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Abstract: In this paper we consider the game theoretical issue of the lazy bureaucrat scheduling problem. There
are two players working on a pool of tasks, each of them can select a subset of the tasks to execute and spend the
corresponding cost. The common choice would introduce the increasing of the task’s cost. Each player has his own
budget for these tasks and if the total cost of selected tasks are less than his budget, he can keep the difference part
as his “additional” profit. The objective of the players is to make wise selection such that the cost that he spents on
the tasks is minimized, while both of them have to obey an assumption called “busy requirement” that as long as
there are tasks can be executed by some player (the left budget is more than the cost needed), he must select it to
execute. The noncooperative nature and potential interactions between the two players make the problem dynamic
and complicated. We prove that Nash equilibrium solutions exist under certain conditions where both players are
satisfied with their selection and would not change their mind unilaterally. We also find the method by which we
can obtain the Nash equilibrium no matter the player has a single machine or multiple machines to execute on the
tasks. Furthermore, we adopt the concept of “price of anarchy” to compare the cost of the worst Nash equilibrium
with the social optimum.
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1 Introduction
Lazy bureaucrat scheduling problem was first intro-
duced by Arkin et. al [1] in 1999. Compare to
the classical scheduling problem, the lazy bureaucrat
scheduling problem take a new look at the schedul-
ing problem from the point of view of the employ-
ers who perform the tasks that earn the company its
profits. It is natural to expect that some employees
may lack the motivation to perform at their peak levels
of efficiency, either because they have no stake in the
company’s profits or because they are simply lazy, so
they might try their best to minimize their real work-
ing time on scheduling. In this problem, the bureau-
crat does not need to execute all of the tasks given, but
he has to obey a “busy requirement” rule that as long
as the time left before the deadline is enough for some
task, he must execute it. This requirement is essential
since otherwise the problem would become trivial and
the bureaucrat just stay idle without doing any tasks.
Lots of results have been presented on several ob-
jective functions ([min-makespan], [min-number-of-
jobs], [min-time-spent], [min-weighted-sum]) since it
was proposed [1, 2, 3, 4, 5, 6]. Arkin et al. proved
that the general lazy bureaucrat scheduling problem
is NP-hard in the strong sense under all the objective
functions and is not approximable to within any fixed

factor. Moreover they showed that the problem under
all the objective functions becomes weakly NP-hard
when the jobs have a common release time. Esfah-
bod et al. considered the “Common Deadline Lazy
Bureaucrat Scheduling Problem” (CD-LBSP) where
all tasks’ deadlines are the same. They showed that
CD-LBSP is weakly NP-hard under all the above four
objective functions. It was also proved that the ob-
jective function [min-number-of-jobs] (and thus [min-
weighted-sum]) is not approximable within any fixed
factor unless P = NP . Gai et. al. proved that the
lazy bureaucrat scheduling problem is still NP-hard
even when the tasks are with the same release time
and deadline.

Why the problem itself is so hard while still at-
tracts so many attentions in literature? That is because
it can be taken as one of the reverse objective combi-
natorial optimization problems, in which the objec-
tive functions are generally opposite to those of the
classical one. Other broadly studied reverse objective
combinatorial optimization problems include the lazy
bin packing problem [3], the lazy bin covering prob-
lem [8] and the lazy interval coloring problem [8],
the maximum TSP, the maximum cut, and the longest
path etc.. It is believed that these inquiries can provide
an interesting set of algorithmic questions, which may
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also lead to better understanding and discovery of the
structure and algorithmic complexity of the original
optimization problems.

In this paper, we study the lazy bureaucrat
scheduling problem through a game-theoretic issue,
here bureaucrats may interact with each other in re-
ality when selecting their favorite tasks to execute.
From the point of view of an employer, he certainly
does not want most of his tasks to be left unexecuted,
so he may introduce some punishment on the com-
mon choice of the task. Under such condition, a task
selected by bureaucrat A to minimize his objective
may be not perfect anymore after it is also selected
by another bureaucrat. So bureaucrat A will change
his mind and make a new selection, and that would
cause other changes, too. The problem is so dynamic
and complicated that one of our interests is whether or
not the Nash equilibrium exist.

We use “player” to denote the lazy bureaucrat, the
cost of the task corresponds to the processing time in
the scheduling problem, and the player’s budget cor-
responds to the deadline. As the bureaucrats are trying
to minimize their working time by choosing “suitable”
tasks, here the players are trying to make wise selec-
tion to minimize the cost spent on the tasks. The busy
requirement still must be obeyed by players, which
means as long as the left budget of some player is
more than the cost needed of some task, this player
must select the task to execute. If some task is selected
by several players simultaneously, the cost would in-
crease because of the non-cooperative essence. We
introduce a parameter α (0 < α ≤ 1) to represent this
incremental cost in percentage.

Some motivations for studying this problem are
given below.

Suppose you get some fund to invest on the
projects, you may make choices from a common pool,
these projects are costly and independent to each
other. Under the motivation of minimizing total cost,
you have to make the decision wisely. You may do not
want to choose the same projects as others, since these
common choices may induce the shortage of material
resources or the competition of human resources such
that the costs increase; and you may concern to beat
other persons by costing less. To make the problem
nontrivial, we assume that if the fund left is enough
for one of the projects in the pool, you will invest on
it.

A real world situation maybe like the following:
Government (or some social welfare groups) buy sev-
eral fixed length time slots from two TV companies to
make the public service announcements from a pool
of well-designed announcements. Each TV company
can get paid from the government if and only if they
arrange the announcement as much as possible in ev-

ery time slot. Meanwhile the TV companies can make
tricks such that the left space of each time slot is maxi-
mized, which can be used to broadcast other commer-
cial advertisements and get “extra” profits.

This scenario corresponds to the lazy bureau-
crat scheduling problem. The length of time slots
bought in each TV company corresponds to the ma-
chine deadlines in the multiple-machine scheduling
case, the number of slots corresponds to the number
of machines. Moreover, the length of each announce-
ment corresponds to the processing time of the task.
Hence for each TV company, the problem faced be-
comes the multiple-machine common deadline lazy
bureaucrat scheduling problem if the interaction be-
tween the two companies are not taken into consider-
ation.

The parameter α can be explained as a compensa-
tion to the information transmitting lost. That means if
two companies choose too much common announce-
ments, then they are asked by government to supply
extra length of time to show other unselected ones.
To make it simple, we just lengthen the broadcast-
ing time of the common selected announcement by
α percent. For example, a p minutes announcement
is chosen by two TV companies simultaneously, then
it costs two companies a time interval of (1 + α)p
respectively. This parameter clearly introduces more
mutual influence between two companies. Maybe
one TV company choose an announcement as the last
one because after broadcasting it, there is no else an-
nouncement can be added in, and the total broadcast-
ing time is minimized. But another TV company may
also prefer this announcement and make it as a choice,
too. Then this simultaneous choice makes the length
larger, which means it is not perfect anymore for one
of the companies who will then drop it and make a
new choice. This change may incur another moving
action again. The choice and the cost of the two com-
panies are dynamic and interactional.

Previous work. A pioneer work was given by
Wang et. al. [9, 10] in 2010. They considered a two-
person knapsack game, where each player has one
knapsack (maybe with different capacity) and tries to
maximize the profit of items packed in. The objective
function of each player is assumed to be a linear com-
bination of the two players’ profits. They proved the
existence of Nash equilibrium and studied the price of
anarchy for several different objective models.

Our results. In this paper, we study the two
player lazy bureaucrat scheduling game. Two play-
ers, each with an individual budget, work on a com-
mon pool of potential tasks. Both players act in a self-
ish manner with best-response to optimize their own
objective functions by choosing portfolios under the
budget restriction. We provide verifiable conditions
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that guarantee at least one pure Nash equilibrium ex-
ists in the lazy bureaucrat scheduling game, where no
player can improve the objective by changing individ-
ual mind unilaterally. We also give a pseudo polyno-
mial time algorithm to find an equilibrium. To show
the sacrifice of system cost because of the selfish and
noncooperative behavior of players, we adopt the con-
cept of price of anarchy, which is the ratio of the cost
of the worst Nash equilibrium to the system optimum,
to quantify the quality of Nash equilibria.

The rest of the paper is organized as follows. The
model and notations of the two player lazy bureaucrat
scheduling game are given in Section 2. The exis-
tence of a Nash equilibrium solution is studied in Sec-
tion 3. We then develop the pseudo-polynomial time
algorithms for finding a Nash equilibrium in Section
4. The concept of price of anarchy is employed for the
study of a simplified lazy bureaucrat scheduling game
in Section 5. Concluding remarks and future research
are included in Section 6.

2 Models and Notations
The lazy bureaucrat scheduling game with two players
can be stated formally as follows. There are n tasks
need to be executed, each task j has a cost cj and a
processing time pj for j = 1, . . . , n. Each player i is
with a machine deadline di for i = 1, 2. If a task j is
chosen by only one player, it costs the player cj ; if it
is chosen by two players, the cost increases a factor of
αi for player i, i.e. the player i has to pay (1 + αi)cj
for this task, where 0 < αi ≤ 1. Both players are best
response to select a subset of tasks such that the sum
of processing time in each machine is no more than
his machine deadline, no other task can be added in
(busy requirement), and simultaneously optimize his
own objective. Without loss of generality, assume cj ,
pj , di are all nonnegative and preemption is not al-
lowed.

A state of the lazy bureaucrat scheduling game
can be described as an ordered pair of (S1, S2), where
Si is the set of tasks selected by player i (i = 1, 2).

Let p(Si) be the total processing time of tasks
in set Si. Then we say a state (S1, S2) is feasible if
p(Si) ≤ di and di−p(Si) < pj (∀j /∈ Si). For a given
feasible state (S1, S2), let C1(S1, S2) and C2(S1, S2)
denote the costs paid by two players respectively, and
c(Si) denote the total original cost of tasks in set Si.
It is easy to verify that

C1(S1, S2) = c(S1) + α1c(S1 ∩ S2)
C2(S1, S2) = c(S2) + α2c(S1 ∩ S2)

(1)

In order to present more clearly about the complicated
incentive of two players, the objective considered in

this paper is the minimization of a linear function of
both player’s costs. Specifically, let Oi(S1, S2) =
βiiCi(S1, S2) + βijCj(S1, S2) (j ̸= i) be the objec-
tive value of player i at state (S1, S2). We assume that
βii ≥ 0 for i = 1, 2. In this model, βij (j ̸= i) can be
negative that means player i’s hope is not only to min-
imize his own cost, but also try to maximize the gap
between their costs. However we assume that mini-
mizing his own cost is always dominant in his objec-
tive, i.e. |βii| > |βij | (j ̸= i).

Substituting formula (1) into the objectives of
players, we have

O1(S1, S2) = β11c(S1) + β12c(S2) + ∆1c(S1 ∩ S2)
O2(S1, S2) = β22c(S2) + β21c(S1) + ∆2c(S1 ∩ S2)

(2)
where ∆i = αiβii + αjβij , i ̸= j, for player i.

We say a state of the lazy bureaucrat scheduling
game is a Nash equilibrium if it is a feasible state and
no player can get better objective function value by
resetting his choice unilaterally. This can be defined
formally as following:

Definition 1 A feasible state (S1, S2) is a Nash equi-
librium if and only if O1(S1, S2) ≤ O1(S

′
1, S2) and

O2(S1, S2) ≤ O2(S1, S
′
2) for any feasible states

(S′
1, S2) and (S1, S

′
2).

3 The Existence of Nash Equilibrium
In this section, we would like to investigate the condi-
tions that ensure the existence of a Nash equilibrium
for the lazy bureaucrat scheduling game. The idea of
“potential function” is employed.

Definition 2 The potential function in the lazy bu-
reaucrat scheduling game is a real valued function
over the players’ feasible states such that its value will
decrease strictly if a player shifts to a new state to re-
duce his objective value.

In the following, we will show a major existence
theorem which completely characterizes the existence
of Nash equilibrium of a two-player lazy bureaucrat
scheduling game using the product value of ∆1 and
∆2. Some technical lemmas are presented first similar
as in [9].

Lemma 3 If ∆1 = ∆2 = 0, then Φ1(S1, S2) =
c(S1) + c(S2) is a potential function for the lazy bu-
reaucrat scheduling game.

Proof: According to ∆1 = ∆2 = 0, we have

O1(S1, S2) = β11c(S1) + β12c(S2)
O2(S1, S2) = β22c(S2) + β21c(S1)
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If player 1 can reduce his objective value by shifting
to a new feasible state S′

1, then we obtain

O1(S
′
1, S2) < O1(S1, S2),

that is to say,

β11c(S
′
1) + β12c(S2) < β11c(S1) + β12c(S2).

Consequently, we get β11c(S
′
1) < β11c(S1). As

we have assumed that β11 is nonnegative, we have
c(S′

1) < c(S1), which implies that

Φ1(S
′
1, S2) < Φ1(S1, S2).

Now, if player 2 can reduce his objective value
via shifting to a new feasible state S′

2, then we have
O2(S1, S

′
2) < O2(S1, S2), in other word,

β22c(S
′
2) + β21c(S1) < β22c(S2) + β21c(S1).

So we obtain β22c(S
′
2) < β22c(S2). Due to the gen-

eral assumption on β22 ≥ 0, we know c(S′
2) < c(S2),

which show that

Φ1(S1, S
′
2) < Φ1(S1, S2).

In accordance with Definition 2, we can make a
conclusion that Φ1(S1, S2) = c(S1) + c(S2) is a po-
tential function for ∆1 = ∆2 = 0 case. ⊓⊔

Lemma 4 If ∆1 = 0 and ∆2 ̸= 0, define
Φ2(S1, S2) = Mc(S1)+β22c(S2)+∆2c(S1∩S2); If
∆1 ̸= 0 and ∆2 = 0, define Φ′

2(S1, S2) = β11c(S1)+
Mc(S2) + ∆1c(S1 ∩ S2). Then Φ2 (Φ′

2) is a poten-
tial function for the lazy bureaucrat scheduling game,
where M = 1 + 2max{|∆1|, |∆2|}

∑n
i=1 ci.

Proof: If ∆1 = 0 and ∆2 ̸= 0, (2) can be written as

O1(S1, S2) = β11c(S1) + β12c(S2)
O2(S1, S2) = β22c(S2) + β21c(S1) + ∆2c(S1 ∩ S2).

If player 1 can drop his objective value by changing to
a new feasible state S′

1, then we obtain O1(S
′
1, S2) <

O1(S1, S2), that is to say,

β11c(S
′
1) + β12c(S2) < β11c(S1) + β12c(S2),

Consequently, we get β11c(S′
1) < β11c(S1). Because

β11 is nonnegative, we have c(S′
1) < c(S1). It might

be assumed that c(Si) is a positive integer, so we have
c(S′

1) ≤ c(S1)− 1.
Notice that

Φ2(S1, S2) = Mc(S1) + β22c(S2) + ∆2c(S1 ∩ S2),
Φ2(S

′
1, S2) = Mc(S′

1) + β22c(S2) + ∆2c(S
′
1 ∩ S2),

where M = 1+2max{|∆1|, |∆2|}
∑n

i=1 ci. We have

Φ2(S1, S2)− Φ2(S
′
1, S2)

= Mc(S1) + β22c(S2) + ∆2c(S1 ∩ S2)
−(Mc(S′

1) + β22c(S2) + ∆2c(S
′
1 ∩ S2))

= M(c(S1)− c(S′
1)) + ∆2(c(S1 ∩ S2)− c(S′

1 ∩ S2))
≥M +∆2(c(S1 ∩ S2)− c(S′

1 ∩ S2))

≥M − 2|∆2|
n∑

i=1
ci > 0,

which implies that Φ2(S
′
1, S2) < Φ2(S1, S2).

Now, if player 2 can reduce his objective value
via changing to a new feasible state S′

2, then we have
O2(S1, S

′
2) < O2(S1, S2), in other words,

β22c(S
′
2) + β21c(S1) + ∆2c(S1 ∩ S′

2)
< β22c(S2) + β21c(S1) + ∆2c(S1 ∩ S2).

Substract β21c(S1) on the both side of inequality, then
it becomes

β22c(S
′
2)+∆2c(S1∩S′

2) < β22c(S2)+∆2c(S1∩S2).

In the meantime,

Φ2(S1, S2)− Φ2(S1, S
′
2)

= Mc(S1) + β22c(S2) + ∆2c(S1 ∩ S2)
−(Mc(S1) + β22c(S

′
2) + ∆2c(S1 ∩ S′

2))
= β22c(S2) + ∆2c(S1 ∩ S2)
−(β22c(S′

2) + ∆2c(S1 ∩ S′
2)).

Therefore, we have Φ2(S1, S
′
2) < Φ2(S1, S2).

Through the analysis, we can know that
Φ2(S1, S2) is a potential function for this case by Def-
inition 2.

If ∆2 = 0 and ∆1 ̸= 0, we have

O1(S1, S2) = β11c(S1) + β12c(S2) + ∆1c(S1 ∩ S2),
O2(S1, S2) = β22c(S2) + β21c(S1).

We can prove that Φ′
2(S1, S2) is a potential function

by a similar proof. ⊓⊔

Lemma 5 If ∆1 > 0 and ∆2 > 0, then Φ3(S1, S2) =
∆2β11c(S1) + ∆1β22c(S2) + ∆1∆2c(S1 ∩ S2) is a
potential function for the lazy bureaucrat scheduling
game.

Proof: Considering ∆1 > 0 and ∆2 > 0, we have

O1(S1, S2) = β11c(S1) + β12c(S2) + ∆1c(S1 ∩ S2)
O2(S1, S2) = β22c(S2) + β21c(S1) + ∆2c(S1 ∩ S2)

If player 1 changes from S1 to a feasible state S′
1 with

a reduced objective value, then we have O1(S
′
1, S2) <

O1(S1, S2). This further implies that

β11c(S
′
1) + β12c(S2) + ∆1c(S

′
1 ∩ S2)

< β11c(S1) + β12c(S2) + ∆1c(S1 ∩ S2)
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Through setting and analyzing, we show

β11c(S
′
1) + ∆1c(S

′
1 ∩ S2) < β11c(S1) + ∆1c(S1 ∩ S2).

Since ∆2 > 0, we have

Φ3(S1, S2)− Φ3(S
′
1, S2)

= ∆2(β11c(S1) + ∆1c(S1 ∩ S2)
−β11c(S′

1)−∆1c(S
′
1 ∩ S2)) > 0.

Therefore, we have Φ3(S1, S2) > Φ3(S
′
1, S2). Now,

if player 2 changes from S2 to a feasible state S′
2 with

a reduced objective value, then we have O2(S1, S
′
2) <

O2(S1, S2). This further implies that

β22c(S
′
2) + β21c(S1) + ∆2c(S1 ∩ S′

2)
< β22c(S2) + β21c(S1) + ∆2c(S1 ∩ S2)

Minus β21c(S1) on both sides simultaneously, then

β22c(S
′
2) + ∆2c(S1 ∩ S′

2) < β22c(S2) + ∆2c(S1 ∩ S2)

Since ∆1 > 0, we have

Φ3(S1, S2)− Φ3(S1, S
′
2)

= ∆1(β22c(S2) + ∆2c(S1 ∩ S2)
−β22c(S′

2)−∆2c(S1 ∩ S′
2))

> 0.

That is, Φ3(S1, S2) > Φ3(S1, S
′
2). Hence, according

to Definition 2, we know that Φ3(S1, S2) is a potential
function. ⊓⊔

Lemma 6 If ∆1 < 0 and ∆2 < 0, then Φ4(S1, S2) =
−Φ3(S1, S2) is a potential function for the lazy bu-
reaucrat scheduling game.

Proof: If player 1 changes from S1 to a feasible
state S′

1 with a dropped objective value, then we have
O1(S

′
1, S2) < O1(S1, S2). This further implies that

β11c(S
′
1) + β12c(S2) + ∆1c(S

′
1 ∩ S2)

< β11c(S1) + β12c(S2) + ∆1c(S1 ∩ S2).

That is

β11c(S
′
1) + ∆1c(S

′
1 ∩ S2) < β11c(S1) + ∆1c(S1 ∩ S2).

Since ∆2 < 0, we have

Φ4(S1, S2)− Φ4(S
′
1, S2)

= ∆2(β11c(S
′
1) + ∆1c(S

′
1 ∩ S2)

−β11c(S1)−∆1c(S1 ∩ S2))
> 0.

That is, Φ4(S1, S2) > Φ4(S
′
1, S2).

Now, if player 2 changes from S2 to a feasible
state S′

2 with a reduced objective value, then we have
O2(S1, S

′
2) < O2(S1, S2). Specifically,

β22c(S
′
2) + β21c(S1) + ∆2c(S1 ∩ S′

2)
< β22c(S2) + β21c(S1) + ∆2c(S1 ∩ S2).

Subtract β21c(S1) on both sides simultaneously, then
we have

β22c(S
′
2) + ∆2c(S1 ∩ S′

2)
< β22c(S2) + ∆2c(S1 ∩ S2).

Since ∆1 < 0, we have

Φ4(S1, S2)− Φ4(S1, S
′
2)

= ∆1(β22c(S
′
2) + ∆2c(S1 ∩ S′

2)
−β22c(S2)−∆2c(S1 ∩ S2)) > 0.

After transposition of terms, we obtain Φ4(S1, S2) >
Φ4(S1, S

′
2). It is easy to see that Φ4(S1, S2) is a po-

tential function from Definition 2. ⊓⊔

Theorem 7 In the lazy bureaucrat scheduling game,
if ∆1∆2 ≥ 0, then the best-response behavior of play-
ers will lead an arbitrary feasible state to a Nash equi-
librium; If ∆1∆2 < 0, then at least one instance with-
out Nash equilibrium exists.

Proof: Note that the potential function at a Nash equi-
librium of the lazy bureaucrat scheduling game may
or may not achieve its minimum value. But a feasible
state at which the potential function achieves its min-
imum value must be a Nash equilibrium. From above
lemmas, we know that if current state is not a Nash
equilibrium, it will switch to a new state with a strictly
decreasing potential by the best-response behavior of
players. There are only finite possibility of different
states, thus the best-response behavior of players will
lead an arbitrary feasible state to a Nash equilibrium
if ∆1∆2 ≥ 0.

In case ∆1∆2 < 0. Without loss of generality, we
assume that ∆1 > 0 and ∆2 < 0. Consider a simple
instance as follows. The machine deadlines of two
players are d1 and d2, where d1 < d2 < 2d1. There
are two tasks both with the processing time p1 = p2 =
d1, and the costs are 1 and 1 + ε respectively (ε > 0
is an arbitrarily small number). We can see that each
player can choose exactly one task. As ∆2 < 0, αi >
0, βii ≥ 0, for i = 1, 2, we have β21 < 0. If two
players select the same task. Say task 1 with cost 1,
then the objectives are as follows:

O1(task1, task1) = β11 + β12 +∆1,
O2(task1, task1) = β22 + β21 +∆2.
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Player 1 can reduce his cost by changing to choose
task 2 because ∆1 > 0:

O1(task2, task1) = β11(1 + ε) + β12,

while in this state, the cost of player 2 increase be-
cause ∆2 < 0 although ε is arbitrarily small:

O2(task2, task1) = β22 + β21(1 + ε).

He then changes to task 2 immediately to optimize his
objective. This will motivate player 1 to choose task
1 again, and the procedure would continue like this
without reaching any Nash equilibrium. ⊓⊔

Notice that there may be the case that a Nash equi-
librium state is with ∆1∆2 < 0. In another word,
∆1∆2 ≥ 0 is a sufficient condition for the existence of
Nash equilibrium, but it is not a necessary condition.
Here we take a look at the following simple example.
There are two tasks, the corresponding parameters are
as follows: β11 = β22 = β12 = 1;β21 = −1; c1 =
1, c2 = 3; d1 = d2 = 1; p1 = p2 = 1;α1 = 2

3 , α2 =
1
3 . It is easy to calculate that ∆1 = 1 and ∆2 = −1

3 ,
so ∆1∆2 < 0. While we can verify that the state
(task1, task1) is a Nash equilibrium.

Corollary 8 In case ∆1∆2 ≥ 0, a feasible state with
a minimum potential function value is a Nash equilib-
rium.

Proof: We prove the corollary by contradiction.
Suppose that a feasible state with a minimum po-

tential function value is not a Nash equilibrium. We
assume the potential function can achieve its mini-
mum value at state (S1, S2).

Since (S1, S2) is not a Nash equilibrium, there
must be a feasible state (S′

1, S2) or (S1, S
′
2), such

that O1(S
′
1, S2) < O1(S1, S2), or O2(S1, S

′
2) <

O2(S1, S2).
Without loss of generality, we may assume that

O1(S
′
1, S2) < O1(S1, S2). Then the potential func-

tion value at (S′
1, S2) is less than at (S1, S2) from the

definition of potential function.
It is a contradiction with the minimum potential

function value at state (S1, S2). ⊓⊔

4 Find Nash Equilibrium
From the key existence theorem, we know that at least
one Nash equilibrium solution of a lazy bureaucrat
scheduling game exists as long as ∆1∆2 ≥ 0. In this
section, we present a dynamic programming based al-
gorithm to find the Nash equilibrium in pseudo poly-
nomial time, which can be extended easily even if
each player holds more than one machine.

An important property of potential functions
should be introduced in advance:

Definition 9 {Additive Property} A potential
function Φ(S1, S2) is additive if Φ(S1, S2) =
Φ(S11, S21) + Φ(S12, S22) + . . . + Φ(S1n, S2n) for
any given states (S11, S21), (S12, S22), . . ., (S1n, S2n)
with S1 = S11 ∪ . . .∪ S1n, S2 = S21 ∪ . . .∪ S2n and
Sik ∩ Sil = ∅ for any k ̸= l, i = 1, 2.

It can be verified that the potential functions Φ1,
Φ2 (Φ′

2), Φ3, Φ4 defined in above lemmas are all ad-
ditive. This property is very important helping to find
a feasible state that achieves the minimum value of its
potential function.

4.1 Single-Machine Lazy Bureaucrat
Scheduling Game

In this section, we first investigate the Nash equilib-
rium of the single machine lazy bureaucrat schedul-
ing game, where there is exactly one machine hold by
each player to execute on tasks.

For a feasible state (S1, S2), we can cal-
culate its potential function value Φ(S1, S2), the
sum of processing time p1(S1) for player 1, and
p2(S2) for player 2. We use F (S1, S2) =
[S1, S2, p1(S1), p2(S2)] to record the information of
each state. Following is the dynamic programming
based algorithm which looks for a Nash equilibrium
solution for the lazy bureaucrat scheduling game with
∆1∆2 ≥ 0:

DP Algorithm-1:

1. Start with M0 = {F (ϕ, ϕ)}.

2. For k = 1, 2, . . . , n, do

(a) Set Mk = Mk−1.

(b) For each F (S1, S2) ∈ Mk−1, (i) if
p1(S1) + p1k ≤ d1, add F (S1 ∪ {k}, S2)
to Mk; (ii) if p2(S2) + p2k ≤ d2, add
F (S1, S2 ∪ {k}) to Mk; (iii) if p1(S1) +
p1k ≤ d1 and p2(S2) + p2k ≤ d2, add
F (S1 ∪ {k}, S2 ∪ {k}) to Mk.

3. Check all states in Mn, such that for each state
(S1, S2), d1 − p1(S1) < p1j , ∀j /∈ S1, and
d2 − p2(S2) < p2j , ∀j /∈ S2. Delete all other
infeasible states.

4. Check Mn to identify pairs of F (S1, S2) and
F (S′

1, S
′
2) with p1(S1) = p1(S

′
1) and p2(S2) =

p2(S
′
2). For each such pair, delete the one with a

larger potential value.

5. Find a F (S1, S2) in Mn such that it has the
smallest value in Φ(S1, S2). Output this state
(S1, S2).
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For this algorithm, it is not hard to observe that,
with the help of “principal of optimality”, the unnec-
essary states are eliminated though the enumeration
of all feasible states is embedded in Steps 2. Since
there are only finite possibilities of feasible states,
we know that this dynamic programming algorithm
will eventually find one with the smallest potential
value in Step 5. It must be a Nash equilibrium so-
lution of the game. Adopting the complexity analysis
in [9], We can see that Step 1 is a trivial step using
O(1) computing time. The main computational effort
comes from Step 2. Note that there are n stages. For
each stage k, k = 1, 2 . . . , n, since there are at most
(d1 + 1)(d2 + 1) elements in Mk, this step can be re-
alized in O(d1d2) computing time. Consequently, a
total of O(nd1d2) computing time is needed. More-
over, Step 3, 4, 5 only need O(d1d2) computing time
for comparisons. Therefore, a Nash equilibrium can
be found by the proposed dynamic programming al-
gorithm in O(nd1d2) computing time.

Theorem 10 For a single-machine lazy bureaucrat
scheduling game with ∆1∆2 ≥ 0, a Nash equilibrium
can be found by the DP Algorithm-1 in O(nd1d2)
computing time.

4.2 Multiple-Machine Lazy Bureaucrat
Scheduling Game

In the multiple-machine lazy bureaucrat scheduling
game, we assume that each player has several ma-
chines to execute on the tasks, and the cost is the sum
of the cost on each machine. The definition of feasi-
bility is same to the single-machine case. Precisely, a
state (S1, S2) = ({S11, . . . , S1m1}, {S21, . . . , S2m2})
in multiple-machine case is feasible if for each Simi

(i = 1, 2), pi(Simi) ≤ di and di − pi(Simi) < pij
(∀j /∈ Si).

Since we list all the feasible subsets in DP
Algorithm-1 for the single-machine lazy bureaucrat
scheduling game and find a Nash equilibrium among
them, we can extend the algorithm to the multiple-
machine case, too. The key point here is that for each
player, he can choose one task at most one time, and
the processing time is fixed no matter which machine
he arrange it to. So in addition to DP Algorithm-1,
we further choose m1 feasible subsets of S1, and m2

feasible subsets of S2 from Mn, then find the smallest
sum of their potential function value. That state cor-
responds to a Nash equilibrium. The running time is
O(nmd1d2), where m = max{m1,m2}.
DP Algorithm-2:

1. Start with M0 = {F (ϕ, ϕ)}.

2. For k = 1, 2, . . . , n, do

(a) Set Mk = Mk−1.
(b) For each F (S1, S2) ∈ Mk−1, (i) if

p1(S1) + p1k ≤ d1, add F (S1 ∪ {k}, S2)
to Mk; (ii) if p2(S2) + p2k ≤ d2, add
F (S1, S2 ∪ {k}) to Mk; (iii) if p1(S1) +
p1k ≤ d1 and p2(S2) + p2k ≤ d2, add
F (S1 ∪ {k}, S2 ∪ {k}) to Mk.

3. Check all states in Mn, such that for each state
(S1, S2), d1 − p1(S1) < p1j , ∀j /∈ S1, and
d2 − p2(S2) < p2j , ∀j /∈ S2. Delete all other
infeasible states.

4. For the feasible subsets S1, select all m1 portfo-
lio of them such that there is no common task in-
side; Similarly, find all m2 portfolio of S2 with-
out any common task inside.

5. Find a F (S1, S2) where S1 = {S11, . . . , S1m1},
S2 = {S21, . . . , S2m2} in Mn such that it has
the smallest value in Φ(S1, S2). Output this state
(S1, S2).

Similar to the analysis of Theorem 10, we get the
following conclusion.

Theorem 11 For a multiple-machine lazy bureaucrat
scheduling game with ∆1∆2 ≥ 0, a Nash equilibrium
can be found by the DP Algorithm-2 in O(nmd1d2)
computing time, m = max{m1,m2}.

5 Prices of Anarchy
In this section, we will prove the prices of anarchy
for a simplified lazy bureaucrat scheduling game, in
which the players just pay a fixed percent cost α for
the common task instead of αi, i = 1, 2. That is, for a
feasible state (S1, S2),

C1(S1, S2) = c(S1) + αc(S1 ∩ S2)
C2(S1, S2) = c(S2) + αc(S1 ∩ S2)

(3)

Definition 12 The price of anarchy of the lazy bu-
reaucrat scheduling game is defined as

sup
I

max(S1,S2)∈NI
Z(S1, S2)

min(S1,S2)∈FI
Z(S1, S2)

where Z(S1, S2) is the total cost of two players at
state (S1, S2). And I is an instance of the game, NI

is the set of all Nash Equilibrium of instance I . FI is
the set of all feasible states of instance I .

In terms of objective, we consider two simple ob-
jectives for player i: One is to minimize his own cost
Ci(S1, S2); The other one is to minimize Ci(S1, S2)−
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Cj(S1, S2), i ̸= j. Which means if Ci(S1, S2) ≥
Cj(S1, S2), player i is trying to minimize his cost
comparing with player j; If Ci(S1, S2) < Cj(S1, S2),
player i is trying to maximize the cost gap they have
to pay. The corresponding parameters are βii = 1,
βij = 0 and βii = 1, βij = −1 for j ̸= i re-
spectively. Each player decides his/her own objec-
tive individually. Considering the symmetry of play-
ers, the lazy bureaucrat scheduling game may has
three kinds of objective: (C1(S1, S2), C2(S1, S2)),
(C1(S1, S2)−C2(S1, S2), C2(S1, S2)−C1(S1, S2))
and (C1(S1, S2), C2(S1, S2) − C1(S1, S2)). We
name these three accordingly as: selfish lazy bu-
reaucrat scheduling game, adversary lazy bureaucrat
scheduling game and mixed lazy bureaucrat schedul-
ing game. The adversary lazy bureaucrat scheduling
game means the competitive between players are so
fierce that each of them just wants to let the other one
pay much more than himself. For each of these lazy
bureaucrat scheduling games, it is easy to verify that
∆i ≥ 0, i = 1, 2, and then at least one Nash equilib-
rium exists by Theorem 7.

We will quantify these Nash equilibria by the
price of anarchy, which is the ratio of the worst Nash
equilibrium to the social optimum. We assume that
(S1, S2) is a Nash equilibrium and (S∗

1 , S
∗
2) is a so-

cial optimum state. Let z be the total cost of the two
players at a state (S1, S2), then z = C1(S1, S2) +
C2(S1, S2) = c(S1) + c(S2) + 2αc(S1 ∩ S2). Sim-
ilarly, let the minimum cost be z∗, thus we have
z∗ = C1(S

∗
1 , S

∗
2) + C2(S

∗
1 , S

∗
2) = c(S∗

1) + c(S∗
2) +

2αc(S∗
1∩S∗

2). Note that here we can not make the con-
clusion that there exists a social optimal state where
S∗
1 ∩ S∗

2 = Φ for the definition of feasibility of the
lazy bureaucrat scheduling game. For instance, the
deadline of two players’ machine are both 2 + 2α,
and there are two tasks with the processing time of
p11 = p21 = p12 = p22 = 1, then there is no choice
for these two players other than choose both tasks si-
multaneously.

Theorem 13 The price of anarchy is 1 + α for the
selfish lazy bureaucrat scheduling game.

Proof: Since (S1, S2) and (S∗
1 , S

∗
2) are both feasible,

so are (S1, S
∗
2) and (S∗

1 , S2). From the definition of
Nash equilibrium and selfish lazy bureaucrat schedul-
ing game, we know that

C1(S1, S2) ≤ C1(S
∗
1 , S2),

C2(S1, S2) ≤ C2(S1, S
∗
2)

At the same time, noticing that

c(S∗
1 ∩ S2) ≤ c(S∗

1), c(S1 ∩ S∗
2) ≤ c(S∗

2)

Finally, we have

z = C1(S1, S2) + C2(S1, S2)
≤ C1(S

∗
1 , S2) + C2(S1, S

∗
2)

= c(S∗
1) + c(S∗

2) + α[c(S∗
1 ∩ S2) + c(S1 ∩ S∗

2)]
≤ c(S∗

1) + c(S∗
2) + α[c(S∗

1) + c(S∗
2)]

≤ (1 + α)z∗

(4)

⊓⊔
Lower bound 1. Given four tasks whose processing
times are the same to two players, that means we can
use pj instead of pij (i = 1, 2, j = 1, . . . , 4) here. We
know that c1 = p1 = 1 + ε; c2 = p2 = 1; c3 = p3 =
α; c4 = 1+ α, p4 = 1− α. Let the machine deadline
as d1 = 1 + ε and d2 = 1 + α separately. So state
(task1, {task2, task3}) is a Nash equilibrium with
the cost of 2+α+ε. While the minimum system cost
is from the state of (task2, task1), where the cost is
2 + ε. So we get the bound of 1 + α

2 when ε→ 0.

Theorem 14 The price of anarchy is 1 + α for the
adversary lazy bureaucrat scheduling game.

Proof: It is easy to see that (S1, S
∗
2) and (S∗

1 , S2)
are feasible, in the meantime, as state (S1, S2) is a
Nash equilibrium in the competitive lazy bureaucrat
scheduling game, we have

C1(S1, S2)−C2(S1, S2) ≤ C1(S
∗
1 , S2)−C2(S

∗
1 , S2),

C2(S1, S2)−C1(S1, S2) ≤ C2(S1, S
∗
2)−C1(S1, S

∗
2).

Then we have c(S1) ≤ c(S∗
1) and c(S2) ≤ c(S∗

2).
And also because of

c(S1 ∩ S2) ≤
1

2
(c(S1) + c(S2)),

we have

z = c(S1) + c(S2) + 2αc(S1 ∩ S2)
≤ c(S1) + c(S2) + α(c(S1) + c(S2))
≤ (1 + α)(c(S∗

1) + c(S∗
2))

≤ (1 + α)z∗

(5)

⊓⊔
Lower bound 2. There are two tasks with the pro-
cessing time of p1 = p2 = 1, and the cost as c1 = 1,
c2 = 1+ ε. Let the machine deadline as d1 = d2 = 1.
Then the state (task1, task1) is a Nash equilibrium
with z = 2 + 2α. While the social optimum state is
(task1, task2) with z∗ = 2 + ε. So the bound is

z

z∗
=

2 + 2α

2 + ε
→ 1 + α

when ε→ 0.
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Theorem 15 The price of anarchy is z ≤ (1 + α)z∗

for the mixed lazy bureaucrat scheduling game.

Proof: Since (S1, S2) and (S∗
1 , S

∗
2) are both feasible,

so it is obviously known that (S1, S
∗
2) and (S∗

1 , S2) are
feasible. As state (S1, S2) is a Nash equilibrium in the
mixed lazy bureaucrat scheduling game, we have

C2(S1, S2)−C1(S1, S2) ≤ C2(S1, S
∗
2)−C1(S1, S

∗
2).

Then we get c(S2) ≤ c(S∗
2) from formula (3). And

we know that

C2(S1, S2) = c(S2) + αc(S1 ∩ S2) ≤ (1 + α)c(S2),

hence
C2(S1, S2) ≤ (1 + α)c(S∗

2).

Similarly, in this mixed lazy bureaucrat schedul-
ing game we also have C1(S1, S2) ≤ C1(S

∗
1 , S2). It

is easy to see that C1(S
∗
1 , S2) ≤ (1 + α)c(S∗

1), then
we have C1(S1, S2) ≤ (1 + α)c(S∗

1). Therefore,

z = C1(S1, S2) + C2(S1, S2)
≤ (1 + α)(c(S∗

1) + c(S∗
2))

≤ (1 + α)z∗

⊓⊔
Lower bound 3. There are two tasks with the pro-
cessing time as p1 = p2 = 1; cost as c1 = 1, c2 =
1 + α+ ε. Let the machine deadline as d1 = d2 = 1.
Then the state (task1, task1) is a Nash equilibrium
with z = 2 + 2α. While the social optimum state is
(task1, task2) with z∗ = 2 + α+ ε. So the bound is

z

z∗
=

2 + 2α

2 + α+ ε

6 Remarks
In this paper we consider the lazy bureaucrat schedul-
ing game with two players. We define the corre-
sponding potential functions to prove the existence of
a Nash equilibrium solution, and present the pseudo
polynomial time algorithm to find such a solution for
both of the single machine case and multiple machine
case. As for the price of anarchy, we prove that in
the adversary scheduling game, the price of anarchy
is 1 + α with a matched lower bound. And we con-
jecture that the price of anarchy should be lower in
the mixed scheduling game. We may consider more
general cases in the future in which both pi and ci
may change if the tasks are selected simultaneously
by both players.
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