
Numerical Investigation on Shear Driven Cavity Flow by the 
Constrained Interpolated Profile Lattice Boltzmann Method 

 
*C. S. NOR AZWADI, M. H. Al-MOLA and S. AGUS  

Department of Thermo-fluid 
Universiti Teknologi Malaysia 

81310 UTM Skudai, Johor 
MALAYSIA 

azwadi@fkm.utm.my http://www.fkm.utm.my/~azwadi 
 
Abstract: - In this paper, we proposed a combination of lattice Boltzmann and finite difference schemes to simulate 
an incompressible fluid flow problem. Our model applies the constrained interpolated profile method to solve the 
advection term in the governing lattice Boltzmann equation. Compared with the conventional lattice Boltzmann 
scheme, the current scheme is more accurate. In addition, the proposed model requires less mesh size for the 
computational at various conditions compared to other lattice Boltzmann models. Simulation of lid-driven cavity 
flow whose Reynolds number up to 1000 were carried out in order to validate the proposed approach. Numerical 
results show excellent agreement with those obtained by the conventional computational fluid dynamics approaches. 
We then extend our computation on the behavior of vortex inside a shallow lid-driven cavity flow at various aspect 
ratios. We found that the formation, strength and size of primary and secondary vortices are significantly affected by 
the value of aspect ratio and Reynolds numbers. Good comparisons were obtained when the results are compared 
with those published in the literature. This indicates that the proposed approach is a reliable alternative 
computational scheme in predicting various types of fluid flow problem. 
 
Key-Words: - lattice Boltzmann, distribution function, BGK collision, constrained interpolated profile, lid-
driven cavity flow 
 
1 Introduction 
Lattice Boltzmann method (LBM) is a relatively 
new and promising numerical method for predicting 
complex fluid systems and has attracted interest 
from researchers in computational physics. Each 
month several papers appear with new models, 
investigate of known models or methodically 
interesting applications [1-3]. Unlike other 
traditional computational fluid dynamics (CFD) 
methods, which solve the conservation equations of 
macroscopic properties (i.e., mass, momentum, and 
energy) numerically, LBM models the fluid 
consisting of fictive particles. These particles 
perform consecutive propagation and collision 
processes over a discrete lattice mesh or grid. 

Historically, LBM was derived from the lattice 
gas automata (LGA) [4]. Consequently, LBM 
inherits some features from it precursor, the LGA 
method. The first LBM model was a floating-point 
version of its LGA counterpart. Each particle in 
LGA model (represented by single bit Boolean 
integer) was replaced by a single particle 
distribution function represented by a floating-point 
number. The lattice structure and the evolution rule 
remain the same. One important improvement to 
enhance the computational efficiency has been made 
for the LBM was that the linearization of collision 

operator. The uniform lattice structure was 
remaining unchanged. 

The LBM has a number of advantages over other 
conventional computational fluid dynamics 
approaches. The algorithm is simple and can be 
implemented with a kernel of just a few hundred 
lines. The algorithm can also be easily modified to 
allow for the application of other, more complex 
simulation components. For example, the LBM can 
be extended to describe the evolution of binary 
mixtures, or extended to allow for more complex 
boundary conditions. Thus the LBM is an ideal tool 
in fluid simulation. 

Although promising, the current LBM still have 
few shortcomings that limit its general application 
as a practical computational fluid dynamics tool. 
One of these shortcomings, which is specifically 
addressed in this paper, is it’s constrained to second 
order accuracy in space and time. Due to this 
restraint, the standard LBM has great difficulty in 
simulating fluid flow problem under critical 
conditions that require higher order accuracy either 
in space or time. Since He and Luo [5] and Abe [6] 
demonstrated that the lattice Boltzmann equation is 
a discretized form of the continuous Boltzmann 
equation, and the discretization of physical space is 
not coupled with the discretization of momentum 
space, any standard numerical techniques can serve 
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the purpose of solving the discrete Boltzmann 
equation. It is not surprising that the well-known 
finite different has being introduced in order to 
improve the accuracy of the conventional LBM. 

The first finite different LBM (FDLBM) was due 
to Reider and Sterling [7], and was examined by 
Cao et al. [8] in more detail. FDLBM was further 
extended to curvilinear coordinates with non-
uniform grids by Mei and Shyy [9]. The study of 
FDLBM is still in progress [10-12].  

In this research, works have been done on the 
improvement of the FDLBM. The advection term in 
the governing equation of is solved using the 
constrained interpolated profile method [13] which 
is expected to contribute third order accuracy in 
space. In order to demonstrate the efficiency the 
current approach, we carried out numerical 
investigation of shear driven cavity flow up to 
Reynolds number of 1000 and compared the results 
with other type of FDLBM and ‘benchmark’ 
solutions by Ghia et al [14]. After we got confidence 
with the formulation, we extend our investigation to 
shear driven flow in a shallow cavity. 

This paper is organized as follow. In the next 
section, the formulation of LBM is described in 
detail. In the sequence section, the contrained 
interpolated profile is employed in the governing 
equation of LBM to simulation shear driven flow in 
a cavity. The final section concludes this study. 
 
2 Isothermal Lattice Boltzmann 
Model 
In two-dimensional space, the governing equation of 
the model is written as 
 

( )f f f
t

∂ ∂
∂ ∂

+ = Ωc
x

                                               (1) 

 
where 

 

f = f c,x, t( )  is the density distribution 
function with its probable microscopic velocity 

 

c  
and used to calculate macroscopic values of density 
and velocity field. 

 

Ω f( )  on the right hand side 
represents the collision function of the particle 
distribution functions.  

Any solution to Eq. (1) requires an expression 
for the collision operator 

 

Ω f( ). If the collision is to 
conserve mass, momentum and energy, it is required 
that 
 

 

1
c
c2

 

 

 
 
 

 

 

 
 
 
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However, the expression for 

 

Ω f( ) is too complex to 
be solved [15]. Any replacement of collision must 
satisfy the conservation laws as expressed in Eq. (2). 
The idea behind this replacement is that large 
amount of detail of two-body interaction is not 
likely to influence significantly the values of many 
experimental measured quantities [16].  

There are a few version of collision operator 
published in the literature. However, the most well 
accepted version due to its simplicity and efficiency 
is the Bhatnagar Gross Crook (BGK) collision 
model [17] with a single relaxation time. The 
equation that represents this model is given by 
 

 

Ω f( )= − f − f eq

τ
      (3) 

 
where 

 

f eq  is the equilibrium distribution function 
and 

 

τ  is the time to reach equilibrium condition 
during collision process and is often called the 
relaxation time. Another function of 

 

τ  is to control 
the amount of distribution function relaxes to 
equilibrium state on every collision stage.  

Nor Azwadi et al. [18] have recently shown that 
the discretized equilibrium distribution function can 
be obtained by applying the Gauss-Hermite 
quadrature procedure for the calculation of 

 

f eq  
velocity moments. As a result, a 2-dimensional 9-
velocity, D2Q9 lattice model, as shown in Fig. 1, is 
obtained. 
 

 
 

Fig. 1 Lattice structure for D2Q9 model. 
 
The corresponding expression for the equilibrium 
density distribution function is given by 
 

 

fi
eq = ρωi 1+ 3 c ⋅ u( )+ 4.5 c ⋅ u( )2

−1.5u2[ ]   (4) 

 
where 

 

ω0 = 4 9 , 

 

ω1−4 =1 9  and 

 

ω5−8 =1 36 . After 
discretisation in velocity space, the Boltzmann 
equation with the BGK collision function can be 
rewritten as follow 
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eq

i i i i
i

f f f f
t

∂ ∂
∂ ∂ τ

−
+ = −c

x
        (5) 

 
and well known as BGK lattice Boltzmann equation.  

 The macroscopic variables such as density 

 

ρ  
and velocity 

 

u  can be evaluated as the moment to 
the distribution function 
 

8

0
i

i

f dρ
=

= ∫ c   and     

 

ρu = c i fidc
i= 0

8

∫     (6) 

 
Through a multiscaling expansion, the mass and 
momentum equation can be derived from the D2Q9. 
The detail derivation can be referred to Nor Azwadi 
et al [19] and will not be shown here 

 

 

∇ ⋅ u = 0                                                                  (7) 
 

21 p
t

∂ υ
∂ ρ

+ ∇⋅ = − ∇ + ∇
u u u u                                   (8) 

 
The viscosity in this model can be related to the 
time relaxation as below 
 

 

υ = 1
3

τ                                                                    (9) 

 
3 Constrained Interpolated Profile 
(CIP) Method  
The CIP method was proposed by Yabe et al [20] 
and has been highly proven to be a universal solver 
for hyperbolic type equations. In this section, we 
briefly discuss the key points of CIP scheme in one-
dimension case.  

We consider a linear hyperbolic equation to be 
solved in the following term 

 

0f fc
t x

∂ ∂
∂ ∂

+ =                  (10) 

 
The theoretical solution of Eq. (10) is obtained by 
shifting a profile 
 

 

f x, t + ∆t( )= f x − c∆t, t( )                    (11) 
 
this represents a simple translation of profiles with 
velocity 

 

c . If we differentiate Eq. (10) with spatial 
variable 

 

x , then we get 
 

0x xf fc
t x

∂ ∂
∂ ∂

+ =                      (12) 

where 

 

fx = ∂f ∂x . Equation (12) coincides with Eq. 
(10) and represents the translation of 

 

f  with 
velocity 

 

c . The novel idea behind the CIP approach 
is, we trace the time evolution of both 

 

f  and 

 

fx  
using Eqs. (10) and (12) and the profile at each node 
after one step are specified according to Eq. (11). 
With this restriction, we can greatly reduce the 
numerical diffusion when we construct the profile 
[21].  

In the CIP method, spatial quantities in the grid 
interval are approximated with constrained 
polynomial using 

 

f  and 

 

fx  at neighboring grid 
points as follow 

 

 

Fi x( )= aiX
3 + biX

2 + fx, iX + fi                  (13) 
 
where 

 

X = x − xi . The coefficients of 

 

ai  and 

 

bi  in 
Eq. (13) are determined so that the interpolation 
function and its first derivatives are continuous at 
both ends. As a result, we have 
 

 

ai =
fx, i + fx, i−1

∆x 2 −
2 fi + fi−1( )

∆x 3               
(14) 

 
 

 

bi =
2 fx, i + fx, i−1( )

∆x
−

3 fi + fi−1( )
∆x 2               

(15) 

 
where 

 

∆x = xi − xi− i. Once 

 

Fi x( ) are determined for 
all grid intervals, the spatial derivative is calculated 
as 
 

 

Fx,i x( )= 3aiX
2 + 2biX + fx, i                 (16) 

 
After all, the advected profile is given by 

 

fi
n +1 = Fi x −ξ( )= ai ξ( )3

+ bi ξ( )2
+ fx, i ξ( )+ fi        (17) 

 

 

fx, i
n +1 = Fx,i x −ξ( )= 3ai ξ( )2

+ 2bi ξ( )+ fx, i               (18) 
 

where 

 

ξ = c∆t  and the superscript 

 

n  indicates the 
time.  

We first apply CIP method to the propagation of 
a square wave. Figure 2a-c shows the plots of 
profile obtained from CIP, Lax-Wendroff and first 
order upwind methods. As expected, CIP scheme 
shows smaller diffusion and dispersion errors 
compared to the other solution methods. We then 
calculated the average percentage of error produced 
by each method and summarized in Table 1. 

From Figure 2 and Table 1, we can see that the 
CIP method gives the best accuracy compared to 
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other well-known numerical solution to advection 
equation. 
 

 
(a) CIP solution 

 

 
(b) Lax-Wendroff solution 

 

 
(c) First order upwind scheme solution 

Fig. 2 Numerical solution to advection equation 
 
 
 
Tab. 1 Computed average error for every solution 
method 
Solution 
Method 

First order 
upwind 

Lax-
Wendroff CIP 

Average 
Error (%) 6.820 5.421 1.454 

 

4 Two-Dimension CIP Lattice 
Boltzmann Method  
In the formulation of CIPLBM scheme, the 
governing equation is readily split into advection 
and non-advection phase (Refer Eq. (1)). The right 
hand side of the equation, the non-advection phase 
or collision term specifically, can be directly solved 
without any difficulty. On the other hand, the 
equation in the advection phase will be solved using 
the CIP method discussed in the previous section. 

The evolution of advection and collision phase 
can be rewritten separately as follow 
 

i i
i

f f
t

∂ ∂
∂ ∂

= −c
x

                  (19) 

 
and 
 

eq
i i if f f

t
∂
∂ τ

−
= −                  

(20) 
 
We then differentiate Eqs. (19) and (20) with spatial 
variables 

 

x  and 

 

y  gives 
 

, ,x i x i
i

f f
t

∂ ∂
∂ ∂

= −c
x

                 

(21) 
 

, ,y i y i
i

f f
t

∂ ∂
∂ ∂

= −c
x

                  

(22) 
 
and  
 

, , ,
eq

x i x i x if f f
t

∂
∂ τ

−
= −                    (23) 

 
, , ,

eq
y i y i y if f f
t

∂
∂ τ

−
= −                 (24) 

 
where 

 

fx = ∂f ∂x  and 

 

fy = ∂f ∂y .  
In the computation at two-dimensional space, 

distribution function in the element grid interval are 
approximated as follow 
 

( ) ( )
( )

, 1 2 3 4

5 6 7

i xi

xi i

F x y a X a Y a X a Y f X

a Y a X a Y f Y f

 = + + + + + 
 + + + + 

    (25)                                         

 
where 
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( ), 1, , ,
3

2
1 m xi m n xi m nd f f

a
x

−− + +
=

∆
                 (26) 

 

 

a2 = a8 − dxn∆x
∆x 2∆y

                (27) 

 

 

a3 =
−3dn − fxi,m−1,n + 2 fxi,m,n( )∆x

∆x 2               (28) 

 

 

a4 =
−a8 + dxn∆x + dyn∆y∆x

∆x∆x
               (29) 

 

 

a5 =
−2dn + fyi,m,n +1( )∆y

∆y 3               (30) 

 

 

a6 =
a8 − dym∆y

∆x∆y 2                   (31) 

 

 

a7 =
3dm + fyi,m,n−1 + 2 fyi,m,n( )∆y

∆y 2               (32) 

 

 

a8 = fi,m,n − fi,m−1,n − fi,m,n−1 + fi,m−1,n−1                 (33) 
 
here 

 

dm = fi,m,n − fi,m−1,n , 

 

dn = fi,m,n − fi,m,n−1  and 

 

m  
and 

 

n  refer to horizontal and vertical direction in 
phase space. 

The spatial derivatives are calculated as  
 

 

Fxi x, y( )= 3a1X + 2a2Y + a3( )X + a4 + a6Y( )Y + fxi  
                 (34) 
 

 

Fyi x, y( )= a2X + a4( )X + 3a5Y + 2a6X + 2a7( )Y + fyi

                        (35) 
 
In two-dimensional case, the advected profile is 
approximated as follow 
 

 

fi
n = Fi x +ξxi , y +ξyi( )               (36) 

 

 

fxi
n = Fxi x +ξxi , y +ξyi( )                (37)   

 

 

fyi
n = Fyi x +ξxi , y +ξyi( )               (38) 

 
where 

 

ξxi = −cxi∆t  and 

 

ξyi = −cyi∆t .  
In summary, the evolution of CIP-LBM consists 

of three steps. The initial value of 

 

fi , 

 

fxi  and 

 

fyi  are 
specified at each grid point 

 

m,n( ). Then the system 
evolves in the following steps; 

Since the pre-advected value of 

 

fi , 

 

fxi  and 

 

fyi  
are known on each grid, the constrained 
interpolation process can be completed according to 
Eqs. (25), (34) and (35).  

After the interpolation, advection takes place, 
and 

 

fi
n , 

 

fxi
n  and 

 

fyi
n  are obtained. 

The values of 

 

fi
n +1, 

 

fxi
n +1 and 

 

fyi
n +1 on the mesh 

grid are computed from the newly advected values 
in step 2. Then the interpolation and the advection 
processes are repeated. 
 
 
5 Simulation Results  
In this section, we apply the CIPLBM discussed in 
the proceeding section to predict the flow structure 
inside a lid-driven square cavity. The obtained 
results are then compared with those predicted from 
first order upwind scheme lattice Boltzmann method. 
The purpose of the comparison is to demonstrate the 
capability of CIPLBM to produce an excellent result 
compared with the first order upwind lattice 
Boltzmann method under the same number of grids 
needed to interpolate profile between the two 
neighboring grids.  

The lid-driven cavity flow has been used as a 
benchmark problem for many numerical methods 
due to its simple geometry and complicated flow 
behaviours. It is usually very difficult to capture the 
flow phenomena near the singular points at the 
corners of the cavity. In the simulation, the 
Reynolds number is chosen to be 100, 400 and 1000. 
The 50 

 

× 50 uniform mesh is used for both methods.  
Figures 3(a)-3(c) show the plots of vertical and 

horizontal velocity profile at the mid-height and 
mid-width of the cavity respectively. As can be seen 
from the figure, the results computed from the 
CIPLBM are very close agreement with the 
benchmark solution of Ghia et al. [14]. However, at 
the highest Reynolds number computations, some 
deviations can be seen due to low spatial resolution, 
but still the CIPLBM is able to show the correct 
profile.    

Figures 4(a)-4(c) show plots of stream function 
for the Reynolds numbers considered obtained from 
CIP prediction. It is apparent that the flow structure 
is in good agreement with the previous work of 
Ghia et al.  
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(a) 

 

(b) 

 
                           (c) 

Fig. 3 Velocity component plots for (a) , 
(b)  and (c)  

 

  

(a) 

 

(b) 

 

(c) 
Fig. 4 Streamline plots for (a) , (b) 

 and (c)  

 
 

 

u*
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For low Reynolds number simulation, 

 

Re =100 , 
the center of vortex is located at about one-third of 
the cavity depth from the top. As 

 

Re  increases, the 
primary vortex moves towards the center of cavity 
and increasing circular. In addition to the primary, a 
pair of counterrotating eddies develop at the lower 
corners of the cavity. 

From the results presented above, we can see that 
the CIPLBM produced an excellent agreement with 
those published in the literature. 

After we gain confidence in our computational 
method, we carry out investigation of flow structure 
in a shear driven shallow cavity. The aspect ratio 
defined in current study is 

 

D = w h  where 

 

w  and 

 

h represent the width and height of the cavity 
respectively. Three values of aspect ratio (

 

D =1.5, 2 
and 3) are considered and the flow behavior at 
Reynolds numbers of 100, 400 and 1000 are 
investigated for every value of D. We present our 
results based on the plots of streamlines to discuss 
the vortex behavior in the system under the effect of 
aspect ratio and Reynolds number. 

The simulation set up for every condition is 
tabulated in Table 2.  

 
Tab. 2 Initial setup for the computation of shallow 
lid-driven cavity flow using CIPLBM 
Reynolds No. Aspect Ratio Mesh size 

100 
1.5 75 x 50 400 

1000 
100 

2.0 100 x 50 400 
1000 
100 

3.0 150 x 50 400 
1000 

 
The simulations were considered to have reached 

a steady state condition when the r.m.s change in 
horizontal and vertical velocity decreased to a 
magnitude of 

 

106 or less. 
 Figs. 5(a)-(c) show the streamlines of cavity 

with aspect ratio 1.5. These three figures 
corresponds to Re = 100, 400 and 1000 with mesh 
sizes mentioned in Tab. 2. As can be seen from the 
figures, for low Reynolds number simulation, a 
counter-rotating vortex is formed at the one-third 
from the top moving lid. As the Reynolds number 
increases, the center of the primary eddy begin to 
move downwards and achieved steady state at the 
center of the system for Re = 1000. The secondary 
eddies are believed started to develop at Re = 100. 
However, we failed to capture this phenomenon due 

to low spatial resolution. As we increase the 
Reynolds numbers, the secondary vortices can be 
clearly seen at the bottom corners of the cavity. The 
left secondary vortex shows bigger in size due to 
higher force drags the vortex upwards compared to 
the right region. As a result, the center of the 
secondary vortex on the left side is shifted upwards 
and formed at the one-third from the top lid of the 
cavity. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 5 Streamline plots for (a) , (b) 
 and (c)  at aspect ratio of 1.5. 

 
For the case where the aspect ratio is 2.0, a grid 

size of 50 x 100 was employed. Figs. 6(a)-6(b) show 
that the primary vortex center descends to the center 
of the cavity with increased strength as the Reynolds 
number increases. From the figure, two secondary 
vortices of different sizes are visible at the lower 
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corners of the cavity with the left vortex being 
bigger than the right vortex due to the flow direction 
from the right corner to the left corner. The 
difference in size becomes obvious with increasing 
Reynolds numbers. This phenomenon affects the 
position of the center of primary vortex which is 
shifted to the right of the cavity system. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6 Streamline plots for (a) , (b) 
 and (c)  at aspect ratio of 2.0. 

 
For an aspect ratio of 3.0 which represent a more 

shallow cavity, the simulation employed 50 x 150 
grid system. As Reynolds numbers increases, Figs. 
7(a)-7(c) show that the primary vortex began to split 
into two vortices. However, very small secondary 
vortices are observed at the bottom corners even 
when the Reynolds numbers increases. Hence, it can 
be said that the enlarged cavity in the flow direction 
will supress the generation of vortices at the corners. 
The secondary vortices can only be clearly seen at 
Re = 1000 simulation. However, it’s shape is 
elongated horizontally due to the formation of 
primary vortex on top of it due to dominant inertia 
force in this range of Reynolds number. All of these 

observations are in good agreement with the 
previously published results on the literature [22-25]. 

From the results presented above, we can say 
that the CIPLBM is a reliable alternative numerical 
method which is capable to capture the critical 
points in the tested problem. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 7 Streamline plots for (a) , (b) 
 and (c)  at aspect ratio of 3.0. 

 
 
5 Conclusion 
In this paper, the phenomenon of an incompressible 
fluid flow inside lid-driven cavity was predicted 
using an alternative numerical scheme of the lattice 
Boltzmann.  The advection term in the governing 
equation was solved using the constrained 
interpolated profile method. The capability of the 
scheme in solving the problem in hand has been 
proved. Detailed studies of cavity flow problem 
using the proposed approach have shown that the 
method is accurate and suitable for a wide range of 
Reynolds numbers simulation. This verification 
gave us confidence to apply the method to shallow 
lid-driven cavity flow problems. Complex structure 
of vortex was successfully regenerated. These 
demonstrate the proposed scheme is a very efficient 
numerical method to study fluid in an enclosed 
cavity and shall be applied to complex system in 
near future. 
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