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Abstract: - The Elliptical Trigonometry Series is an original study introduced in mathematical domain, in signal 
processing and in signal theory; it is a means of representing a periodic signal as a finite or infinite sum of 
Absolute Elliptic Jes (AEjes) and Absolute Elliptic Mar (AEmar) functions compared to cosine and sine 
functions in Fourier series. The Elliptical Trigonometry Series is more advanced than the Fourier series. The 
Fourier series is a particular case of the Elliptical Trigonometry Series when the value of AEjes is equivalent to 
Cosine and the value of AEmar is equivalent to Sine. The new series has many advantages ahead the Fourier 
series such as we can reduce the number of parameters for a periodic signal formed by the sum of AEjes and 
AEmar functions compared to the cosine and sine function in Fourier Series, reduce the circuit size that produce 
this periodic signal, and reduce the cost of circuits and many other advantages are remarked. In fact, the 
Elliptical Trigonometry is an original study introduced in Mathematics by the author and it is published by 
WSEAS journal, and it has enormous applications in mathematics, electronics, signal processing, signal theory 
and many others domains. This paper emphasizes the importance of this trigonometry in forming what is called 
the Elliptical Trigonometry Series. In fact, this new Series is introduced for electronics applications in order to 
reduce as possible the circuit size that form a specific signal and therefore reduce the cost, this is not the case of 
the Fourier series for the same produced signal. Moreover, we can form from only one circuit an infinite 
number of combined periodic signals which is not the case of the Fourier series in which one circuit can’t 
produce more than one signal. 
 
Key-words: - Elliptical Trigonometry Series, Fourier series, Signal theory, Signal processing, Mathematics, 
power electronics, Electrical circuit design. 
 
1 Introduction 
In mathematics, a Fourier series decomposes 
periodic functions or periodic signals into the sum 
of a (possibly infinite) set of simple oscillating 
functions, namely sines and cosines (or complex 
exponentials) [3-18]. The study of Fourier series is a 
branch of Fourier analysis. 
Early ideas of decomposing a periodic function into 
the sum of simple oscillating functions date back to 
the 3rd century BC, when ancient astronomers 
proposed an empiric model of planetary motions, 
based on deferent and epicycles. 
The Fourier series has many such applications in 
electrical engineering, vibration analysis, acoustics, 
optics, signal processing, image processing, 
quantum mechanics, econometrics, thin-walled shell 
theory, etc. The Fourier series converge to a 
periodic signal when its number of harmonics tends 
to infinite [22-23]. 

 
In this paper, the author introduced an original study 
using the Elliptical Trigonometry [1-2]. In fact, the 
Elliptical trigonometry is also introduced by the 
author and it is published by WSEAS Journal [1-2]. 
The main goal of introducing the Elliptical 
Trigonometry Series is to generalize the idea of 
Fourier series which manipulate two simple 
functions cosine and sine.  The Fourier series is a 
particular case of the Elliptical Trigonometry Series 
when the value of the function Absolute Elliptic Jes 
(AEjes) is equal to cosine and the value of Absolute 
Elliptic mar (AEmar) is equal to sine. In fact, the 
proposed series has many advantages ahead the 
Fourier series and it has enormous applications in 
electronics. So the main advantages are: the number 
of parameters is reduced, the electronic circuit is 
reduced and it becomes more efficient, the number 
of harmonics is also reduced, one circuit has the 
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capability to describe an infinite number of signals 
by varying the value of some parameters etc… 

In this paper, the new concept of the elliptical 
trigonometry is introduced and few examples are 
shown and discussed briefly. Figures are drawn and 
simulated using Matlab.  
     In the second section, the angular functions are 
defined, these functions have enormous applications 
in all domains, and it can be considered as the basis 
of this trigonometry [1-2]. The definition of the 
Elliptical trigonometry is presented and discussed 
briefly in the third section. In the fourth section, a 
survey on the Elliptical Trigonometric functions is 
discussed and two different functions are presented 
and simulated. The Elliptical Trigonometry Series is 
presented in the section 5. In the section 6, an 
example of the Elliptical Trigonometry Series is 
presented. And finally, a conclusion is presented in 
the section 6. 
 
2 The angular functions 
Angular functions are new mathematical functions 
that produce a rectangular signal, in which period is 
function of angles, it is also introduced by the author 
[20]. Similar to trigonometric functions, the angular 
functions have the same properties as the precedent, 
but the difference is that a rectangular signal is 
obtained instead of a sinusoidal signal [14-16] and 
moreover, one can change the width of each positive 
and negative alternate in the same period. This is not 
the case of any other trigonometric function. In 
other hand, one can change the frequency, the 
amplitude and the width of any period of the signal 
by using the general form of the angular function. 
In this section three types of angular functions are 
presented, they are used in this trigonometry; of 
course there are more than three types, but in this 
paper the study is limited to three functions. 
 
2.1 Angular function 𝒂𝒏𝒈𝒙(𝒙) 

The expression of the angular function related to the 
(ox) axis is defined, for 𝐾 ∈  ℤ, as: 
 

𝑎𝑛𝑔𝑥(𝛽(𝑥 + 𝛾)) =

�
+1  𝑓𝑜𝑟  (4𝐾 − 1) 𝜋

2𝛽
− 𝛾 ≤ 𝑥 ≤ (4𝐾 + 1) 𝜋

2𝛽
− 𝛾 

−1   𝑓𝑜𝑟 (4𝐾 + 1) 𝜋
2𝛽
− 𝛾 < 𝑥 < (4𝐾 + 3) 𝜋

2𝛽
− 𝛾

� (1) 

 
Fig. 1: The 𝑎𝑛𝑔𝑥(𝛽(𝑥 + 𝛾)) waveform. 

 
For 𝛽 =  1  and 𝛾 =  0 , the expression of the 
angular function becomes: 
 

𝑎𝑛𝑔𝑥(𝑥) = �
+1  𝑓𝑜𝑟  cos (𝑥) ≥ 0 
−1  𝑓𝑜𝑟 cos(𝑥) < 0

� 

 
2.2 Angular function 𝒂𝒏𝒈𝒚(𝒙) 

The expression of the angular function related to the 
(oy) axis is defined, for 𝐾 ∈  ℤ, as: 

𝑎𝑛𝑔𝑦(𝛽(𝑥 + 𝛾)) =

� +1  𝑓𝑜𝑟  2𝐾𝜋/𝛽 − 𝛾 ≤ 𝑥 ≤ (2𝐾 + 1)𝜋/𝛽 − 𝛾          
−1   𝑓𝑜𝑟  (2𝐾 + 1)𝜋/𝛽 − 𝛾 < 𝑥 < (2𝐾 + 2)𝜋/𝛽 − 𝛾

�

      (2) 

 
Fig. 2: The 𝑎𝑛𝑔𝑦(𝛽(𝑥 + 𝛾)) waveform. 

 
For 𝛽 =  1  and 𝛾 =  0 , the expression of the 
angular function becomes: 
 

𝑎𝑛𝑔𝑦(𝑥) = �
+1  𝑓𝑜𝑟  sin(𝑥) ≥ 0 
−1  𝑓𝑜𝑟 sin(𝑥) < 0

� 
 
2.3 Angular function 𝒂𝒏𝒈𝜶(𝒙) 

α (called firing angle) represents the angle width of 
the positive part of the function in a period. In this 
case, we can vary the width of the positive and the 
negative part by varying only α. The firing angle 
must be positive. 

𝑎𝑛𝑔𝛼�𝛽(𝑥 + 𝛾)� = 

⎩
⎪
⎨

⎪
⎧

+1  𝑓𝑜𝑟                                                                              
(2𝐾𝜋 − 𝛼)/𝛽 − 𝛾 ≤ 𝑥 ≤ (2𝐾𝜋 + 𝛼)/𝛽 − 𝛾            

 
−1   𝑓𝑜𝑟                                                                             
(2𝐾𝜋 + 𝛼)/𝛽 − 𝛾 < 𝑥 < (2(𝐾 + 1)𝜋 − 𝛼)/𝛽 − 𝛾

� 

(3) 
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Fig. 3: The 𝑎𝑛𝑔𝛼(𝛽(𝑥 + 𝛾)) waveform. 

 
3 Definition of the Elliptical 
Trigonometry 
3.1 The Elliptical Trigonometry unit 

The Elliptical Trigonometry unit is an ellipse with a 
center O (x = 0, y = 0) and has the equation form: 

(𝑥/𝑎)2  + (𝑦/𝑏)2 = 1    (4) 
With: 
‘a’ is the radius of the ellipse on the (ox) axis, 
‘b’ is the radius of the ellipse on the (oy) axis. 
 

 

Fig. 4: The elliptical trigonometry unit. 

It is essential to note that ‘𝑎 ’ and ‘𝑏 ’ must be 
positive. In this paper, ‘𝑎 ’ is fixed to 1. One is 
interested to vary only a single parameter which is 
‘𝑏’. 
 
3.2 Intersections and projections of different 
elements of the Elliptical Trigonometry on 
the relative axes 

From the intersections of the ellipse with the 
positive parts of the axes (𝑜𝑥)  and  (𝑜𝑦) , define 
respectively two circles of radii [𝑜𝑎]  and [𝑜𝑏] . 
These radii can be variable or constant according to 
the form of the ellipse. 
 

The points of the intersection of the half-line [𝑜𝑑) 
(figure 4) with the internal and external circles and 
with the rectangle and their projections on the axes 
(𝑜𝑥) and (𝑜𝑦) can be described by many functions 
that have an extremely importance in creating plenty 
of signals and forms that are very difficult to be 
created in the traditional trigonometry. 
     Definition of the letters in the Figure 4: 
𝑎: Is the intersection of the ellipse with the positive 
part of the axis (𝑜𝑥) that gives the relative circle of 
radius "𝑎". It can be variable. 
𝑏: Is the intersection of the ellipse with the positive 
part of the axis (𝑜𝑦) that gives the relative circle of 
radius "𝑏".  It can be variable. 
𝑐: Is the intersection of the half-line [𝑜𝑑) with the 
circle of radius 𝑏. 
𝑑: Is the intersection of the half-line [𝑜𝑑) with the 
ellipse. 
𝑒: Is the intersection of the half-line [𝑜𝑑) with the 
circle of radius 𝑎. 
𝑐𝑥: Is the projection of the point 𝑐 on the 𝑜𝑥 axis. 
𝑑𝑥: Is the projection of the point 𝑑 on the 𝑜𝑥 axis.  
𝑒𝑥: Is the projection of the point 𝑒 on the 𝑜𝑥 axis. 
𝑐𝑦: Is the projection of the point 𝑐 on the 𝑜𝑦 axis. 
𝑑𝑦: Is the projection of the point 𝑑 on the 𝑜𝑦 axis.  
𝑒𝑦: Is the projection of the point 𝑒 on the 𝑜𝑦 axis. 
𝛼: Is the angle between the (𝑜𝑥) axis and the half-
line [𝑜𝑑). 
𝑜: Is the center (0, 0). 
 
3.3 Definition of the Elliptical Trigonometric 
functions 𝑬𝒇𝒖𝒏(𝜶) 

The traditional trigonometry contains only 6 
principal functions: Cosine, Sine, Tangent, Cosec, 
Sec, Cotan. [6], [16], [17]. But in the Elliptical 
Trigonometry, there are 32 principal functions and 
each function has its own characteristics. These 
functions give a new vision of the world and will be 
used in all scientific domains and make a new 
challenge in the reconstruction of the science 
especially when working on the economical side of 
the power of electrical circuits, the electrical 
transmission, the signal theory and many other 
domains [15],[18]. 
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The functions 𝐶𝑗𝑒𝑠(𝛼),𝐶𝑚𝑎𝑟(𝛼),𝐶𝑡𝑒𝑟(𝛼)  and 
𝐶𝑗𝑒𝑠𝑦(𝛼) , which are respectively equivalent to 
cosine, sine, tangent and cotangent. These functions 
are particular cases of the “Circular Trigonometry”. 
The names of the cosine, sine, tangent and cotangent 
are replaced respectively by Circular Jes, Circular 
Mar, Circular Ter and Circular Jes-y. 

𝐶𝑗𝑒𝑠(𝛼) ⇔ 𝑐𝑜𝑠(𝛼); 𝐶𝑚𝑎𝑟(𝛼) ⇔ 𝑠𝑖𝑛(𝛼) 
𝐶𝑡𝑒𝑟(𝛼) ⇔ 𝑡𝑎𝑛(𝛼); 𝐶𝑗𝑒𝑠𝑦(𝛼) ⇔ 𝑐𝑜𝑡𝑎𝑛(𝛼). 

The Elliptical Trigonometric functions are denoted 
using the following abbreviation “𝐸𝑓𝑢𝑛(𝛼)”: 
-the first letter “E” is related to the Elliptical 
trigonometry. 
-the word “𝑓𝑢𝑛(𝛼)” represents the specific function 
name that is defined hereafter: (refer to Figure 4). 
 
• Elliptical Jes functions: 

El. Jes: 𝐸𝑗𝑒𝑠(𝛼) = 𝑜𝑑𝑥
𝑜𝑎

= 𝑜𝑑𝑥
𝑜𝑒

  (5) 

El. Jes-x: 𝐸𝑗𝑒𝑠𝑥(𝛼) = 𝑜𝑑𝑥
𝑜𝑒𝑥

= 𝐸𝑗𝑒𝑠(𝛼)
𝐶𝑗𝑒𝑠(𝛼) (6) 

El. Jes-y: 𝐸𝑗𝑒𝑠𝑦(𝛼) = 𝑜𝑑𝑥
𝑜𝑒𝑦

= 𝐸𝑗𝑒𝑠(𝛼)
𝐶𝑚𝑎𝑟(𝛼) (7) 

• Elliptical Mar functions: 

El. Mar:  𝐸𝑚𝑎𝑟(𝛼) = 𝑜𝑑𝑦
𝑜𝑏

= 𝑜𝑑𝑦
𝑜𝑐

 (8) 

El. Mar-x: 𝐸𝑚𝑎𝑟𝑥(𝛼) = 𝑜𝑑𝑦
𝑜𝑐𝑥

= 𝐸𝑚𝑎𝑟(𝛼)
𝐶𝑗𝑒𝑠(𝛼)  (9) 

El. Mar-y: 𝐸𝑚𝑎𝑟𝑦(𝛼) = 𝑜𝑑𝑦
𝑜𝑐𝑦

= 𝐸𝑚𝑎𝑟(𝛼)
𝐶𝑚𝑎𝑟(𝛼)    (10) 

• Elliptical Ter functions: 

El. Ter:  𝐸𝑡𝑒𝑟(𝛼) = 𝐸𝑚𝑎𝑟(𝛼)
𝐸𝑗𝑒𝑠(𝛼)                (11) 

El. Ter-x:   

𝐸𝑡𝑒𝑟𝑥(𝛼) = 𝐸𝑚𝑎𝑟𝑥(𝛼)
𝐸𝑗𝑒𝑠𝑦(𝛼) = 𝐸𝑡𝑒𝑟(𝛼) ∙ 𝐶𝑡𝑒𝑟(𝛼) (12) 

El. Ter-y: 𝐸𝑡𝑒𝑟𝑦(𝛼) = 𝐸𝑚𝑎𝑟𝑦(𝛼)
𝐸𝑗𝑒𝑠𝑥(𝛼) = 𝐸𝑡𝑒𝑟(𝛼)

𝐶𝑡𝑒𝑟(𝛼)    (13) 

• Elliptical Rit functions: 

El. Rit: 𝐸𝑟𝑖𝑡(𝛼) = 𝑜𝑑𝑥
𝑜𝑏

= 𝑜𝑑𝑥
𝑜𝑐

= 𝐸𝑚𝑎𝑟(𝛼)
𝐶𝑡𝑒𝑟(𝛼)       (14) 

El. Rit-y: 𝐸𝑟𝑖𝑡𝑦(𝛼) = 𝑜𝑑𝑥
𝑜𝑐𝑦

= 𝐸𝑟𝑖𝑡(𝛼)
𝐶𝑚𝑎𝑟(𝛼)      (15) 

• Elliptical Raf functions: 

El. Raf: 𝐸𝑟𝑎𝑓(𝛼) = 𝑜𝑑𝑦
𝑜𝑎

= 𝐶𝑡𝑒𝑟(𝛼).𝐸𝑗𝑒𝑠(𝛼)  (16) 

El. Raf-x: 𝐸𝑟𝑎𝑓𝑥(𝛼) = 𝑜𝑑𝑦
𝑜𝑒𝑥

= 𝐸𝑟𝑎𝑓(𝛼)
𝐶𝑗𝑒𝑠(𝛼)          (17) 

• Elliptical Ber functions: 

El. Ber: 𝐸𝑏𝑒𝑟(𝛼) = 𝐸𝑟𝑎𝑓(𝛼)
𝐸𝑟𝑖𝑡(𝛼)                    (18) 

El. Ber-x: 

𝐸𝑏𝑒𝑟𝑥(𝛼) = 𝐸𝑟𝑎𝑓𝑥(𝛼)
𝐸𝑟𝑖𝑡𝑦(𝛼) = 𝐸𝑏𝑒𝑟(𝛼) ∙ 𝐶𝑡𝑒𝑟(𝛼) (19) 

El. Ber-y: 𝐸𝑏𝑒𝑟𝑦(𝛼) = 𝐸𝑟𝑎𝑓𝑦(𝛼)
𝐸𝑟𝑖𝑡𝑥(𝛼) = 𝐸𝑏𝑒𝑟(𝛼)

𝐶𝑡𝑒𝑟(𝛼)     (20) 

3.4 The reciprocal of the Elliptical 
Trigonometric function 

𝐸𝑓𝑢𝑛−1(𝛼) is defined as the inverse function of 

𝐸𝑓𝑢𝑛(𝛼) . (𝐸𝑓𝑢𝑛−1(𝛼) = 1/𝐸𝑓𝑢𝑛(𝛼)) . In this 
way the reduced number of functions is equal to 32 
principal functions.  

E.g.: 𝐸𝑗𝑒𝑠−1(𝛼) = 1
𝐸𝑗𝑒𝑠(𝛼)

 

3.5 Definition of the Absolute Elliptical 
Trigonometric functions 𝑬�𝒇𝒖𝒏(𝜶) 

The Absolute Elliptical Trigonometry is introduced 
to create the absolute value of a function by varying 
only one parameter without using the absolute value 
“| |”. The advantage is that we can change and 
control the sign of an Elliptical Trigonometric 
function without using the absolute value in an 
expression. Some functions are treated to get an idea 
about the importance of this new definition. To 
obtain the Absolute Elliptical Trigonometry for a 
specified function (e.g.,  𝐸𝑗𝑒𝑠(𝛼)  ) we must 
multiply it by the corresponding Angular Function 

(e.g.,�𝑎𝑛𝑔𝑥(𝛼)�𝑖 ) in a way to obtain the original 
function if 𝑖 is even, and to obtain the absolute value 
of the function if 𝑖 is odd (e.g.|𝐸𝑗𝑒𝑠(𝛼)|). 
If the function doesn’t have a negative part (not 

alternative), we multiply it by �𝑎𝑛𝑔𝑥(𝛽(𝛼 − 𝛾)�𝑖 to 
obtain an alternating signal which form depends on 
the value of the frequency “𝛽” and the translation 
value “𝛾”. By varying the last parameters, one can 
get a multi form signals.  

• 𝐸�𝑗𝑒𝑠𝑖(𝛼) = �𝑎𝑛𝑔𝑥(𝛼)�𝑖 ∙ 𝐸𝑗𝑒𝑠(𝛼)     (21) 

= �
�𝑎𝑛𝑔𝑥(𝛼)�1 ∙ 𝐸𝑗𝑒𝑠(𝛼) = |𝐸𝑗𝑒𝑠(𝛼)|    𝑖𝑓 𝑖 = 1

�𝑎𝑛𝑔𝑥(𝛼)�2 ∙ 𝐸𝑗𝑒𝑠(𝛼) = 𝐸𝑗𝑒𝑠(𝛼)      𝑖𝑓 𝑖 = 2
� 

• 𝐸�𝑗𝑒𝑠𝑖,𝑥(𝛼) = �𝑎𝑛𝑔𝑥(𝛼 − 𝛾)�𝑖 ∙ 𝐸𝑗𝑒𝑠𝑥(𝛼)   (22) 

= �𝑎𝑛𝑔𝑥
(𝛼 − 𝛾) ∙ 𝐸𝑗𝑒𝑠𝑥(𝛼)   𝑖𝑓 𝑖 = 1

𝐸𝑗𝑒𝑠𝑥(𝛼)                              𝑖𝑓 𝑖 = 2
� 
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• 𝐸�𝑗𝑒𝑠𝑖,𝑦(𝛼) = �𝑎𝑛𝑔𝑦(2𝛼)�
𝑖
∙ 𝐸𝑗𝑒𝑠𝑦(𝛼)     (23) 

= �
𝑎𝑛𝑔𝑦(2𝛼) ∙ 𝐸𝑗𝑒𝑠𝑦(𝛼) = |𝐸𝑗𝑒𝑠𝑦(𝛼)|   𝑖𝑓 𝑖 = 1
𝐸𝑗𝑒𝑠𝑦(𝛼)                                                   𝑖𝑓 𝑖 = 2

� 

• 𝐸�𝑚𝑎𝑟𝑖(𝛼) = �𝑎𝑛𝑔𝑦(𝛼)�
𝑖
∙ 𝐸𝑚𝑎𝑟(𝛼)     (24) 

• 𝐸�𝑚𝑎𝑟𝑖,𝑥(𝛼) = �𝑎𝑛𝑔𝑦(2𝛼)�
𝑖
∙ 𝐸𝑚𝑎𝑟𝑥(𝛼) (25) 

• 𝐸�𝑚𝑎𝑟𝑖,𝑦(𝛼) = �𝑎𝑛𝑔𝑥(𝛼 − 𝛾)�𝑖 ∙ 𝐸𝑚𝑎𝑟𝑦(𝛼) (26) 

• 𝐸�𝑟𝑖𝑡𝑖(𝛼) = �𝑎𝑛𝑔𝑥(𝛼)�𝑖 ∙ 𝐸𝑟𝑖𝑡(𝛼)              (27) 
And so on… 
 
4 A survey on the Elliptical 
Trigonometric functions 
As previous sections, a brief study on the Elliptical 
Trigonometry is given. Two functions of 32 are 
treated with examples to show multi form signals 
made using the characteristic of this trigonometry.  
Elliptic cosine and Elliptic sine that appear in the 
previous articles [1] and [2], are particular cases of 
the Elliptic Jes and Elliptic Mar respectively. 
    For this study the following conditions are taken: 
- 𝑎 = 1 
- 𝑏 > 0 the height of the rectangle from the center. 

4.1 Determination of the Elliptic Jes function 

The Elliptical form in the figure 4 is written as the 
equation (4). Thus, given (5), the Elliptical Jes 
function can be determined using following method. 
In fact: 
𝐶𝑡𝑒𝑟(𝛼) = 𝑦

𝑥
= 𝑜𝑐𝑦

𝑜𝑐𝑥
, it is significant to replace the 

equation 𝑦 = 𝐶𝑡𝑒𝑟(𝛼). 𝑥 in that defined in (4). 

�𝑥
𝑎
�
2

+ �𝐶𝑡𝑒𝑟(𝛼) 𝑥
𝑏
�
2

= �𝑥
𝑎
�
2
�1 + �𝐶𝑡𝑒𝑟(𝛼) 𝑥

𝑏
�
2
� = 1 ⇒  

𝐸𝑗𝑒𝑠𝑏(𝛼) = ±1

�1+�𝑎𝑏Cter (𝛼)�
2  

Therefore: 

•𝐸𝑗𝑒𝑠𝑏(𝛼) = +1

�1+�𝑎𝑏Cter (𝛼)�
2 for −𝜋

2
≤ 𝑥 ≤ 𝜋

2
;  𝑥
𝑎
≥ 0 

•𝐸𝑗𝑒𝑠𝑏(𝛼) = −1

�1+�𝑎𝑏Cter (𝛼)�
2 for 𝜋

2
< 𝑥 < 3𝜋

2
;  𝑥
𝑎

< 0 

Thus the expression of the Elliptic Jes can be 
unified by using the angular function expression (1), 
therefore the expression becomes: 

𝐸𝑗𝑒𝑠𝑏(𝛼) = 𝑎𝑛𝑔𝑥(𝛼)

�1+�𝑎𝑏Cter (𝛼)�
2 ⇒  

         𝐸𝑗𝑒𝑠𝑏(𝑥) = 𝑎𝑛𝑔𝑥(𝑥)

�1+�𝑎𝑏Cter (𝑥)�
2             (28) 

• Expression of the Absolute Elliptic Jes: 

𝐸�𝑗𝑒𝑠𝑖,𝑏(𝑥) = 𝑎𝑛𝑔𝑥(𝑥)

�1+�𝑎𝑏Cter (𝑥)�
2 ∙ �𝑎𝑛𝑔𝑥(𝑥)�𝑖 (29) 

The Absolute Elliptic Jes is a powerful function that 
can produce more than 14 different signals by 
varying only two parameters 𝑖 and 𝑏. Similar to the 
cosine function in the traditional trigonometry, the 
Absolute Elliptical Jes is more general than the 
precedent. 

• Multi form signals made by 𝐸�𝑗𝑒𝑠𝑖,𝑏(𝑥): 

Figures 5 and 6 represent multi form signals 
obtained by varying two parameters (𝑖 and 𝑏). For 
the figures 5.a to 5.f the value of 𝑖 = 2 , for the 
figures 6.a to 6.f the value of 𝑖 = 1. 

  
a)  𝑖 = 2, 𝑏 = 0.001 b)  𝑖 = 2, 𝑏 = 0.2 

  
c)  𝑖 = 2, 𝑏 = √3/3 d)  𝑖 = 2, 𝑏 = 1 

  
e)  𝑖 = 2, 𝑏 = 3  f)  𝑖 = 2, 𝑏 = 90 

Fig. 5: multi form signals of the function 𝐸�𝑗𝑒𝑠𝑖,𝑏(𝑥) 
for 𝑖 = 2 and for different values of 𝑏 > 0. 
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a)  𝑖 = 1, 𝑏 = 0.001 b)  𝑖 = 1, 𝑏 = 0.2 

  
c)  𝑖 = 1, 𝑏 = √3/3 d)  𝑖 = 1, 𝑏 = 1 

  
e)  𝑖 = 1, 𝑏 = 3  f)  𝑖 = 1, 𝑏 = 90 

Fig. 6: multi form signals of the function 𝐸�𝑗𝑒𝑠𝑖,𝑏(𝑥) 
for 𝑖 = 1 and for different values of 𝑏 > 0. 

 
Important signals obtained using this function:  
Impulse train with positive and negative part, 
elliptic deflated, quasi-triangular, sinusoidal, 
elliptical swollen, square signal, rectangular signal, 
impulse train (positive part only), rectified elliptic 
deflated, saw signal, rectified elliptical swollen, 
continuous signal… 
These types of signals are widely used in power 
electronics, electrical generator and in transmission 
of analog signals [18]. 

4.2 The Elliptic Mar function 

The elliptical form in the figure 4 is written as the 
equation (4). Thus, given (8), the Elliptical Mar 
function can be determined using following method. 
In fact: 

𝐶𝑡𝑒𝑟(𝛼) = 𝑦
𝑥

= 𝑜𝑐𝑦
𝑜𝑐𝑥

⇒ 𝑥 = 𝑦
𝐶𝑡𝑒𝑟(𝛼) , it is significant 

to replace the equation 𝑥 = 𝑦
𝐶𝑡𝑒𝑟(𝛼) in that defined in 

(4). Thus, ( 𝑦
𝑎∙𝐶𝑡𝑒𝑟(𝛼))

2  + (𝑦/𝑏)2 = 1 ⇒ 

𝐸𝑚𝑎𝑟𝑏(𝛼) = 𝑦
𝑏

=
±𝑎
𝑏Cter (𝛼)

�1+�𝑎𝑏Cter (𝛼)�
2  

⇒ 𝐸𝑚𝑎𝑟𝑏(𝑥) = 𝑦
𝑏 =

±𝑎
𝑏Cter (𝑥)

�1+�𝑎𝑏Cter (𝑥)�
2  

Therefore: 

• 𝐸𝑚𝑎𝑟𝑏(𝑥) =
+𝑎𝑏Cter (𝑥)

�1+�𝑎𝑏Cter (𝑥)�
2 for 0 ≤ 𝑥 < 𝜋

2
 

• 𝐸𝑚𝑎𝑟𝑏(𝑥) =
−𝑎𝑏Cter (𝑥)

�1+�𝑎𝑏Cter (𝑥)�
2 for 𝜋

2
< 𝑥 ≤ 𝜋 

• 𝐸𝑚𝑎𝑟𝑏(𝑥) =
−𝑎𝑏Cter (𝑥)

�1+�𝑎𝑏Cter (𝑥)�
2 for 𝜋 ≤ 𝑥 < 3 𝜋

2
 

• 𝐸𝑚𝑎𝑟𝑏(𝑥) =
+𝑎𝑏Cter (𝑥)

�1+�𝑎𝑏Cter (𝑥)�
2 for 3 𝜋

2
≤ 𝑥 ≤ 2𝜋 

Thus the expression of the Elliptic Mar can be 
unified by using the angular function expression (1), 
therefore the expression becomes: 

𝐸𝑚𝑎𝑟𝑏(𝑥) = 𝑎
𝑏
Cter (𝑥)𝑎𝑛𝑔𝑥(𝑥)

�1+�𝑎𝑏Cter (𝑥)�
2                  (37) 

• Expression of the Absolute Elliptic Mar: 

𝐸�𝑚𝑎𝑟𝑖,𝑏(𝑥) = 𝐸𝑚𝑎𝑟𝑏(𝑥) ∙ �𝑎𝑛𝑔𝑦(𝑥)�
𝑖
  (38) 

Similar to the Absolute Elliptic Jes, the Absolute 
Elliptic Mar is a powerful function that can produce 
more than 14 different signals by varying only two 
parameters 𝑖 and 𝑏. Similar to the sine function in 
the traditional trigonometry, the Absolute Elliptical 
Mar is more general than the precedent. 

• Multi form signals made by 𝐸�𝑚𝑎𝑟𝑖,𝑏(𝑥): 

Figures 7 and 8 represent multi form signals 
obtained by varying two parameters (𝑖 and 𝑏). For 
the figures 7.a to 7.f the value of 𝑖 = 2 , for the 
figures 8.a to 8.f the value of 𝑖 = 1. 
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a)  𝑖 = 2; 𝑏 = 0.001   b)  𝑖 = 2; 𝑏 = 0.4 

  
c)  𝑖 = 2; 𝑏 = 1   d)  𝑖 = 2; 𝑏 = √3 

  
e)  𝑖 = 2; 𝑏 = 6   f)  𝑖 = 2; 𝑏 = 100 
Fig. 7: multi form signals of the function 

𝐸�𝑚𝑎𝑟𝑖,𝑏(𝑥) for 𝑖 = 2 and for different values of 
𝑏 > 0. 

 

  
a)  𝑖 = 1; 𝑏 = 0.001   b)  𝑖 = 1; 𝑏 = 0.4 

  
c)  𝑖 = 1; 𝑏 = 1   d)  𝑖 = 1; 𝑏 = √3 

  
e)  𝑖 = 1; 𝑏 = 6   f)  𝑖 = 1; 𝑏 = 100 
Fig. 8: multi form signals of the function 

𝐸�𝑚𝑎𝑟𝑖,𝑏(𝑥) for 𝑖 = 1 and for different values of 
𝑏 > 0. 

 
4.5 Original formulae of the Elliptical 
Trigonometry 

In this sub-section, a brief review on some 
remarkable formulae formed using the elliptical 
trigonometric functions. 

• �𝐸𝑗𝑒𝑠𝑏(𝑥)�2 + �𝐸𝑚𝑎𝑟𝑏(𝑥)�2 = 1                (43) 

In fact: 

�𝐸𝑗𝑒𝑠𝑏(𝑥)�2 + �𝐸𝑚𝑎𝑟𝑏(𝑥)�2 = 

� 𝑎𝑛𝑔𝑥(𝑥)

�1+�𝑎𝑏Cter (𝑥)�
2�

2

+ �𝑎
𝑏
Cter (𝑥)𝑎𝑛𝑔𝑥(𝑥)

�1+�𝑎𝑏Cter (𝑥)�
2�

2

=  

1

1+�𝑎𝑏Cter (𝑥)�
2 + �𝑎

𝑏
�
2 Cter (𝑥)2

1+�𝑎𝑏Cter (𝑥)�
2  =  

1+�𝑎𝑏�
2
Cter (𝑥)2

1+�𝑎𝑏Cter (𝑥)�
2  =

1+�𝑎𝑏Cter (𝑥)�
2

1+�𝑎𝑏Cter (𝑥)�
2 = 1  

 

• 1
𝐸𝑗𝑒𝑠𝑥2(𝑥)+𝐸𝑚𝑎𝑟𝑥2(𝑥)

+ 1
𝐸𝑗𝑒𝑠𝑦2(𝑥)+𝐸𝑚𝑎𝑟𝑦2(𝑥)

= 1 (44) 

In fact: 

𝐸𝑗𝑒𝑠𝑥2(𝑥) + 𝐸𝑚𝑎𝑟𝑥2(𝑥) = �𝐸𝑗𝑒𝑠(𝑥)
𝐶𝑗𝑒𝑠(𝑥)

�
2

+ �𝐸𝑚𝑎𝑟(𝑥)
𝐶𝑗𝑒𝑠(𝑥)

�
2
  

= 1

�𝐶𝑗𝑒𝑠(𝑥)�2
⇒ 1

𝐸𝑗𝑒𝑠𝑥2(𝑥)+𝐸𝑚𝑎𝑟𝑥2(𝑥) = �𝐶𝑗𝑒𝑠(𝑥)�2  

  and  

𝐸𝑗𝑒𝑠𝑦2(𝑥) + 𝐸𝑚𝑎𝑟𝑦2(𝑥) = � 𝐸𝑗𝑒𝑠(𝑥)
𝐶𝑚𝑎𝑟(𝑥)

�
2

+ �𝐸𝑚𝑎𝑟(𝑥)
𝐶𝑚𝑎𝑟(𝑥)

�
2
  

= 1

�𝐶𝑚𝑎𝑟(𝑥)�2
⇒ 1

𝐸𝑗𝑒𝑠𝑦
2(𝑥)+𝐸𝑚𝑎𝑟𝑦2(𝑥)

= �𝐶𝑚𝑎𝑟(𝑥)�2  

Therefore:  
1

𝐸𝑗𝑒𝑠𝑥2(𝑥)+𝐸𝑚𝑎𝑟𝑥2(𝑥) + 1
𝐸𝑗𝑒𝑠𝑦2(𝑥)+𝐸𝑚𝑎𝑟𝑦2(𝑥) =  

𝐶𝑗𝑒𝑠2(𝑥) + 𝐶𝑚𝑎𝑟2(𝑥) = cos2(𝑥) + sin2(𝑥) = 1 
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5 Elliptical Trigonometry Series 
Considering a periodic function 𝑥(𝑡) with a period 
𝑇 that verifies the conditions of Dirichlet: 

• 𝑥(𝑡) has an integrable module on the period 𝑇: 

∫ |𝑥(𝑡)|𝑑𝑡
𝑇
2+𝑡0
−𝑇2+𝑡0

 exist. 

• 𝑥(𝑡)  has a boundary condition and its 
discontinuities are limited in number on a period. 

Therefore the general equation of the Elliptical 
Trigonometry Series can be written as the following: 

𝑥(𝑡) =
𝛼0
2

+ ��𝛼𝑛𝐸�𝑗𝑒𝑠𝑖𝑛,𝑏𝑛(𝑥) �
2𝜋𝑛𝑡
𝑇

− 𝜑𝑛�
∞

𝑛=1

+ 𝛽𝑛𝐸�𝑚𝑎𝑟𝑗𝑛,𝑐𝑛 �
2𝜋𝑛𝑡
𝑇

− 𝜑′𝑛�� 

            (45) 
with  

𝛼0 =
2
𝑇

� 𝑥(𝑡)𝑑𝑡

𝑇
2+𝑡0

−𝑇2+𝑡0

 

If and only if the value of 𝑖𝑛 and 𝑗𝑛 are even. 
In general, 𝛼0, 𝛼𝑛 and 𝛽𝑛 don’t have a specific 

form because the equation (45) is general. We can 
obtain 𝛼𝑛 and 𝛽𝑛 for particular cases. For example: 
If we have  𝑖𝑛 and 𝑗𝑛 even and 

• 𝛼𝑛 = 2
𝑇 ∫ 𝑥(𝑡)𝐸�𝑗𝑒𝑠𝑖𝑛,𝑏𝑛 �

2𝜋𝑛𝑡
𝑇

− 𝜑𝑛� 𝑑𝑡
𝑇
2+𝑡0
−𝑇2+𝑡0

 

=
2
𝑇

� 𝑥(𝑡)𝑐𝑜𝑠 �
2𝜋𝑛𝑡
𝑇

− 𝜑𝑛� 𝑑𝑡

𝑇
2+𝑡0

−𝑇2+𝑡0

 

with 𝑎 = 𝑏 = 1 and 𝜑𝑛 = 𝜑′𝑛. 

• 𝛽𝑛 = 2
𝑇 ∫ 𝑥(𝑡)𝐸�𝑚𝑎𝑟𝑗𝑛,𝑐𝑛 �

2𝜋𝑛𝑡
𝑇

− 𝜑′𝑛� 𝑑𝑡
𝑇
2+𝑡0
−𝑇2+𝑡0

 

=
2
𝑇

� 𝑥(𝑡)𝑠𝑖𝑛 �
2𝜋𝑛𝑡
𝑇

− 𝜑′𝑛� 𝑑𝑡

𝑇
2+𝑡0

−𝑇2+𝑡0

 

with 𝑎 = 𝑏 = 1 and 𝜑𝑛 = 𝜑′𝑛 
We remark that the particular case can be 

compared to the Fourier series. We conclude that the 

Fourier Series is a particular case of the Elliptical 
Trigonometry Series when the values of 𝑎 = 𝑏 = 1 
and 𝜑𝑛 = 𝜑′𝑛 = 0, 𝑖𝑛 and 𝑗𝑛 are even. 

We use the Elliptical Trigonometry Series in 
order to describe periodic signals which are 
impossible to be described using the Fourier series, 
and it is used to reduce the number of parameters 
which imply to reduce the size of the circuit and the 
cost. For example a rectangular signal is obtained 
from the Fourier series with infinite summations, 
infinite multiplications and an infinite number of 
parameters. But the case will be different for the 
Elliptical Trigonometry Series in which only one 
function with one parameter can give the rectangular 
signal (refer to figure 5.f and 12.a), the same for a 
triangular signal which is obtained from Fourier 
series using infinite summations, multiplications and 
an infinite number of parameters, this form of signal 
can be obtained using only one parameter for the 
Elliptical Trigonometry Series (refer to figure 5.c 
and 12.d). 

In general, a Fourier series can’t describe the 
general form of the Elliptical Trigonometry Series 
but the inverse is correct because the Elliptical 
Trigonometry Series is the general form of the 
Fourier Series. So any periodic function needs an 
infinite number of parameters to be described using 
the Fourier series but it needs less number of 
parameters by using the Elliptical Trigonometry 
Series. 

We have demonstrated that every periodic signal 
can be decomposed into AEjes and AEmar functions. 
The series can be finite or infinite. In electronics we 
are interested in the finite number of parameters in 
order to design the correct circuit which is not the 
case of the Fourier Series. 

So in electronics, the design circuit of Fourier 
series is impossible to be done with an infinite 
number of parameters, in reality they choose the 
first sinusoidal signal and many of its harmonics in a 
limited number, but the disadvantage is that this 
circuit will not give the exact original signal, the 
produced signal is distorted with a certain degree or 
percentage. But this is not the case of the Elliptical 
Trigonometry Series, this series is more practical 
than the Fourier series because the number of 
parameters is reduced and the circuit can be 
simplified at minimum cost. 
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6 Example using the Elliptical 
Trigonometry Series 
Let’s consider the equation (45) and we take 𝛼𝑛 and 
𝛽𝑛 as the following example 

𝑥(𝑡) =
𝛼0
2

+ ��𝛼𝑛𝐸�𝑗𝑒𝑠𝑖𝑛,𝑏𝑛(𝑥) �
2𝜋𝑛𝑡
𝑇

− 𝜑𝑛�
∞

𝑛=1

+ 𝛽𝑛𝐸�𝑚𝑎𝑟𝑗𝑛,𝑐𝑛 �
2𝜋𝑛𝑡
𝑇

− 𝜑′𝑛�� 

            (45) 
 We consider that: 

𝑖𝑛 = 2, 𝑗𝑛 = 2 

𝛼0 = 0;𝛼1 = 1 and 𝛼𝑛 = 0 for 𝑛 ≠ 1 

𝛽0 = 0;𝛽1 = 1 and 𝛽𝑛 = 0 for 𝑛 ≠ 1 

𝜑𝑛 = 𝜑′𝑛 = 0 

⇒ 𝑥(𝑡) = 𝐸�𝑗𝑒𝑠2,𝑏1 �
2𝜋𝑡
𝑇
� + 𝐸�𝑚𝑎𝑟2,𝑐1 �

2𝜋𝑡
𝑇
�    (46) 

Therefore the signals formed by varying the 
parameters "𝑏" and "𝑐" are as following: 

 
Fig. 9.1: 𝑏 = 0.001; 𝑐 = 100 

 
Fig. 9.2: 𝑏 = 0.001; 𝑐 = 6 

 
Fig. 9.3: 𝑏 = 0.001; 𝑐 = √3 

 
Fig. 9.4: 𝑏 = 0.001; 𝑐 = 1 

 
Fig. 9.5: 𝑏 = 0.001; 𝑐 = 1 

 
Fig. 9.6: 𝑏 = 0.2; 𝑐 = 100 

 
Fig. 9.7: 𝑏 = 0.2; 𝑐 = 6 
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Fig. 9.8: 𝑏 = 0.2; 𝑐 = √3 

 
Fig. 9.9: 𝑏 = 0.2; 𝑐 = 1 

 
Fig. 9.10: 𝑏 = 0.2; 𝑐 = 0.001 

 
Fig. 9.11: 𝑏 = √3/3; 𝑐 = 100 

 
Fig. 9.12: 𝑏 = √3/3; 𝑐 = 6 

 
Fig. 9.13: 𝑏 = √3/3; 𝑐 = √3 

 
Fig. 9.14: 𝑏 = √3/3; 𝑐 = 1 

 
Fig. 9.15: 𝑏 = √3/3; 𝑐 = 0.001 

 
Fig. 9.16: 𝑏 = 1; 𝑐 = 100 

 
Fig. 9.17: 𝑏 = 1; 𝑐 = 6 
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Fig. 9.18: 𝑏 = 1; 𝑐 = √3 

 
Fig. 9.19: 𝑏 = 1; 𝑐 = 1 

 

 
Fig. 9.20: 𝑏 = 1; 𝑐 = 0.001 

 
Fig. 9.21: 𝑏 = 100; 𝑐 = 100 

 
Fig. 9.22: 𝑏 = 100; 𝑐 = 6 

 
Fig. 9.23: 𝑏 = 100; 𝑐 = √3 

 
Fig. 9.24: 𝑏 = 100; 𝑐 = 1 

 
Fig. 9.25: 𝑏 = 100; 𝑐 = 0.001 

 
We can obtain an infinite number of signals using 
the equation (46) by varying only two parameters 𝑏 
and 𝑐. In this paper, the study is limited to certain 
number of waveforms in order to give a small idea 
about the importance of the Elliptical Trigonometry 
Series. 

𝑥(𝑡) = 𝐸�𝑗𝑒𝑠2,𝑏1 �
2𝜋𝑡
𝑇
� + 𝐸�𝑚𝑎𝑟2,𝑐1 �

2𝜋𝑡
𝑇
�       (46) 

In fact, if we apply the Fourier series for the 
equation (46) for a particular case when we have 
AEjes=cosine and AEmar=Sine, we obtain the 
following equation: 

𝑥(𝑡) = 𝑐𝑜𝑠 �2𝜋𝑡
𝑇
� + 𝑠𝑖𝑛 �2𝜋𝑡

𝑇
�                   (47) 

And we obtain only the figure 9.19 as following: 
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Fig. 9.19: 𝑏 = 1; 𝑐 = 1 

 
We conclude that the Fourier Series is a particular 
case of the Elliptical Trigonometry Series when we 
have 𝑏 = 𝑐 = 1  therefore AEjes=cosine and 
AEmar=Sine.  

As we see, by using one equation of the 
Elliptical Trigonometry Series we obtain an infinite 
number of periodic signals (by varying only two 
parameters) which are very important in electronics 
and in signal processing. We can imagine if we use 
more harmonics or we change more variables, then 
we can describe more important signals by varying 
limited number of parameters. This is not the case of 
the Fourier series. 
    Practically, the Fourier Series is not applicable in 
electronics when we use an infinite number of 
parameters to describe a single function. In fact, we 
choose only the first harmonics to describe the 
desired signal and this signal has a unique form. But 
the problem here is that we do not obtain the 
original signal but we obtain a signal similar to the 
original one with some distortion because we didn’t 
take all the harmonics of the signal.  

The case will be different for the Elliptical 
Trigonometry Series when we can describe the same 
signal with a limited number of parameters, 
therefore we can put all these parameters in an 
electronic circuit, so the original signal is kept as it 
is, without distortion. And moreover, the signal is 
variable, so we can obtain more periodic signals by 
varying some parameters as shown in the previous 
figures. 
 
7  Conclusion 
In this paper, an original study in mathematics is 
introduced. The Elliptical Trigonometry Series is the 
application of the Elliptical Trigonometry is signal 
theory and in signal processing. In fact the Elliptical 
Trigonometry Series represents the general case of 
the Fourier series using two functions AEjes instead 
of cosine and AEmar instead of sine. The new series 
has many advantages ahead the Fourier series. So 

the main advantages are: the number of parameters 
is reduced, the electronic circuit is reduced and it 
becomes more efficient, the number of harmonics is 
also reduced, one circuit has the capability to 
describe an infinite number of signals by varying the 
value of some parameters etc…  
As conclusion, as the Elliptical trigonometry is 
much more complicated than the traditional 
trigonometry therefore the Elliptical Trigonometry 
Series is also much more complicated than the 
Fourier series. But this complication gives the new 
series a huge advantages ahead the Fourier series as 
we have seen. Many studies will follow this paper in 
order to find more applications of the new series. 
Many complicated circuits will be replaced by 
simplified circuits, and many difficult equations will 
be replaced by simplified equations. 
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