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Abstract: Based on the combination of the particle swarm algorithm and multiplier penalty function method for
the constraint conditions, this paper proposes an improved hybrid particle swarm optimization algorithm which
is used to solve nonlinear constraint optimization problems. The algorithm converts nonlinear constraint function
into no-constraints nonlinear problems by constructing the multiplier penalty function to use the multiplier penalty
function values as the fitness of particles. Under the constraint conditions to make the particle swarm track the best
particle and fly to the global best, this paper is to redefine p-best which is the particles position last iteration and
g-best which refers to the best position of the group last iteration. And, by redefining p-best and g-best, the particle
can avoid tracking the p-best and the g-best whose fitness are excellent but violate constraints to great extent, so
that particle swarm would finally converge to the optimum position in the feasible domain. Numerical experiments
show that the new algorithm is correct and effective.
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1 Introduction
The constrained optimization problem is a branch of
the optimization problems, its mathematical model
can be formulated as follows:

Minimize f(x)
Subject to gi(x) ≥ 0, i = 1, ...m;

hj(x) = 0, j = 1, ...l.
(1)

where f(x),

gi(x) ≥ 0(i = 1, ...m)

and
hj(x) = 0(j = 1, ...l)

are functions defined in Rn.
If there is a nonlinear function contained in f(x)

or gi(x) or hj(x), (1) is called nonlinear constraint op-
timization problems. Let S ⊆ Rn denote the search-
ing space of the optimization problem. The con-
strained optimization problem is looking for the min-
imum point of target function f(x) in N -dimension
Euclidean space in the feasible region

F =

{
x ∈ RN

∣∣ gi(x) ≥ 0, i = 1, · · · ,m;
hj(x) = 0, j = 1, · · · , l

}
,

which is composed of inequality constraints gi(x) ≥ 0
and equality constraint hj(x) = 0. In the constrained
extreme value problem, since the decision variables
x = (x1, x2, · · ·xn) ∈ F ⊆ S ⊆ Rn smooth point
(stationary point) of the objective function in uncon-
strained might not be in the feasible region, so gen-
erally unconstrained extreme value conditions cannot
be used to solve constrain problem.

At present, there are two types of main methods to
solve the constrained optimization problem: certainty
method and randomness method. Certainty meth-
ods often require that target function and constraint
function are continuous and differentiable. Sequen-
tial quadratic programming method, Penalty function
method and Lagrange multiplier method all belong to
certainty method. The convergence speeds of these
algorithms are faster, but they are easy to go into the
local minimum value. So in generally they are suit-
able for solving the optimization problem of smaller
dimension. Random method has not the strict require-
ments for the objective function and constraint func-
tion. Genetic algorithm and Differential evolution al-
gorithm have been widely used in solving the con-
strained optimization problem [5].

Particle Swarm Optimization (briefly, PSO) was
firstly proposed by Kennedy and Eberhart in 1995,
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and it is an evolutionary algorithm based on iterations.
Since this algorithm has some advantages such as less
parameter, easy to realize, fast convergence speed and
better optimization ability, it has been paid widely
attention and been studied after it was put forward.
However, how to use it to solve nonlinear program-
ming problem with constraints is still at the primary
stages [5]. Parsopoulos et al. [6] brought the penalty
function into particle swarm algorithm to solve the op-
timization problem. During the initial and iterative
process, since those particles did not meet the con-
straint condition, Gao et al. [4] used the external point
method to replace the original particles of new parti-
cles under constraint conditions. The role of the ex-
ternal point method is to take advantage of penalty
function to change the constrained optimization into
unconstrained optimization. When the penalty fac-
tor tends to limit, penalty function becomes more and
more ill-conditioned and brings great difficulties for
function calculation. In particular, to determine ap-
propriate penalty coefficients becomes very difficult,
that is associated with the optimization problems it-
self. Hu and Eberhart et al. [7] gave a method that all
particles within the group were initialized to the feasi-
ble region, and then the particles beyond the feasible
region did not participate in the competition with the
best particle in the following iterative process. The
disadvantage of this method is the difficulty in initial-
izing particles when the feasible region is very small.
Pulido and Coello [11] gave a clever strategy of select-
ing the optimal particle, which did not need to initial-
ize particles in the feasible region, but by comparing
the position of the particles in the feasible region with
the particles in non-feasible region, it can make the
whole group gradually converge to the feasible region.
However, particles in non-feasible region could also
serve as attractors; this method would lead to some
computation wasted in non-feasible region. Ma et al.
[5] proposed a strategy that two good positions in fea-
sible region worked as attractors, in which each par-
ticle used the global best ”pg” as well as using the
nearest ”pi” in the feasible region to guide the search,
and this ”pi” could belong to other particles. How-
ever, this algorithm requested a particle of the initial
population was located in the feasible region.

This paper introduces the multiplier method
to handle the constraints by combining parti-
cle swarm optimization algorithm with multiplier
method, adding a multiplier penalty function to the
objective function and constructing augmented La-
grange function as the fitness function, and then the
minimum value problem of replaced the objective
function in (1) by the augmented Lagrange function.
Penalty factor does not tend to infinity, so that multi-
plier method would be able to obtain the optimal so-

lution of the constrained problem. And ill-condition
will not appear in the penalty function method. Mul-
tiplier method is a way to solve the constrained opti-
mization problems by revising multiplier vector and
penalty factor continuously, which makes the degree
of constraint violations of solution become smaller
and smaller and gradually approach to the best point
of the original constrained problem. According to
this feature of the constrained optimization, in this
paper, each particle of pg follows the optimal posi-
tion of the particle swarm groups in the previous iter-
ation rather than group’s historical optimum position,
and pi is the particle individual position in the previ-
ous iteration rather than individual historical optimum
position, because the latter often shows better fitness
when constraint violations extent is greater. The im-
proved hybrid algorithm combines the advantages of
random optimization ability of particle swarm opti-
mization with the superiority of the multiplier method.
Numerical experiments show that the new algorithm
has good effectiveness and feasibility.

2 Improved Particle Swarm Opti-
mization

Search of the particle swarm algorithm depends on the
N -particles flying in the D-dimensional search space
(N-particles have no size and no weight). Each parti-
cle represents a solution in search space, the flight po-
sition of the i-th particle (1 ≤ i ≤ N) is represented
as xi = (xi,1, xi,2, · · ·xi,D), the flight speed is ex-
pressed as vi = (vi,1, vi,2, · · · vi,D), and its flight is in-
fluenced by its own speed vi, the best location of indi-
vidual history pi = (pi,1, pi,2, · · · pi,D) and the parti-
cle groups optimal position pg = (pg,1, pg,2, · · · pg,D)
. In the standard particle swarm algorithm, for each
particle, its dimension d changes according to (2), (3):

vi,d(t+ 1) = wvi,d(t) + c1r1[pi,d − xi,d(t)]
+ c2r2[pg,d − xi,d(t)]

(2)

xi,d(t+ 1) = xi,d(t) + vi,d(t+ 1), d = 1, 2, · · · , D
(3)

where, t is the number of iterations, w is inertia
weight, c1 and c2 are learning factors, r1 and r2 is
a random number between (0,1).

The extreme points of the particles within the
search range are called the global optimal solution.
In this condition, optimization objective has no con-
straint or constraints do not work. In the standard
particle swarm algorithm, for each particle, to com-
pare its fitness and the best position pi which has gone
through, if the former is better, it can be used to up-
date pi; then to compare all pi and pg, if the pi is bet-
ter than pg then update pg. The speed of the particle
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is affected by the individual historical extreme value
points and the global extreme value points, so that all
of the particles gradually converge to the best point of
the group, which is the function extreme value point.
However, for the objective function with constraints,
most of the extreme value point of the function and
the unconstrained extreme value point of the function
is not the same point, and the unconstrained value of
the function may be superior to the constraint value
of the function. During solving the constrained opti-
mization problem, according to the standard particle
swarm algorithm, the particles will fly in the whole
searching range in early iteration because of the ran-
domness of the initial particles. And the particles are
influenced by individual history extreme value point
and global extreme value point, which will lead the
particles to fly toward extreme value point within the
scope of the search in the iteration process, and the
particles will deviate from the constraint domain and
hard to converge to the extreme value point of con-
straint domain. This paper presents a new method
to guide the flight of particles, in (2), for each par-
ticle, its position of the previous generation is taken
as the particles individual history extreme points pi of
the current generation, and the particle groups optimal
position of the previous generation is taken as pg of
current generation in each iteration. That is, in flight,
the particle is only affected by the individual particles
position and excellent particle’s position in groups of
previous generation, but not affected by the particles
position in earlier generation. Because the particle of
the earlier generation violates the constraint in a larger
degree, such particle is not a global optimum but a lo-
cal optimum even if its fitness is very excellent. In
particular, the learning factor c1 and c2 take the same
value generally, and their values between 0-4, in most
cases, c1 = c2 = 2 . However, in the experiments of
this paper, set c1 and c2 between 0-1, which make the
particle attracted less by the individual extreme value
and group extreme value.

Inertia weight w determines the influential degree
of the particle’s previous velocity on the current speed,
and the right choice can make the particle have a bal-
anced exploration and development capabilities. This
paper adopts the exponent decrease inertia weight in
document Ref [9].

w = (wstart − wend − d1)e
1

1+d2t/tmax (4)

where, tmax is the maximum iterations number, t is
the current iterations number, wstart is the initial iner-
tia weight, wend is the inertia weight when the particle
swarm evolutes to the maximum number of iterations,
d1 and d2 are controlling factors to control w between
wstart and wend . In the experiment of this paper, set

wstart =0.95, wend =0.4, d1 =0.2, d2 =7.

3 Constraint Processing Technology
Processing the constraints is the key when using par-
ticle swarm optimization solves constrained optimiza-
tion problems. Traditional constraints handling meth-
ods are to construct the penalty function or aug-
ment Lagrange function, which can transform the con-
strained problems into unconstrained problems. The
basic idea of the penalty function method is: at the
feasible point, penalty function value is equal to the
original objective function value, and at the unfeasi-
ble point, the penalty function value is equal to a great
value. But the inherent defect of the penalty function
method is that only when penalty factor tends to infin-
ity can the objective functions optimal solution obtain,
which requires constructing a suitable penalty func-
tion based on the actual situation. If a penalty factor
is too large, which may cause calculation difficulties
in penalty function minimization, and if its too small,
the calculation result may not be the most optimum
target, or convergence speed is too small.

In order to overcome the shortcomings of the
penalty function, in 1969, Hestenes and Powell
proposed the multiplier method respectively. This
method does not require the penalty factor which
tends to infinity. As long as its value is great enough,
the augmented Lagrange function can be minimized
to get the minimum values of the objective function.

To solve the constrained optimization problem
described in (1), the augmented Lagrange function is
defined as follows:

ϕ(x, ω, υ, σ) = f(x)

+ 1
2σ

m∑
i=1

{[max(0, ωi − σgi(x))]
2 − ω2

i }

−
l∑

j=1
υjhj(x) +

σ
2

l∑
j=1

(hj(x))
2

(5)
where, σ is a sufficient large parameter, ωi and σi are
the multipliers. The multiplier iteration formula is (t
is the number of iterations):

ωi(t+ 1) = max(0, ωi(t)− σgi(x(t))),
υj(t+ 1) = υj(t)− σhj(x(t)),
i = 1, · · · ,m, j = 1, · · · , l.

(6)

There are four parts in the right hand side of (5):
the first is original objective function, the second is
multiplier penalty term of inequality constraint, the
third is multiplier term of equality constraint and the
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fourth is penalty term of equality constraint. If prob-
lems are only concerned with equality constraints,
augmented Lagrange function in (5) would only in-
clude the first, third and fourth item; if problems
are only concerned with inequality constraints, aug-
mented Lagrange function in (5) would only include
the first and second term.

If the boundary of the feasible region is near the
boundary of the search space, some particles may vi-
olate the constraints on the feasible region boundary
in the iterative process. Therefore, the particles in the
search space boundary are reassigned by the following
formula [4]:

xid(t) can be defined as{
x

d
(t) + r(xld − x

d
(t)), if xid(t) < xld

x
d
(t) + r(xud − x

d
(t)),if xid(t) > xud

(7)

where,r ∈ U [0, 1] ,

x
d
(t) = (

N∑
i=1

xid(t))/N

denotes the mid-value of xid(t) on the dimension d,
N is the size of the particle swarm.

4 Hybrid Particle Swarm Algorithm
In (1), the basic process of the hybrid particle swarm
algorithm which uses multiplier method to handle the
constraints is defined as follows:

Step 1. Initialize randomly N-particles in the
search range. Define the initial multiplier vector ω and
υ , the penalty factor σ > 0 , constant magnification
factor α > 1 and the parameter β ∈ (0, 1) .

Step 2. Calculate the fitness of each particle:
ϕ(x, ω, υ, σ, ζ), according to (5).

Step . Store the current particle position into the
particles individual best value pi , and store the opti-
mal pi into the pg .

Step 4. If ∥∥h(ptg)∥∥∥∥h(pt−1
g )

∥∥ ≥ β

or ∥∥g(ptg)∥∥∥∥g(pt−1
g )

∥∥ ≥ β

(it is used to measure the convergence speed), set

σ = ασ,

go to step 5; otherwise, go to step 5.

Step 5. Update the multiplier vector ω and υ
of the next generation of globally optimal particle ac-
cording to (6).

Step 6. Update particles according to (2) and (3),
and deal with cross-border particles according to (7).

Step 7. Repeat steps 2 to 7 until get a preset max-
imum number of iterations or get a sufficiently good
fitness value.

5 Numerical Experiments
5.1 Test Functions
(1) Function f1

min f1(x) = (x1 − 10)3 + (x2 − 20)3

s.t.
(x1 − 5)2 + (x2 − 5)2 ≥ 100;

−(x1 − 6)2 − (x2 − 5)2 ≥ −82.81,

and
13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100

The optimal solution (20 times average) obtained in
this article:

x∗ : 14.09505035874353 1.50564302677460

and
f1(x

∗) : −6961.690026419559

In the particles iterative process, the f1 function
value evolution curve is shown in Fig.1 (due to the
initial particles are randomly generated in the search
range, the optimal function evolution curve is quite
different for each experiment, so the function evolu-
tion diagram comes from a single experiment, the di-
agram below is same).

Fig.1 the evolution curve of the function value
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(2) Function f2

min f2(x) = x1

s.t.

g1(x) =
1

4
x1 +

1

2
x2 −

1

16
x21 −

1

16
x22 ≤ 1,

g2(x) =
1

14
x21 +

1

14
x22 −

3

7
x1 −

3

7
x2 ≤ −1,

1 ≤ x1 ≤ 5.5,

1 ≤ x2 ≤ 5.5.

The optimal solution (20 times average) obtained in
this article:

x∗ : 1.17712434446771, 2.17712434446770

f2(x
∗) : 1.17712434446771

In the particles iterative process, the f2 function value
evolution curve is shown in Fig.2.

Fig.2 the evolution curve of the f2 function value

(3) Function f3

min f3(x) = 0.5x1x
−1
2 − x1 − 5x−1

2

s.t.

g1(x) = −0.01x2x
−1
3 − 0.01x2 − 0.0005x1x3 ≥ 1,

70 ≤ x1 ≤ 150, 1 ≤ x2 ≤ 30,

and
0.5 ≤ x3 ≤ 21

The optimal solution (20 times average) obtained in
this article:

x∗ :
150.000704216473, 27.539275040623,
0.622706026129,

f3(x
∗) : −147.3463377232924

In the particles iterative process, the f3 function value
evolution curve is shown in Fig.3.

Fig.3 the evolution curve of the f3 function value

(4) Function f4

min f4(x) = 5.3578x23 + 0.8357x1x5 + 37.2392x1,

s.t. g1(x) =

0.00002584x3x5−0.00006663x2x5−0.0000734x1x4 ≤ 1,

g2(x) =

0.000853007x2x5−0.00009395x1x4−0.00033085x3x5 ≤ 1,

g3(x) =

1330.3294x−1
2 x−1

5 −0.42x1x
−1
5 −0.30586x−1

2 x23x
−1
5 ≤ 1,

g4(x) =

0.00024186x2x5+0.00010159x1x2+0.00007379x23 ≤ 1,

g5(x) =

2275.1327x−1
3 x−1

5 −0.2668x1x
−1
5 −0.40584x4x

−1
5 ≤ 1,

g6(x) =

0.00029955x3x5+0.00007992x1x3+0.00012157x3x4 ≤ 1,

78.0 ≤ x1 ≤ 102.0,

33.0 ≤ x2 ≤ 45.0,

27.0 ≤ xi ≤ 45.0(i = 3, 4, 5)

The optimal solution (20 times average) obtained in
this article:

x∗ :
78.04210611686725, 39.98691692228350,
28.82163615787091, 42.59148530225040,
41.16955092852577

f4(x
∗) : 10056.67707387459

In the particles iterative process, the f4 function value
evolution curve is shown in Fig.4.
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Fig.4 the evolution curve of the f4 function value

(5) Function f5

max f5(x) =
sin3(2πx1) sin(2πx2)

x31(x1 + x2)

s.t.
g1(x) = x21 − x2 + 1 ≤ 0,

g2(x) = 1− x1 + (x2 − 4)2 ≤ 0,

0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10

The optimal solution (20 times average) obtained in
this article:

x∗ : 1.22797483152742, 4.24536144358884

f5(x
∗) : 0.09582503370020

In the particles iterative process, the f5 function value
evolution curve is shown in Fig.5.

Fig.5 the evolution curve of the f5 function value

(6) Function f6

min f6(x) = 5
4∑

i=1

xi − 5
4∑

i=1

x2i −
13∑
i=5

xi

s.t.

g1(x) = −2x1 − 2x2 − x10 − x11 + 10 ≥ 0,

g2(x) = −2x1 − 2x3 − x10 − x12 + 10 ≥ 0,

g3(x) = −2x2 − 2x3 − x11 − x12 + 10 ≥ 0,

g4(x) = 8x1 − x10 ≥ 0,

g5(x) = 8x2 − x11 ≥ 0,

g6(x) = 8x3 − x12 ≥ 0,

g7(x) = 2x4 + x5 − x10 ≥ 0,

g8(x) = 2x6 + x7 − x11 ≥ 0,

g9(x) = 2x8 + x9 − x12 ≥ 0,

0 ≤ xi ≤ 1(i = 1, 2, · · · 10),

0 ≤ xi ≤ 100(i = 10, 11, 12),

0 ≤ x13 ≤ 1.

The optimal solution (20 times average) obtained in
this article:

x∗ :

0.99336221512764, 0.99264796634399
0.99865332896608, 0.99820446255649
0.98913679087585, 0.99554085574522
0.97933187185900, 0.99712837737829
0.98766628324966, 2.98281047858041
2.95910435327020, 2.97708566917939
0.97973504534171

f6(x
∗) : −14.76663551960394

In the particles iterative process, the f6 function value
evolution curve is shown in Fig.6.

Fig.6 the evolution curve of the f6 function value
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(7) Function f7

min f(x) = 5.3578547x23 + 0.8356891x1x5
+ 37.293239x1−40792.141

s.t.

g1(x) = 92− 85.334407− 0.0056858x2x5
−0.0006262x1x4 + 0.0022053x3x5 ≥ 0

g2(x) = 85.334407 + 0.0056858x2x5
+ 0.0006262x1x4 − 0.0022053x3x5 ≥ 0

g3(x) = −80.51249− 0.0071317x2x5
− 0.0029955x1x2 − 0.0021813x23 + 110 ≥ 0

g4(x) = 80.51249 + 0.0071317x2x5
+ 0.0029955x1x2 + 0.0021813x23 − 90 ≥ 0

g5(x) = 25− 9.300961− 0.0047062x3x5
− 0.0012547x1x3 − 0.0019085x3x4 ≥ 0

g6(x) = −20 + 9.300961 + 0.0047062x3x5
+ 0.0012547x1x3 + 0.0019085x3x4 ≥ 0

with
78 ≤ x1 ≤ 102,

33 ≤ x2 ≤ 45,

27 ≤ xi ≤ 45(i = 3, 4, 5)

The optimal solution (20 times average) obtained in
this article:

x∗ :
78.00000000003647 33.00000583946766
29.98645470860217 44.99967834081389
36.77005736212263

f7(x
∗) : −30657.22185557836

In the particles iterative process, the f7 function value
evolution curve is shown in Fig.7.

Fig.7 the evolution curve of the f7 function value

(8) Function f8

min f(x) = x21 + (x2 − 1)2

s.t.
h1(x) = x2 − x21 = 0

−1 ≤ x1 ≤ 1,

−1 ≤ x2 ≤ 1

The optimal solution (20 times average) obtained in
this article:

x∗ :
0.70710677997036 0.49999999806761
−0.70710677997036 0.49999999806761

f8(x
∗) : 0.75000000021244

In the particles iterative process, the f8 function value
evolution curve is shown in Fig.8.

Fig.8 the evolution curve of the f8 function value

5.2 Experiment Analysis
Numerical experiments are processing in MATLAB
7.0.1. In the calculation, set learning factors c1 = c2
= 0.7 for f6 function, c1 = c2 = 0.6 for f7 function,
c1 = c2 = 1.0 for the remaining functions. Popula-
tion size: f1 ,f2 ,f3 ,f4 ,f5 ,f6 ,f7 ,f8 for 50 particles,
f4 f5 for 20 particles. Experiment iteration time will
change with the scope and complexity of the problem.
Set multiplier vector ω = 1, υ = 1, and β = 0.7 to
measure the speed of convergence, and set constant
magnification factor α = 2, and the initial penalty fac-
tor σ settings: function f4 , f6 and f7 are set to 200,
the remaining functions are set as 20. For each test
function, the algorithms are run 20 times, taking the
optimal value, worst value, mean, mean square error.
The results are shown in Table 1.
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F Optimal value
f1 -6961.81387558016
f2 1.17712434446771
f3 -147.6669538913704
f4 9761.567601684035
f5 -0.09582504140719
f6 -14.99905931197651
f7 -30668.74234793204
f8 0.74999999910799
Worst value Mean Mean
-6960.57538397414 -6961.690026419559
1.17712434446771 1.17712434446771
-145.7188592406307 -147.3463377232924
10605.74154900046 10056.67707387459
-0.09582499088190 -0.09582503370020
-14.43006360512358 -14.76663551960394
-30625.85294512852 -30657.22185557836
0.75000000347674 0.75000000021244
square error Iterations
0.38119967310441 200
0 150
0.67731369342482 300
286.8661296805540 100
1.302403541283220e-008 30
0.18495823750212 150
15.71720094738370 100
9.708100746526781e-010 100

Table 1 The operation results of the algorithm

Comparing a new algorithm with the Ref.
[1,2,4,8,10], deterministic global optimization
method were used for solving constrained optimiza-
tion problems in Ref.[1,8]; in Ref.[2], the method of
bi-objective fitness was used to deal with the con-
straints; in Ref.[4], external point method was used
to handle the constraints, then the problem is solved
by the adaptive velocity particle swarm optimization
algorithm. The comparison of new algorithm and
other papers is shown in Table 2-9.

The functions in this paper are common test func-
tions for constraint optimization problems, in which
f5 is maximization problem that the objective func-
tion may be transformed into minimization problem
by negation, and f8 is the equality constrained op-
timization problem. It is difficult to achieve global
optimization when using evolutionary algorithm for
these test functions. It can be seen from Table 2-9 that
the new algorithm on these constrained optimization
problems basically achieved the optimal value, espe-
cially for f4 function. The optimal solution found by
the new algorithm is better than the solutions in other

papers. Momentum particle swarm algorithm in the
Ref. [5] will cause difficulty in the problem solving
because the particles follow the best value of their own
history and the best value of group. In many cases
at the early stage, the particles fitness which violates
the constraints more is better than the particles fitness
which violates the constraints less, so that the particles
may fly out of the feasible region.

Let IVN denote the Independent variable number,
the following Table.2 -9 shows the results comparing
the present paper with Ref [1-10].

Table 2. Compared results for f1

F IVN Reference Optimal value
f1 2 [2] -6961.81388
f1 2 [4] -6961.8138665
f1 2 [10] -6961.81388
f1 2 This paper -6961.81387558016

Table 3. Compared results for f2

F IVN Reference Optimal value
f2 2 [4] 1.177643
f2 2 [8] 1.177124327
f2 2 This paper 1.17712434446771

Table 4. Compared results for f3

F IVN Reference Optimal value
f3 3 [1] -83.249728406
f3 3 [4] -147.6667
f3 3 [8] -83.249728406
f3 3 This paper -147.6669538913704

Table 5. Compared results for f4

F IVN Reference Optimal value
f4 5 [1] 10122.493176362
f4 5 [4] 10122.49323
f4 5 [8] 10122.38112168
f4 5 This paper 9761.567601684035

Table 6. Compared results for f5

F IVN Reference Optimal value
f5 2 [2] -0.095825
f5 2 [4] -0.0958250
f5 2 [10] -0.095825
f5 2 This paper -0.09582504140719

Table 7. Compared results for f6

F IVN Reference Optimal value
f6 13 [2] -15
f6 13 [4] -14.9999999
f6 13 [10] -15
f6 13 This paper -14.99905931197651
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Table 8. Compared results for f7

F IVN Reference Optimal value
f7 5 [2] -30655.539
f7 5 [4] -30665.53677
f7 5 [10] -30655.539
f7 5 This paper -30668.74234793204

Table 9. Compared results for f8

F IVN Reference Optimal value
f8 2 [2] 0.749
f8 2 [4] 0.7500000
f8 2 [10] 0.749
f8 2 This paper 0.74999999910799

6 Conclusion
This paper proposes a hybrid particle swarm optimiza-
tion algorithm based on the multiplier penalty func-
tion to solve constrained optimization problems. Dur-
ing the search process, this method sets the particles
position of the previous generation as the optimum of
particle individual history and the optimum of group
of the previous generation as the optimum of group,
which makes each flight of the particle be affected
only by the flight of the previous generation particle.
This is conducive to trace changes of constraint vio-
lations extent, and makes all of the particles gradu-
ally approaching the feasible region, and eventually
finds the optimal solution in the feasible region. The
particle swarm optimization algorithm has no require-
ment for the optimization function. The numerical ex-
periments show that the new algorithm has the abil-
ity to find an optimal value under constraint condi-
tion. The parameter adjustment of the new algorithm
is more difficult for the optimization problem of dif-
ferent levels of complexity, especially the difference
in the number of iterations and the number of particles
is large, but the solution speed of the particle swarm
algorithm is affected by the number of iterations and
the size of the particle swarm.
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