = exp(−∥x− y∥2/108),
k2 = exp(−∥x− y∥2/0.012),

and a polynomial kernel with parameter c = 0.01 and
m = 0.1:

k3 = (< x.y > +0.01)0.1.

By using the Algorithm 2, we get optimal weight co-
efficients β1 = 1

3 , β2 = 1
3 , β3 = 1

3 and then we get an
optimal kernel function:

k(x, y) = 1
3k1 +

1
3k2 +

1
3k3. (21)

Secondly, we classify wine data using SVM with C =
105 and optimal kernel (21). The result can be found
in Table 6.

Table 6. Misclassification rate of Wine data

Kernel Kernel parameters Error rate(%)

RBF 10000 41.2

RBF 0.01 47.6

Poly 0.01, 0.1 28.4

Combination kernel - 14

From Table 6, we can see that, for classification result,
kernel k3 is better than kernels k1 and k2 and k1 is
better than k2. However, the combined kernel k is
obviously superior kernels k1, k2 and k3.
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5.4 Experiment on Yeast data set
Yeast data set includes 1484 instances, 8 features and
10 classes. We only use 214 instances, 8 features and
2 classes: membrane protein, uncleaved signal includ-
ing 51 instances and membrane protein, cleaved signal
including 163 instances in this experiment. Firstly, we
consider a combination kernel function

k(x, y) = β1k1 + β2k2 + β3k3

with two Gaussian RBF kernels with different param-
eters σ = 1 and σ = 100:

k1 = exp(−∥x− y∥2/12),
k2 = exp(−∥x− y∥2/104),

and a polynomial kernel with parameter c = 0.01 and
m = 0.1:

k3 = (< x.y > +0.01)0.1.

By using Algorithm 1, we get optimal weight coef-
ficients β1 = 0.7253, β2 = 0.2706, β3 = 0.0041.
Because of weight coefficient β3 = 0.0041, the per-
formance of kernel k3 is very small for this data sets.
So we select kernel k1 and kernel k2 for combination
kernel and normalize weight coefficients β1, β2. And
then we get an optimal kernel function:

k(x, y) = 0.7283k1 + 0.2717k2. (22)

Secondly, we classify yeast data using SVM withC =
10 and optimal kernel (22). The result can be found in
Table 7.

Table 7. Misclassification rate of Yeast data

Kernel Kernel parameters Error rate(%)

RBF 1 18.75

RBF 100 49.69

Poly 0.1, 0.01 49.69

Combination kernel - 15.94

From Table 7, we can see that, for classification result,
kernel k1 is better than kernels k2 and k3 . However,
the combined kernel k is obviously superior kernels
k1, k2 and k3.

In Algorithm 2, firstly, we fixM = 2000 consider
a combination kernel function

k(x, y) = β1k1 + β2k2 + β3k3

with two Gaussian RBF kernels with different param-
eters σ = 2 and σ = 10:

k1 = exp(−∥x− y∥2/22),
k2 = exp(−∥x− y∥2/102),

and a polynomial kernel with parameter c = 0.01 and
m = 0.1:

k3 = (< x.y > +0.01)0.1.

By using the Algorithm 2, we get optimal weight co-
efficients β1 = 0.0405, β2 = 0.3031, β3 = 0.6564.
Because of weight coefficient β1 = 0.0405, the per-
formance of kernel k1 is very small for this data set.
So we select kernel k2 and kernel k3 for combination
kernel and normalize β2 and β3. And then we get an
optimal kernel function:

k(x, y) = 0.3159k2 + 0.6841k3. (23)

Secondly, we classify yeast data using SVM withC =
100 and optimal kernel (23). The result can be found
in Table 8.

Table 8. Misclassification rate of Yeast data

Kernel Kernel parameters Error rate(%)

RBF 2 20.31

RBF 10 31.25

Poly 0.01, 0.1 26.56

Combination kernel - 26.56

From Table 8, we can see that, for classification result,
kernel k1 is better than kernels k2 and k3 and k3 is
better than k2. However, the combined kernel k is
obviously superior kernels k2.

5.5 Experiment on Breast Cancer Wisconsin
data set

Breast Cancer data sets concludes 699 instances, 9
features and 2 classes. We use 9 features, 2 classes
and 300 instances from the former 150 instances in
class Benign and the former 150 instances in class
Malignant. Firstly, we consider a combination kernel
function

k(x, y) = β1k1 + β2k2 + β3k3

with two Gaussian RBF kernels with different param-
eters σ = 0.01 and σ = 100:

k1 = exp(−∥x− y∥2/0.012),
k2 = exp(−∥x− y∥2/104),

and a polynomial kernel with parameter c = 0.01 and
m = 0.1:

k3 = (< x.y > +0.01)0.1.
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By using Algorithm 1, we get optimal weight coef-
ficients β1 = 0.1804, β2 = 0.8195, β3 = 0.0001.
Because of weight coefficient β3 = 0.0001, the per-
formance of kernel k3 is very small for this data sets.
So we select kernel k1 and kernel k2 for combination
kernel and normalize weight coefficients β1, β2. And
then we get an optimal kernel function:

k(x, y) = 0.1804k1 + 0.8196k2. (24)

Secondly, we classify breast cancer wisconsin data us-
ing SVM with C = 100 and optimal kernel (24). The
result can be found in Table 9.

Table 9. Misclassification rate of Breast Cancer
Wisconsin data

Kernel Kernel parameters Error rate (%)

RBF 0.01 45.5

RBF 100 45

Poly 0.01, 0.1 33

Combination kernel - 25

From Table 9, we can see that, for classification result,
kernel k3 is better than kernels k1 and k2 and k2 is
better than k1. However, the combined kernel k is
obviously superior kernels k1, k2 and k3.

In Algorithm 2, firstly, we fix M = 5000 and
consider a combination kernel function

k(x, y) = β1k1 + β2k2 + β3k3

with two Gaussian RBF kernels with different param-
eters σ = 0.1 and σ = 10:

k1 = exp(−∥x− y∥2/0.12),
k2 = exp(−∥x− y∥2/102),

and a polynomial kernel with parameter c = 0.01 and
m = 0.1:

k3 = (< x.y > +0.01)0.1.

By using the Algorithm 2, we get optimal weight co-
efficients β1 = 0.5103, β2 = 0.2812, β3 = 0.2085.
And then we get an optimal kernel function:

k(x, y) = 0.5103k1 + 0.2812k2 + 0.2085k3.
(25)

Secondly, we classify breast cancer data using SVM
with C = 100 and optimal kernel (25). The result can
be found in Table 10.

Table 10. Misclassification rate of Breast Cancer
Wisconsin data

Kernel Kernel parameters Error rate(%)

RBF 0.1 32.5

RBF 10 45.5

Poly 0.01, 0.1 33

Combination kernel - 27.5

From Table 10, we can see that, for classification re-
sult, kernel k1 is better than kernels k2 and k3 and k3
is better than k2. However, the combined kernel k is
obviously superior kernels k1, k2 and k3.

6 Conclusion
In this paper, we use two methods to show that the
performance of combination kernel is very signifi-
cant. We use a new iterative method instead of sec-
ond order cone programming in learning the optimal
kernel for KFDA. We find optimal weight coefficient
of each kernel function, while the combination ker-
nel is constructed. In order to further illustrate per-
formance of the combination kernel , we use FCSM
method which has fewer limitations in application of
kernel optimization and has better theoretical guar-
antees compared with the kernel matrix evaluation
measure (FSM). We conduct a series of experiments
on 5 different data sets from UCI Machine Learning
Repository and use SVM and optimal kernel for clas-
sification. Results show that combination kernel is
superior to single kernel for improving classification
accuracy. Hence, classification performance depends
very much on the choice of the kernel function. The
combination kernel is very important.
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