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Abstract: Orthogonal Tensor Neighborhood Preserving Embedding (OTNPE) is an efficient dimensionality reduc-
tion algorithm for two-dimensional images. However, insufficiencies of the robustness performance and deficien-
cies of supervised discriminant information are remained. Motivated by the sparse learning, an algorithm called
Orthogonal Tensor Sparse Neighborhood Embedding (OTSNPE) for two-dimensional images is proposed in the
paper. The algorithm firstly regards two-dimensional images as points in the second-order tensor space, then, the
neighborhood reconstruction of samples within the same class is achieved with sparse reconstruction. Finally,
projections are gotten to preserve local sparse reconstruction relation and neighborhood relation within the same
class and spatial relation of pixels in an image. Experiments operated on Yale, YaleB and AR databases show, in
contrast to the existing typical tensor dimensionality reduction algorithms, the algorithm can improve the accuracy
rate of classification algorithms based on the shortest Euclidean distance.

Key–Words: Dimensionality Reduction, Tensor Image, Neighborhood Preserving Embedding, Sparse Reconstruc-
tion, Supervised Discriminant Information, Face Recognition.

1 Introduction
With rapid development on the information technol-
ogy, there are plenty of high-dimensional data in
practical applications of machine learning and pat-
tern recognition, such as face images, gene represen-
tation data, and text data etc. It is expensive cost to
do with these high-dimensional data directly and is
easy to produce classification information redundan-
cies, namely curse of dimensionality [1]. Accord-
ing to certain rule, dimensionality reduction trans-
forms high-dimensional data into meaningful low-
dimensional data [2]. Therefore, dimensionality re-
duction can eliminate the problem and is the main re-
search topic of data mining.

Principal Component Analysis (PCA) [3] and
Linear Discriminant Analysis (LDA) [4] are initial
linear dimensionality reduction methods. PCA is a
common dimensionality reduction method based on
variable covariance matrix, which aims to find essen-
tial linear dimensionality by estimating statistics prop-
erties of data. As a supervised dimensionality reduc-
tion method, the purpose of LDA is projecting high-
dimensional data into the most distinguishable vec-
tor space to exact classification information and re-

duce feature space dimensionality, which guarantees
more between-class distance and less within-class dis-
tance of input samples in the new projected subspace.
PCA and LDA are not successfully applied in nonlin-
ear data because they are linear dimensionality reduc-
tion methods. Therefore, Kernel Principal Compo-
nent Analysis(KPCA)[5] and Kernel Fisher Discrimi-
nant Analysis (KFDA) [6] are proposed and success-
fully applied in actual nonlinear data mining practice.
However kernel functions and parameters are difficult
to be selected.

To solve the problem of kernel versions, manifold
learning-based dimensionality reduction algorithms
are specially proposed in nonlinear data, exposing in-
herent structure hidden datasets and preserving local
geometric characteristics that are embedded in a high-
dimensional space. Representative algorithms include
Locally Linear Embedding (LLE) [7], Isometric Fea-
ture Mapping (ISOMAP) [8], Laplacian Eigenmaps
(LE) [9] , Hessian-based Locally Linear Embedding
(HLLE)[10], Maximum Variance Unfolding (MVU)
[11], Local Tangent Space Alignment (LTSA) [12,13],
Riemannian Manifold Learning(RML) [14,15], and
Local Spline Embedding (LSE)[16],etc. Each man-
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ifold learning algorithm attempts to preserve a dif-
ferent geometrical property of the underlying mani-
fold. However, implicit mappings are defined training
samples and fail to directly reflect new data points,
which are created by these algorithms between high-
dimensional space and low-dimensional space. In or-
der to solve this problem, Locality Preserving Pro-
jections (LPP) [17,18] and Neighborhood Preserving
Embedding (NPE) [19] have been proposed. As un-
supervised dimensionality reduction algorithms, NPE
aims at finding a low-dimensional embedding that
optimally preserves the local neighborhood structure
on the original data manifold. Though experiments
on real face database have shown the effectiveness
of the NPE algorithm, there are some disadvantages
should be paid close attention to and extend versions
of NPE have been proposed. For overcoming the out-
of-sample problem, Orthogonal Neighborhood Pre-
serving Projections (ONPP) [20] and Discrimina-
tive Orthogonal Neighborhood Preserving Projections
(DONPP) [21] are proposed. Complete Neighbor-
hood Preserving Embedding (CNPE) [22] transforms
the singular generalized eigen-system computation
into two eigenvalue decomposition problems.

Above algorithms adopt the matrix-to-vector way
to gain features descriptions. The way transforms
n1 × n2 matrix into n1 × n2 dimensional vector,
which not only costs more computational time but
also has great passive impact on the evaluation of
the covariance matrix. In view of these, Yang et al.
[23] proposed a two-dimensional PCA(2DPCA) al-
gorithm, which enables us to directly use a feature
input of 2D image matrices rather than 1D vectors.
2DPCA achieves promising results in contrast to the
traditional PCA in terms of face recognition rate and
training time. Motivated by 2DPCA, Li and Yuan
[24] designed 2DLDA and Chen et al. [25] proposed
2DLPP algorithms. Two-dimensional Neighborhood
Preserving Projection (2DNPP) [26] is proposed for
appearance-based face representation and recognition.

However, dimensionality reduction algorithms
based on two-dimensional are only limited on dimen-
sionality reduction on the row or the rank, which
fail to take into account the spatial relation of image
pixels. Tensor-based dimensionality reduction algo-
rithms represent sample data with second-order tensor
and preserve local information in image pixels spaces,
which can describe structure information in image.
[27] not only extend traditional PCA and LDA into
second-order tensor space but also make deep anal-
ysis of the reason for more performances. [28] ex-
tend traditional LPP into tensor LPP. [29] proposes
an Uncorrelated Multi-linear Discriminant Analysis
(UMLDA) framework for the recognition of multidi-
mensional tensor objects. Dai and Yeung [30] pro-

posed tensor NPE (TNPE). [31] proposed Orthogo-
nal Tensor Neighborhood Preserving Embedding (OT-
NPE) extend the TNPE to an orthogonal version by
our orthogonal tensor subspace model and apply it
to the prototypic facial expressions recognition. [32]
proposed to represent an image as a local descriptor
tensor and used a Multi-linear Supervised Neighbor-
hood Embedding (MSNE) for discriminant feature ex-
traction for subject or scene recognition. However,
these is an important problem remained in algorithms
on NPE, namely, local approximation based on Euler
distance is far from preserving local geometric struc-
ture when serious external disturbs happen on images.

Recently sparse learning is applied successfully
in machine learning and pattern recognition, includ-
ing object detection [33,35], classification [34,36] and
so on. Sparse representation-based classification algo-
rithms reconstruct one of training samples with rest of
training samples. Recent researches [35,36] demon-
strate that sparse representation-based classification
algorithms are available of great performance of ro-
bustness on face images with external disturbance, in-
cluding deformity, dressing and shelter.[37] is repre-
sentative sparse learning algorithm, which proposed
graphic l1 construction method based on sparse rep-
resent to achieve the reconstruction of every train-
ing sample with training samples, ensuring relations
among training samples. The theory of sparse learn-
ing has generalized into the field of dimensionality re-
duction. These algorithms include (VS-SSVM) [38],
Sparse Principal Component Analysis (SPCA)[39],
Sparsity Preserving Projections (SPP) [40].

Motivated by sparse learning, we propose a Or-
thogonal Tensor Sparsity Neighborhood Preserving
Embedding (OTSNPE) algorithm for dimensionality
reduction on two-dimensional images. The algo-
rithm preserves local sparse reconstruction of sam-
ples within the same class on images in the process of
dimensionality reduction. Data in the new projected
data spaces not only preserve neighborhood geomet-
ric structure information of input data and spatial rela-
tion of pixels in images but also preserves supervised
discriminant information based on class label. Exper-
iments on AR, Yale and YaleB face databases demon-
strate the effectiveness of the algorithm.

OTSNPE is available of excellencies as follows:
(1) To traditional NPE, the neighborhood param-

eter k or ε is required to set for selecting neighbour-
hood samples while the problem is free in OTSNPE.

(2) Sparse neighborhood reconstructions within
the same class introduce supervised discriminant in-
formation based on class label.

(3) It is expensive to achieve sparse reconstruc-
tion of all training samples when the number of sam-
ples is larger, which do not happen on OTSNPE be-
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cause of the number of the same class is limited.
(4) Powerful robustness in sparse reconstruction

guarantees OTSNPE to adapt to image with various
lighting conditions ,deformities, dressings and shel-
ters.

The rest of this paper is organized as follows: In
Section 2 we will introduce basic knowledge and re-
lated works. The objective function and steps of OT-
SNPE are given in Section 3. The experimental re-
sults for applying our method to face recognition will
be presented in Section 4, followed by the conclusions
in Section 5.

2 Basic knowledge and related works
In this section, we first introduce basic knowledge, in-
cluding basic theory of tensor and tensor-based im-
age representation in 2.1; and then in 2.2 we review
related works on sparse representation and sparse re-
construction, NPE as well OTNPE.

2.1 Basic knowledge

2.1.1 Basic theory of tensor

Tensor is multiple linear maps of a serial vector
spaces. Generally speaking, the tensor is regarded as
the extend of the matrix. A vector is a first order ten-
sor and a matrix is a second order tensor. If several
matrices that have same dimensions are stacked into a
array, the array becomes a third order tensor.

Let χ ∈ RN1×N2×···×NM be a tensor. The
order of χ is M . One point of χ is defined as
χn1,n2,··· ,nM (1 ≤ ni ≤ N, 1 ≤ i ≤ M) and the size
of the i-th dimension of is Ni. Fig.1 shows a third
order tensor.

Figure 1: A third order tensor χ ∈ RN1×N2×N3

Definition 1 d-mode matrix unfolding of M or-
der tensor χ ∈ RN1×N2×···×NM , namely Xd =
R(Πi ̸=dNi)×Nd .

Definition 2 The scalar product of two tensor
χ, γ ∈ RN1×N2×···×NM is defined as < χ, γ >=
Σi1 · · ·Σikχi1···ikγ

∗
i1···ik , where ∗ denotes complex

conjugation.

Definition 3 The i-mode product of a tensor χ ∈
RN1×N2×···×NM and a matrix U ∈ RNi×N

′
is an

N1 × N2 × · · · × Ni−1 × N
′ × Ni+1 × · · · × NM

tensor denoted as χ×d U , namely,

χ×d U(N1 ×N2 × · · · ×Ni−1 ×N
′ ×Ni+1

× · · · ×NM )

= ΣNi
id=1χ(i1, · · · , id−1, j, id+1, · · · , iM )U(id, j)

(1)

2.1.2 Image representation based on second-
order tensor

A matrix image is intrinsically a second-order tensor.
The relationship between the rows vectors of the ma-
trix and the column vectors of the matrix might be
important for finding projections, especially when the
number of training samples is small.

Based on the algebra of higher order tensor,
we introduce coordinate transformation in the tensor
space. Let {uki}n1

k=1 be the standard orthogonal base
of the tensor space Rn1 and {vli}n2

l=1 be the standard
orthogonal base of the tensor space Rn2 . Then

uk = (uk1, · · · , ukn1)
T =

∑
i

ukiεi

vk = (vl1, · · · , vln2)
T =

∑
j

vljεj
(2)

According to Eq.(1) and Eq.(2), we can get as follows:

εi =

n1∑
k=1

ukiUk, εj =

n2∑
l=1

uliUl (3)

Therefore, an image is represented by new basis,
namely,

T =
∑
ij

Tijεi
⊗

εj

=
∑
kl

(
∑
ij

Tijukivtj)UK

⊗
Vt

=
∑
kl

(UT
KTVT )UK

⊗
Vt

(4)

An image of size n1 × n2 pixels is naturally regarded
as one point in the tensor space that is the inner prod-
uct space of two vectors. The base of ui×vj is regard
as tensor base of the image.

2.2 Related works

2.2.1 Sparse representation and sparse recon-
struction

Given a set of training samples X =
{x1, x2, x3, · · · , xn} ∈ Rd×n, sparse represen-
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tation aims to reconstruct each sample xi with else
sample, using as few samples as possible, namely,
seek a sparse reconstructive weight vector Si for each
xi through the following minimization problem:

min
Si

∥Si∥0

s.t. xi = XSi

(5)

where Sij denotes the contribution of each xj to re-
constructing xi. ∥Si∥0 is the pseudo- l0 norm which
is equal to the number of non-zero components in
S. However, Eq.(5) is NP-hard. The solution of l0
minimization problem is equal to the solution of l1
minimization problem [33-35]. Therefore, this diffi-
culty can be bypassed by transforming the problem
and solving as follows:

min
Si

∥Si∥1

s.t. xi = XSi

(6)

However, in many practical applications, the signal X
is generally noisy, Eq.(6) does not always hold. Two
robust extensions can be used to handle this problem
[39]: 1)∥xi − XSi∥ ≺ ε, where ε denotes an error
tolerance. 2) replace X with [X, I], where I denotes
a n-order identity matrix.

Sparse reconstruction seeks a sparse reconstruc-
tive weight vector Si for each xi through the following
modified l1 minimization problem:

min
Si

∥Si∥1

s.t. xi = XSi

1 = 1T si

(7)

where ∥Si∥1 denotes the l1 normal of Si, Si =
[Si1, · · · , Sii−1, 0, Sii+1, · · · , Sin]

T ∈ Rn is a vec-
tor in which Sij denotes the contribution of each xj to
reconstructing xi and 1 ∈ Rn is a vector of all ones.

xi = Si1x1 + · · ·+ Sii−1xi−1 + Sii+1xi+1

+ · · ·+ Sinxn
(8)

The sparse reconstruction matrix S =
[S1, S2, · · · , Sn]

T is attained through calculating
Si.

2.2.2 Neighborhood preserving embedding
(NPE)

Given samples X = {x1, x2, x3, · · · , xn} ∈ Rd×n,
NPE attempts to seek an optimal transformation ma-
trix T to map high-dimensional data X into low-
dimensional data Y = T TX , in which the local

neighborhood structure of X can be preserved. There
are some basic steps of NPE as follows:

(1) Construct neighborhood adjacent graphic G.
The adjacent graphic G is composed of N nodes.
Node i corresponds to sample xi . If sample xj is the
neighborhood of sample xi, there is a line between
xj and xi. Common methods for construct neighbor-
hood adjacent graphic G are k-neighborhood and ε-
neighborhood.

(2) Calculate the sparse reconstructive weights.
According to G, each sample in training samples is re-
constructed through the linear combination of neigh-
borhood nodes of the sample as follows

min
T

∑
i

∥ xi −
k∑

j=1

wijxj ∥2

s.t.

k∑
j=1

wij = 1

(9)

(3) projected low-dimensional data Y satisfy:

min
T

∑
i
∥ yi −

k∑
j=1

wijyj ∥2

= min
T
∥ Y (I −W ) ∥2

= min
T

(Y (I −W )(I −W )TY T )

= min
T

(TX(I −W )(I −W )TXT T )

= min
T

(TXMXT T )

(10)

where M = (I −W )(I −W )T , I represents an iden-
tity matrix. In order to make the optimization problem
well-posed, constrain conditions are introduced as fol-
lows:

N∑
i=1

yi = 0

1
N−1

N∑
i=1

yTi yi = I

(11)

According to Y = T TX , we replace Y with T TX in
Eq. (10) and Eq. (11) and get the objective function:

min
T

T TXMXTT

T TXXTT = I
(12)

2.2.3 Orthogonal Tensor neighborhood preserv-
ing embedding (OTNPE)

OTNPE can process directly data based on high-order
tensors without unfolding them to vectors. Given
n original data points x1, · · · , xn in tensor space
RI1×I2×···×Ik . In order to preserve the local structure
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explicitly, OTNPE is to find k transformation matrices
U i ∈ Rmi×m

′
i(mi > m

′
i, i = 1, · · · , k) to achieve

projections on the basic of TNPE, which is defined by
the following objective function based on the Frobe-
nius norm of a tensor:

min
∑
i

∥xi ×1 U
1 · · · ×k U

k

−
∑
j

Mi,jxj ×1 U
1 · · · ×k U

k∥2F

s.t.
∑
i

∥xi ×1 U
1 · · · ×k U

k∥2F = 1

(Um)T (Um) = Im(m = 1 · · · k)

(13)

By employing the Alternative Least Squares,
U1, U2, · · · , Uk converge to local optimal solutions
technique, and then the low dimensional representa-
tions are obtained by Y = X ×1 U1 · · · ×k Uk for
X .

3 Orthogonal Tensor Sparse Neigh-
borhood Preserving Embedding
(OTSNPE)

In this section, we first introduce the basic idea of our
algorithm and then the objective function is obtained;
finally we give steps of our algorithm.

3.1 Basic idea

Although TNPE and OTNPE have been successfully
applied in dimensionality reduces on two-dimensional
images, there are some following shortcomings:

(1) The setting of the parameter of k or ε is diffi-
cult to deal with because of the lack of mature mathe-
matical models.

(2) Deficiencies of supervised discriminant infor-
mation require plenty training samples, which is unfit
for practical application.

(3) Approximate nonlinear reconstruction not
only fails to reflect fully local intrinsic geometric
structures on images with nonlinear structure but also
has poor robustness performance on disturbed images.

According to above analysis, there are some
methods for these shortcomings as follows:

(1) Sparse reconstruction relations reflect intrin-
sic geometric properties of the data and contain nat-
ural discriminant information. Besides, sparse recon-
struction has been proved to have strong robustness
performance on disturbed images.

(2) The reconstruction of neighborhood within
the same class provides supervised discriminant infor-
mation based on class label.

Therefore, it is viable to fuse these methods into
OTNPE, which share advantages of them.

3.2 Objective function

Given samples X = {xi|xi ∈ Rn1×n2 , 1 ≤ i ≤ n}
and classes C = {1, 2, 3, · · · ,m}. There are h sam-
ples in each class. Firstly, the sparse construction of
neighbourhoods within the same class is defined as
follows:

min
sli

∥Sl
i∥1

s.t. xli =
k∑

j=1
Sl
ijx

l
j

1 = 1TSl
i

(14)

where xli denotes a sample xi of the class l ∈ C(1 ≤
l ≤ m), Sl

ij denotes the contribution of each xj to re-
constructing xi in the class l and Sl

i denotes the sparse
reconstruction vector of xi in the class l. In contrast
to Eq.(7), Eq.(14) gives us description of sparse re-
constructive weights of xi in neighborhood samples
within the same class, which make the improved re-
construction way not only fuses supervised discrimi-
nant information from class label but also fuses sparse
reconstruction to preserve local intrinsic geometric
property. The weight matrix WS of training samples
can be gotten by the way of neighborhood sparse re-
constructions.

Secondly, a two-dimensional image is regarded as
a second-order tensor image. Given a group data X =
(x1, x2, x3, · · · , xn) of the tensor space Rn1 ⊗ Rn2 ,
the destination of dimensionality reduction based on
second-order tensor representation is to search two
transformational matrices U(n1 × l1) and V (n2 × l2)
to get a new group of data Y = (y1, y2, y3, · · · , yn)
in the new tensor space Rl1 ⊗ Rl2 , l1 < n1, l2 < n2,
namely Y = UTXV .

According to Eq.(13) and Eq.(14), we can draw
the following objective function:

min
U,V

n∑
i=1

∥yi −
h∑

j=1

WS
i,jyj∥2F

= min
U,V

n∑
i=1

∥UTxi × V −
h∑

j=1

WS
i,jU

Txj × V ∥2F

s.t.
∑
i

∥Xi ×1 U ×2 V ∥2F = 1

UTU = I, V TV = I

(15)

where MS = (I −WS)(I −WS)T .
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The process of computing transformation matri-
ces U and V is as follow:

(1) According to ∥A∥2F = tr(AAT ), we can get:

n∑
i=1

∥yi −
h∑

j=1

WS
i,jyj∥2F

=

n∑
i=1

∥yi(I −WS)∥2F

=

n∑
i=1

tr[(yi(I −WS))(yi(I −WS))T ]

=
n∑

i=1

tr[(UTxiV (I −WS))(UTxiV (I −WS))T ]

=
n∑

i=1

tr[UT (xiV )(I −WS)(I −WS)T (xiV )TU ]

=

n∑
i=1

tr[UT (xiV )MS(xiV )TU ]

= tr[UT
n∑

i=1

(xiV )MS(xiV )TU ]

(16)

Let xνi = xiV (1 ≤ i ≤ n). In order to get U , we
define the objective function as follows:

min
U

tr[UT
n∑

i=1

(xνi )M
S(xνi )

TU ]

s.t.
∑
i

∥xνi × U∥2F = 1

UTU = I

(17)

Eq.(17) is converted to a generalized eigenvalue prob-
lem:

XνMS(Xν)Tuh = λhX
ν(Xν)Tuh (18)

where uh(1 ≤ h ≤ l1) is generalized eigenvec-
tor, λh is generalized eigenvalue and λ1 > λ2 >
λ3 > · · · > λl1 is required to be satisfied. We
can attain corresponding generalized eigenvector U =
{u1, u2, · · · , ul1} .

(2) Similarly, according to ∥A∥2F = tr(ATA), we
can draw:

n∑
i=1

∥yi −
h∑

j=1

WS
i,jyj∥2F

= tr[V T
n∑

i=1

(xTi U)MS(xTi U)TV ]

(19)

Let xui = xTi U(1 ≤ i ≤ n), in order to get V , we
define the objective function as follows:

min
V

n∑
i=1

tr[V Txui M
S(xui )

TV ]

s.t.
∑
i

∥Xu
i × V ∥2F = 1

V TV = I

(20)

Eq.(20) can be further to convert into a generalized
eigenvalue problem:

XuMS(Xu)T vh = λhX
u(Xu)T vh (21)

Similarly, we can attain corresponding generalized
eigenvector V = {v1, v2, · · · , vl1} .

To ensure U and V converged, we iterate the pro-
cedure for several times until error conditions are sat-
isfied.

3.3 Algorithm steps

Input: Training samples X = {x1, x2, x3, · · · , xn}
of the tensor space Rn1 ⊗ Rn2 and xi ∈ Rn1 ⊗ Rn2 ,
class C = {c1, c2, c3, · · · , cm}, k samples in each
class, error ε.

Output: two project matrix U(n1 × l1) and
V (n2 × l2) .

Steps:
(1) Initial setting: U(1) = I(n1, l1),V(1) =

I(n2, l2), t = 1, U(1) and V(1) denote respectively
unit matrix, Xν = {xνi |xνi ∈ Rn1×l2 , 1 ≤ i ≤ n} ,
Xu = {xui |xui ∈ Rn2×l1 , 1 ≤ i ≤ n}, elements of Y
and Z are zero.

(2) According to Eq.(14), calculate the sparse re-
constructive weight Sl of samples in the each class.
The weight matrix WS is attained with Sl.

(3) Set iteration circle variation t = 1.
(4) Calculate xνi = xiV (1 ≤ i ≤ n).
(5) According to Eq. (18) calculate U(t) and U(t)

is normalized.
(6) Calculate xui = xTi U(1 ≤ i ≤ n).
(7) According to Eq. (21) calculate V(t) and V(t)

is normalized.
(8) If ∥ U(t)−U(t−1) ∥≺ ε and ∥ V(t)−V(t−1) ∥≺

ε, then jump into step (9), else t = t+1 and jump into
step (4).

(9) Obtain projections matrix U = U(t) and V =
V(t).

4 Experiments and analyses
In this section, in order to evaluate the performance
of our proposed algorithm, we apply our OTSNPE
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Figure 2: A group of face images on AR

into face recognition and compare it with the TPCA,
TLDA, TLPP,TNPE and OTNPE on AR, Yale and
YaleB two-dimensional face databases which are dis-
turbed by external environment.

4.1 Experimental settings

TPCA, TLDA, TLPP,TNPE and OTNPE are com-
pared with the proposed OTSNPE for analyses on per-
formances of OTSNPE. Apart from error ε set to 0.01,
the detail settings of other parameters on algorithms
are shown in Table 1.

Table 1: The detail settings of parameters on algo-
rithms

Algorithms name Parameters settings
TPCA no
TLDA no
TLPP κ = 7
TNPE κ = 7
OTNPE κ = 7
OTSNPE no

where the parameter k denotes the neighborhood
size.

The simplest Nearest Neighbor Classifier(NNC)
is applied in the experiment. For computational con-
venience, we resize face images to different pixels ac-
cording to different face databases. We select ran-
domly the certain number of images from each group
of faces for training samples and remains for testing
on face databases.

4.2 Experimental results

4.2.1 Experimental results on AR

AR face database consists of over 4000 face images of
126 individuals. For each individual, 26 pictures were
taken in two sessions that separated by two weeks and
each section contains 13 images, which include front
view of faces with different expressions, illuminations
and occlusions. Fig.2 shows a group of face images on
AR.

In our experiment, we firstly resize theses face
images to 30 × 30 pixels. Furthermore ,we set

(a) L = 5

(b) L = 10

(c) L = 15

Figure 3: The recognition rate VS. the number of di-
mensions under L training samples on AR

L(5, 10, 15) images of each group faces for training
samples and remains for testing.

In order to evaluate the performance of our al-
gorithm, we select respectively different number of
retained feature dimension with increment of twenty
and calculate corresponding recognition accuracy
rate. Concrete experimental results on AR are shown
in Fig.3.
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Figure 4: A group of face images on Yale

4.2.2 Experimental results on Yale

Yale face database contains 165 face images of 15 in-
dividuals. There are 11 images per subject, and these
11 images are respectively, under the following dif-
ferent facial expression or configuration: center-light,
wearing glasses, happy, left-light, wearing no glasses,
normal, right-light, sad, sleepy, surprised and wink. A
group of face images on Yale are shown in Fig.4.

(a) L = 5

(b) L = 6

(c) L = 7

Figure 5: The recognition rate VS. the number of di-
mensions under L training samples on Yale

In the experiment image are resized to 32×32 pix-
els. we get L(5, 6, 7) images of each group faces for

training samples and remains for testing. Similarly,
we select respectively different number of feature di-
mension and calculate corresponding recognition ac-
curacy rate. Fig.5 gives us concrete experimental re-
sults on Yale.

4.2.3 Experimental results on YaleB

YaleB face database contains 2414 front-view face
images of 38 individuals. For each individual, about
64 pictures were taken under various laboratory-
controlled lighting conditions. A group face images
of YaleB are shown in Fig.6.

Firstly images are resized to 32×32 pixels. we set
L(5, 10, 15, 20) images of each group faces for train-
ing samples and remains for testing. Similarly, we
respectively select different number of feature dimen-
sion and calculate corresponding recognition accuracy
rate. Fig.7 shows concrete experimental results.

4.3 Experimental analyses

From Fig.3, Fig.5 and Fig.7, we can draw conclusions
as follows:

(1) In contrast to TPCA, Our OTSNPE algorithm
outperforms TPCA obviously. This is mainly be-
cause TPCA only sees the global Euclidean structure
of data, which is obviously not fit for AR, Yale and
YaleB with nonlinear properties.

(2) TLDA also is a linear dimensionality reduc-
tion, our OTSNPE algorithm is not always superior
to TLDA in different retained subspace dimension.
TLDA outperform OTSNPE when the number of re-
tained subspace dimension is small and OTSNPE out-
perform TLDA when the number of retained subspace
dimension is more than the certain number. This is
illuminated by that the global supervised linear dis-
criminant information is still limited by linear struc-
ture and is more easy to result in over-fitting problem.

(3) Our OTSNPE algorithm is obviously superior
to TLPP which preserve the local nonlinear structure
of data. However, TLPP is difficult to attain accurate
local geometric structure discriminant information on
AR, Yale and YaleB with various lighting conditions,
deformity, dressing and shelter, which demonstrates
the power robustness performance of OTSNPE.

(4) OTSNPE algorithm is superior to TNPE and
OTNPE, which is illuminated by that TNPE and OT-
NPE aim to preserve the local manifold structure of
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Figure 6: A group of face images on YaleB

(a) L = 5

(b) L = 10

(c) L = 20

Figure 7: The recognition rate VS. the number of di-
mensions under L training samples on YaleB

data with the approximate nonlinear way that is poorer
in robustness on disturbed images than OTSNPE.

(5) With increment on the number of retained sub-
space dimension, the recognition accuracy of TPCA,
TLPP, TNPE and OTNPE promote continually. How-

ever, when the number of retained feature dimension
attains the threshold, there is a downtrend in the recog-
nition accuracy on TLDA and smoothness on OT-
SNPE. This illustrates that supervised discriminant in-
formation based on class labels play an important role
in OTSNPE.

To sum up, our proposed OTSNPE has the best
performance among all of the six dimensionality re-
duction approaches. This is probably due to the
facts that OTSNPE considers explicitly the within-
class sparse reconstruction by the objective function
(15), which captures local nonlinear structure proper-
ties with neighborhood reconstruction based on sparse
representations that have strong robustness on im-
ages. Moreover, the supervised discriminant informa-
tion detected by the objective function (15) is helpful
to make OTSNPE get most accuracy rate in the low-
dimensional subspace.

5 Conclusion
In the paper, aiming to solving the problem of
existing tensor neighborhood preserving embedding
on two-dimensional images, we propose Orthogo-
nal Tensor Sparse Neighborhood Preserving Embed-
ding(OTSNPE) for dimensionality reduction on the
basic of sparse reconstruction and tensor representa-
tion. The algorithm not only preserves local within-
class sparsity reconstruction but also preserves spa-
tial relations of pixels in images in the projected
subspace. Experimental results on AR, Yale and
YaleB demonstrate that our algorithm outperform
TPCA,TLDA,TLPP,TNPE and OTNPE.

However, each approach has its own advantages
and disadvantages. In order to capture local geometric
characteristics through sparse reconstructions within
the same class, the certain number of training sam-
ples in each class is required in our proposed algo-
rithm. The algorithm also ignores global geometric
characteristics of training data. How to absorb global
nonlinear discriminant information into the algorithm
to further improve its performance is an important
work. Moreover, the proposed algorithm is for two-
dimensional images. How to extend it to more order
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tensor to deal with data with more than three dimen-
sion is also the future work.
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