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Abstract: The main requirement in wireless sensor networks is not only the security but also the energy efficient
security due to limited resources. In large scale deployment scenarios, there is no priory knowledge of post deploy-
ment network configuration since nodes may be randomly scattered over a hostile territory. Thus, shared keys must
be distributed before deployment to provide each node some keys. For large sensor networks it is infeasible to store
a unique key for all other nodes in the keys of a sensor node. Consequently, for secure communication either two
nodes have a key in common in their keys and they have a wireless link between them, or there is a path, among
these two nodes where each pair of neighboring nodes on this path have a key in common. We review and examine
the appropriateness of combinatorial designs as a tool for building key pre-distribution schemes suitable for such
environments. A scalable key pre-distribution scheme based on combinatorial designs is presented. Performance
and simulation results show that the combinatorial approach produces better connectivity with smaller key sizes.
An important advantage of our schemes is that we can increase the scalability of the network.

Key–Words: key pre-distribution scheme, wireless sensor networks, combinatorial designs, orthogonal arrays, ra-
tional normal curves, security

1 Introduction
Security in Wireless Sensor Networks (WSN) is

important for the applications where the confidential-
ity and integrity of the sensed data is critical. Se-
cure data transfer among wireless sensor nodes can
be achieved by securing each of the links used in the
communication path via a secret key to be used for the
message encryption. Establishing shared keys among
sensor nodes after the deployment is one of the main
research areas in the literature. Due to the limited
computational and power resources of the wireless
sensor network, proposed key establishment protocols
[1] are mostly based on key pre-distribution which has
a low cost of computation. Besides, there are recent
studies [2] evaluating the public key establishment in
wireless sensor network even though the computa-
tional cost is relatively higher. However, these key
establishment protocols have been evaluated indepen-
dently from the underlying network structure and the
main purpose is to establish shared keys among all
sensor pairs for the possibility of communicating af-
ter the deployment. If the network configuration re-
quirements are also considered, assumptions added to
the analysis of these protocols may not be applicable
or their costs may not be acceptable for some wire-

less sensor network applications. For example, high
network density assumptions made for the key pre-
distribution protocols may not be practical due to the
wireless medium efficiency. Besides, high network
density requirement increases the total system cost per
square area and it may not be acceptable for some
large scale wireless sensor network applications tar-
geting large area coverage.

When sensor networks are used in a hostile set-
ting, confidentiality and authenticity of communica-
tion among the sensor nodes should be provided.
While fulfilling these security requirements, fast and
energy efficient methods should be used. Although
there are some recent works to make public key cryp-
tography practical to be used sensor nodes, symmetric
cryptography and hash-based solutions are still more
efficient for providing security in sensor networks [3].
These solutions necessitate pair-wise keys distribu-
tions among the sensor nodes prior to beginning of
secure communication. The problem of distribution
of keys to large number of sensor nodes is an active
research field. Key pre-distribution schemes [4] are
shown to provide practical and efficient solutions. In
such schemes, redundant amount of keys are stored in
nodes memory before deployment and a matching al-
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gorithm is processed between neighboring node pairs
after the deployment. As a result of this match, some
of the stored keys are used in secure communication
of neighbors. If two neighboring nodes share a key,
then a secure link exists between those nodes. Due to
probabilistic nature of the scheme, some neighboring
nodes may not share a key [5].

Combinatorial structures are natural objects on
which to model many aspects of symmetric key man-
agement. For a survey of their contributions to key
establishment, see [6]. In order to construct determin-
istic key pre-distribution schemes for wireless sensor
network, using orthogonal arrays is another strategy
in this area. In this paper, we shall construct a class
of key pre-distribution schemes by means of a special
type of orthogonal arrays.

Symmetric key establishment almost always in-
volves a trusted third party, which we will term a key
management authority, at some stage in the process.
In some environments this key management authority
is online. In such cases the third party is often referred
to as a key distribution center, But There is no trusted
infrastructure in our scheme.

2 Wireless Sensor Networks
A wireless sensor network is an ad hoc net-

work formed from a collection of low-powered sen-
sor nodes which gather data and use wireless com-
munication to transmit the information they collect.
Wireless sensor networks represent an emerging com-
puting platform that blends sensing, computation, and
communication to provide a new tool in interfacing
with physical environments. Wireless sensor net-
works consist of a large number of tiny and inexpen-
sive computer platforms that are deeply embedded in
their environments. These platforms are capable of
sensing the environment, processing information on-
board, and communicating with each other and with
a network server through multi-hop wireless links.
They must reliably operate unattended for extended
periods of time, under stringent resource constraints
in energy, communication bandwidth, memory capac-
ity, and processing power. The number of nodes can
vary between dozens to thousands, depending upon
the applications [7]. Wireless sensor network is best
suited to applications where some form of environ-
mental monitoring is required, but where the scale
and hostility of the environment does not lend itself
to the deployment of a few expensive monitoring de-
vices. Examples include seismic data gathering, re-
mote habitat monitoring, gathering of ecological data,
forestry welfare, agriculture, disaster relief operations
and military intelligence gathering. The typical char-

acteristics of a wireless sensor network are [8-11]:

(1) Highly constrained nodes: The nodes are very
small battery-powered devices and are highly
constrained with respect to memory storage and
power. They are thus limited in their computa-
tional and communication ability.

(2) Lack of central control: Once deployed, most
wireless sensor network do not feature any cen-
tral control node. Thus all network functionality
must be achieved through cooperation between
the nodes.

(3) Requirement to form a network to a sink: In most
wireless sensor network the assumption is that
the sensor nodes will take readings and then at-
tempt to communicate this data back to a sink,
which is a more powerful device that will peri-
odically be connected to the wireless sensor net-
work and request data. The location of this sink
in the network is typically not fixed.

(4) Hop-based communication: Most wireless sen-
sor network use radio communication to connect
between nodes. The constrained nature of the
nodes means that in most cases the communica-
tion range of a node will be much smaller than
the network diameter. Thus nodes communicate
by hopping, meaning that a node passes data to
a node within range, which then passes it onto a
node within its range, etc.

(5) Dynamic network structure: It is generally as-
sumed that wireless sensor network are highly
dynamic. Nodes are often assumed to regularly
sleep to conserve battery power. Nodes expire
once their battery is drained. In some wireless
sensor network the nodes are mobile, although in
most current applications they are static.

(6) Nodes vulnerable to compromise: The con-
strained natures of sensor nodes mean that strong
security protection such as tamper-resistance is
usually not viable. Thus it is normally assumed
that sensor nodes can be fairly easily captured
and that any sensitive information stored on them
is likely to be exposed.

We will make three restrictions on the type of
wireless sensor network of being considered in this
paper:

• Homogeneous nodes: We will assume that all
nodes have the same capabilities and constraints.
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• Communication structure: We will assume that
the main aim of any communication in the wire-
less sensor network is to send data from a node to
the sink. We will thus not attempt to set up fully
connected sub-networks or establish group keys.

• No mobility: We will assume that nodes are not
mobile after deployment. In fact, many of the
solutions discussed here are also appropriate for
mobile nodes.

An important issue that affects key pre-
distribution scheme design is that wireless sensor
network vary in the extent to which the location of
nodes is known prior to deployment. We will thus
classify wireless sensor network as following [11-13]:

1) Uncontrolled if the location of sensors cannot be
predicted before deployment. This is the default
wireless sensor network scenario and assumes
that the application environment is in such a hos-
tile that nodes cannot be positioned in any con-
trolled way. For example, they may be released
from the air over a disaster site.

2) Partially controlled if some information about
the location of sensors is known before deploy-
ment. This might be the case when sensors are
strategically released from the air in batches.

3) Fully controlled if the precise location of sensors
is known before deployment. This is likely to be
the case, for example, when sensors are deployed
in a grid in a vineyard to monitor ground humid-
ity.

We will generally assume that a wireless sensor
network is uncontrolled [14], however we will discuss
key pre-distribution scheme for other types of wireless
sensor network. There has been some debate about the
practicality of using public key cryptography to im-
plement security services in a wireless sensor network
[15]. While this may indeed become more practical,
the case for designing solutions that only use sym-
metric cryptography remains strong. Symmetric cryp-
tography is still preferred in many modern applica-
tions which are not as resource constrained as wireless
sensor network because of the efficiency gains and
the unique problems posed by management of pub-
lic keys. Perhaps more compellingly, it is likely that
as soon as public key cryptography is practical on a
given sensor node technology, even more constrained
sensor technology will be being developed where it is
not. In this paper we assume that a fully symmetric
solution is required.

3 Combinatorial Designs
In this section, we discuss the orthogonal array

and rational normal curves [6, 16-23].

3.1 Orthogonal Arrays

Definition 1 Let k ≥ 2 and n ≥ 1 be integers. An
orthogonal array OA(k, n) is an n2×k array, A, with
entries from a set X of cardinality n such that, within
any two columns of A, every ordered pair of symbols
from X occurs in exactly one row of A.

Note that an OA(2, n) exists trivially for all inte-
gers n ≥ 1 .We give a more general definition now.

Definition 2 Let t, v, k, and λ be positive integers
such that k ≥ t ≥ 2 . A t− (v, k, λ) orthogonal array
is a pair (X,D) such that the following properties are
satisfied.

• X is a set of v elements called points.

• D is a λvt by k array whose entries are chosen
from the set X.

• Within any t columns of D, every t-tuple of
points is contained in exactly λ rows.

An orthogonal array (X,D) is a simple orthog-
onal array if all the rows in D are different. An or-
thogonal array (X,D) is a linear orthogonal array if
X = Fq for some prime power q and the rows of D
form a subspace having dimension logq |D|. It is clear
from the definitions that a linear orthogonal array is
necessarily simple.

Theorem 3 Let l and n be positive integers, and let
q be a prime power. Let M be an l × n matrix of el-
ements from Fq such that every set of t columns of M
is linearly independent. Define D to be the ql × n
matrix whose rows consist of all the linear combi-
nations of the rows of M. Then (Fq, D) is a linear
t− (q, n, λ)−OA, where λ = ql−t.

Proof: Choose t columns of D, say the ones labeled
c1, . . . , ct . Let y1, . . . , yt be an arbitrary t-tuple of
elements of Fq. We want to determine the rows i of D
such that D(i, cj) = yj for 1 ≤ j ≤ t.

A row of D is constructed as RM , where R =
(r1, · · · , rl) ∈ (Fq)

l. Let cj denote the jth column of
M for 1 ≤ j ≤ n. We want to determine all vectors
R such that:

Rcij = yij , 1 6 j 6 t
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The column vectors ci1 , . . . , cit are linearly inde-
pendent by assumption. Therefore, Rcij = yij is
a system of t independent linear equations in l un-
knowns, and it has a solution space of dimension l−t.
The number of solutions R is ql−t, as desired. ⊓⊔

We present an important corollary of Theorem 3.

Corollary 4 Let l ≥ 2 be a positive integer, and let q
be a prime power. Then there exists a

2− (q, (ql − 1)/(q − 1), ql−2)−OA.

Proof: Excluding the zero vector, there are ql − 1
distinct l-tuples of elements of Fq. Each l-tuple has
q − 1 nonzero scalar multiples, so the ql − 1 nonzero
vectors are partitioned into ql − 1/(q − 1) subspaces
each of dimension equal to one. Arbitrarily pick one
vector from each subspace, and let these vectors be
the columns of M. The results then can be obtained by
Theorem 3. ⊓⊔

Theorem 5 Let q be an odd prime power. For a, b ∈
Fq, define fa,b : Fq → Fq by the rule

fa,b(x) = (x+ a)2 + b.

Then, the q2 × q array D = (di,j), where (di,j) =
fa,b(j)(i = (a, b) ∈ (Fq)

2, j ∈ Fq), is a 2−(q, q, 1)−
OA.

Proof: Let (x1, x2) ∈ Fq and (y1, y2) ∈ Fq. We need
to show that there is exactly one ordered pair (a, b) ∈
(Fq)

2 such that

(x1 + a)2 + b = y1

and
(x2 + a)2 + b = y2.

Subtracting the two equations, we can obtain uniquely
by

a =
y1 − y2

2(x1 − x2)
− x1 + x2

2
.

The unique b can be thus obtained. ⊓⊔
Example 1: Suppose we take q = 5 and l = 2 in
Corollary 4. Each pair of columns of the following 12
matrix is linearly independent over Z5:(

0 1 1 1 1 1

1 0 1 2 3 4

)
.

By theorem 3, we obtain the following 2− (5, 6, 1)−
OA:



0 0 0 0 0 0

0 1 1 1 1 1

0 2 2 2 2 2

0 3 3 3 3 3

0 4 4 4 4 4

1 0 1 2 3 4

2 1 2 3 4 0

3 2 3 4 0 1

4 3 4 0 1 2

0 4 0 1 2 3

2 0 2 4 1 3

3 1 3 0 2 4

4 2 4 1 3 0

0 3 0 2 4 1

1 4 1 3 0 2
...

...

4 0 4 3 2 1

0 1 0 4 3 2

1 2 1 0 4 3

2 3 2 1 0 4

3 4 3 2 1 0



.

⊓⊔
Example 2: Following 2 − (3, 3, 1) − OA is con-
structed by Theorem 5:

0 1 2

f0, 0 : 0 1 1

f0, 1 : 1 2 2

f0, 2 : 2 0 0

f1, 0 : 1 1 0

f1, 1 : 2 2 1

f1, 2 : 0 0 2

f2, 0 : 1 0 1

f2, 1 : 2 1 2

f2, 2 : 0 2 0

.

This orthogonal array is not linear. This can be
seen, for example, by observing that the sum of the
first two rows is (1, 0, 0), which is not a row of the
array. ⊓⊔

OA(t, k, v) is an orthogonal array (OA) of index
1, order v, degree k and strength t, and an orthog-
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onal array of index λ, denoted by OAλ(t, k, v), is a
λvt × k array with entries from a set of v symbols,
in which all possible combinations of t symbols ap-
pear exactly λ times as rows in every λvt × k ar-
ray. Here we mainly concern with the existence of
an OAλ(t, k, v) with a nested OAu(t, k, w). We refer
to such a nested OA as an OA(λ,u)(t, k, (v, w)). It is
easy to see that in an OA(λ,u)(t, k, (v, w)) the index
u of the sub-array cannot exceed the index λ of the
larger array. Whenever λ = u we simply write it as
OAλ(t, k, (v, w)). In particular, if λ = u = 1, then
the notation OA(t, k, (v, w)) is employed.

So far, We now introduce asymmetric nested or-
thogonal arrays.

Definition 6 An asymmetric nested orthogonal ar-
ray:

NOA((N,M), k, (s1×s2 · · ·×sk, r1×r2 · · ·×rk), g),

where ri ≤ si, with strict inequality for at least one i,
1 ≤ i ≤ k, and M < N ,is an asymmetric orthogonal
array, OA(N, k, s1×s2×· · ·×sk, g) which contains
an OA(M,k, r1 × r2 × · · · × rk, g) is a sub-array.

For example, consider the following array. Note
that the definition 6 does not preclude the possibility
of existence of an asymmetric nested orthogonal array
where in the smaller orthogonal array is a symmetric
orthogonal array, nested within a larger asymmetric
orthogonal array. The array displayed in transposed
form: 

0 0 0 0

0 0 1 1

1 0 0 1

0 1 0 1

1 1 0 0

1 0 1 0

0 1 1 0

1 1 1 1

2 0 0 0

2 1 0 1

2 0 1 1

2 1 1 0

3 0 0 1

3 1 0 0

3 0 1 0

3 1 1 1



.

The first 8 rows of this array form a orthogonal
array OA(8, 4, 2, 3) while all the 16 rows represent

an asymmetric orthogonal array OA(16, 4, 32, 3). We
continue to call such arrays the asymmetric nested or-
thogonal arrays. We now describe some methods of
constructing of asymmetric nested orthogonal arrays.

Theorem 7 The existence of an OA(N, k, 2, 2u),
where u ≥ 1 is an integer, implies the existence of
an

NOA((tN, 2mN), k+1, (t1×2k, (2m)1×2k), 2u+1),

where t ≥ 2 is an even integer and 1 ≤ m ≤ t is an
integer.

Example 3: Considering A to be an OA(4, 3, 2, 2),
taking t = 6, m = 2 and following the
above method of construction, one obtains an
OA((24, 16), 4, (48, 32), 3) which is displayed below
in transposed form:

0000 0011 0101 0110

1111 1100 1010 1001

2222 0011 0101 0110

3333 1100 1010 1001

4444 0011 0101 0110

5555 1100 1010 1001


.

The first 16 rows of the above array form an
asymmetric OA(16, 4, 32, 3) and the full array is an
OA(24, 4, 48, 3). Next, consider an asymmetric or-
thogonal array A = OA(N, k, s1 × s2 × · · · × sk, g),
where g ≥ 2. Write A as

A =


a
′
1 A

′
1

a
′
2 A

′
2

...
...

a
′
s1 A

′
s1

 ,

where, for 1 ≤ i ≤ s1, ai is an N/s1 vector with each
element equal to i. Clearly, each Ai(1 ≤ i ≤ s1) is an
A = OA(N/s1, k − 1, s2 × · · · × sk, g − 1). Define
u = N/s1, v = t/s1, v = t/s1, b = (0, 1, . . . , t− 1)′

and A∗ = [A
′

1
: A

′
2 : · · · : A

′
s1 ]

′
. Consider the ma-

trix B given by B = [b ⊗ 1u
...1v ⊗ A∗], where ⊗

stands for the product of matrices. Then, one can
easily see that B is an asymmetric nested array A =
OA((N/S1, N), k, (t× s2× · · ·× sk, s1× s2× · · ·×
sk), g), where the first N rows of B form the smaller
array, which is anA = OA(N, k, s1×s2×· · ·×sk, g).
⊓⊔
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3.2 Rational Normal Curves

Definition 8 If a curve C in PG(n,Fq) to be the im-
age of the map,

PG(1,Fq) → PG(n,Fq),

(x0, x1) 7→ (xn0 , x
n−1
0 x1, . . . , x

n
1 ).

The curve C consists of the following q + 1 points:

((1, α, α2, . . . , αn)|α ∈ Fq) ∪ (0, 0, 0, . . . , 0, 1).

We call the image of the curve C under any
projective transformation a rational normal curve.
Now,we introduce some theorems [6, 23, 24].

Theorem 9 Let t ≥ 5 is an integer and q ≥ t − 1
is a prime power. The number of the rational normal
curves in PG(n,Fq) is

qn(n+1)/2−1
n+1∏
i=3

(qi − 1).

Theorem 10 Let t ≥ 5 is an integer and q ≥ t− 1 is
a prime power. there exists a t − (v, b, k, λr, 0)(3 6
r 6 t− 1) design as well where

v = (qt−2 − 1)/(q − 1),

k = q + 1,

b = q(t−3)(t−2)/2−1
t−2∏
i=3

(qi − 1),

λ1 = q(t−2)(t−3)/2−1
t−3∏
i=2

(qi − 1),

λ2 = q(r+t−3)(t−r−2)/2qr−2
t−r−2∏
i=1

(qi − 1)

r−2∏
i=1

(q − i),

2 6 r 6 t− 3,

λt−2 = (q − 1)t−4
t−4∏
i=1

(q − i),

λt−1 =
t−3∏
i=2

(q − i).

We study the intersection of any two the rational
normal curves now. Let C be a fixed rational normal
curves, C ′ be a rational normal curves, and the set
P ⊂ C with r = |P |. Define µ

′
C(P ) = #{C ′ ∩ C =

P}.

Hence the number µ
′
C(P ) does not depend on the

special curve C and the special set P, it depends only
on the number r = |P |. We write µ

′
C(r) instead of

µ
′
C(P ).

Note that µ
′
C(t) = 0. By the recursion formula

µ
′
C(r) = λr −

t−r−1∑
m=1

(
k − r

m

)
µ

′
C(r +m)− 1,

1 6 r 6 t− 1.

Define µC(r) for 1 6 r 6 t− 1 to be the number
of rational normal curves which intersect with C at r
points, and the number µC to be the number of ratio-
nal normal curves which have nonempty intersection
with C. Then we have

µC(r) =

(
k

r

)
µ

′
C(r)

and

µC =
t−1∑
r=1

µC(r) =
t−1∑
r=1

(
k

r

)
µ

′
C(r).

4 Key Pre-distribution Scheme
4.1 Network Model

In this paper, we assume that a large number of
resource-limited sensor nodes are randomly scattered
around an adversarial area.

BS

SN

Figure 1: Network model
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Examples of such networks can be military or en-
vironmental applications in which a large number of
sensors are dropped from an airplane to an adversarial
or hazardous environment.A realistic model of a wire-
less sensor network would consist of a large number
of sensors and several base stations. Network model
of our scheme is shown in Fig. 1. In Fig. 1, sensor
nodes (SN) have identical processing, storage, battery
life, and communication resources. Once deployed,
each sensor node receives messages from another sen-
sor node or base station (BS). The base station works
as the system administrators and are responsible for
generating keys for all nodes in the network. Two sen-
sor nodes are neighbors if they are physically located
within each others signal range. It may be possible
for a sensor to have a long transmission. Sensor nodes
communicate with each other to exchange application
data.

A set system (I,B) consists of a set I of v ele-
ments and a collection B of blocks of I. The degree of
x ∈ I is the number of blocks of B containing x and
(I,B) is regular if all points have the same degree.
The rank k of (I,B) is the size of the largest block in
B and we say that (I,B) is uniform if all blocks have
the same size. The wireless sensor network chooses
a key pre-distribution scheme defined on the n nodes
N = {N1, N2, . . . , Nn} in the network. Following,
this key pre-distribution scheme can de modeled by a
set system (I,B), where I = {xi : 1 6 i 6 v} is a
set of v key identifiers and B = {Bj : 1 6 j 6 n}
is a set of n node allocations. For each key identifier
xi, the key management authority randomly selects a
key Ki. The wireless sensor network then associates
each node Nj in the network with a node allocation
Bj and issues Nj with the key Lj = {Ki : xi ∈ Bj}.
Note that the association of Nj with Bj need not be a
secret, however the instantiation of Bj by Lj must be.

4.2 Construct Design

We can construct a 5 − (v, b, k, λ1, λ2, λ3, λ4, 0) de-
sign to a sensor network containing keys in a big key-
pool. There are b sensor nodes in each cluster, each
node containing k keys.

Consider the case of 5−(v, b, k, λ1, λ2, λ3, λ4, 0)
first, where

v = q2 + q + 1,

k = q + 1,

b = q5 − q2,

λ1 = q4 − q2,

λ2 = q3 − q2,

λ3 = q2 − 2q + 1,

λ4 = q − 2.

Hence,
µ

′
C(4) = q − 3,

µ
′
C(3) = 3q − 6,

µ
′
C(2) =

1

2
q3 − q2 +

7

2
q − 4,

µ
′
C(1) =

1

3
q4 +

1

2
q3 − 11

6
q2 + 2q − 1.

It follows that

µC(1) =
1

3
q5 +

5

6
q4 − 3

4
q3 +

1

6
q2 + q − 1,

µC(2) =
1

4
q5 − 1

4
q4 +

5

4
q3 − 1

4
q2 − 2q,

µC(3) =
1

2
q4 − q3 − 1

2
q2 + q,

µC(4) =
1

24
q5 − 5

24
q4 +

5

24
q3 +

5

24
q2 − 1

4
q,

µC =
4∑

r=1

µC(r) =
5

8
q5+

7

8
q4− 7

8
q3− 3

8
q2− 1

4
q−1.

We can construct a nested orthogonal array

NOA((Nt/s1, N), k, (t×s2 · · · sk, s1×s2 · · · sk), g)

from the

OA(N, k, s1 × s2 × · · · × sk, g),

where g ≥ 2, is available and suppose t is a positive
integer such that s1|t, in Theorem 7.

4.3 Key Pre-distribution Scheme

The correspondences between the parameters of a
combinatorial design 5−(v, b, k, λ1, λ2, λ3, λ4, 0) and
the related key pre-distribution scheme for a wireless
sensor network are summarized. We assume that the
number of network nodes is N .

(1) SA: Select the appropriate prime q, let N ≤ b:

– Size of the key pool: v.

– Number of keys per node: k.

(2) SB: Select the appropriate prime q, let N > b:

– Size of the key pool: v + va.

– Number of keys per node: k + ka.
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where va is the number of additional key for the key
pool; ka is the number of additional key for each sen-
sor node.

Next, we construct a NOA((N,M), k, (s, r), g)
design to a sensor network containing keys in a
big key-pool. There are N sensor nodes, each
node containing k keys. The correspondences be-
tween the parameters of a combinatorial design
NOA((N,M), k, (s, r), g) and the related key pre-
distribution scheme (NOAS) for a wireless sensor net-
work are summarized.

• Network size: N .

• Size of the key pool:
⌈
M×s
r×g

⌉
.

• Number of keys per node: k.

If two nodes within communication range of one
another wish to deploy a cryptographic service, they
first need to determine if they have any keys in com-
mon. The default method is to broadcast their node al-
locations to one another, but more efficient techniques
can sometimes be found. If they have key identifiers
in common then a session key can be generated from
the common keys associated with these identifiers by
means of a suitable key derivation function. If two
nodes fail to identify common keys during shared key
discovery, then they need to find a secure path be-
tween one another that employs intermediate nodes.
Obviously, the shorter this secure path is the better.

4.4 Performance Evaluations

In order to evaluate the performance of our
scheme, various simulations are performed. We used
the well-known metrics such as local connectivity and
the probability of links being affected.

1). Local Connectivity
Local connectivity can be referred as the proba-

bility of two neighboring nodes sharing at least one
key space, in other words, having a direct secure link.
Local connectivity can also be defined as the average
number of secure neighbors of a node. Fig. 2 shows
local connectivity values [23].

p =
µC
b− 1

Hence, the probabilities of SA and SB in one hop
are more than 0.6, and the probability of SA more than
SB. Even for smaller number of keys per node, we
achieve very good local connectivity.

In Fig. 3, the probabilities of SA and NOAS in
one hop are more than 0.5, and the probability of SA
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Figure 2: Local connectivity with SA and SB
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Figure 3: Local connectivity with SA and NOAS

more than NOAS. Even for smaller number of keys
per node.

2). Probability of Links Being Affected
The effectiveness of a wireless sensor network

can be explained by the probability fail(1). If a sen-
sor node is detected as being compromised, then all
the keys it possesses should no longer be used by any
node in the sensor network. Suppose the sensor nodes
Ni and Nj have at least one common keys. If all the
common keys of the pair of Ni and Nj are contained
in the compromised sensor node, then Ni and Nj are
no longer communicate directly, i.e., the link between
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Ni and Nj is lost. And the probability of links being
affected is defined in [23]:

fail(1) =

t−1∑
r=1

(
k

r

)
λrµ

′
C(r)

t−1∑
r=1

(
k

r

)
µ

′
C(r)

.

In Fig. 4 we simulated fail(1) values of our
scheme. Fig. 4 shows that when being equipped with
different number of q, the two schemes of this paper
have different fail(1), and all fail(1)s are less than
0.12. Generally, we expect fail(1) as small as possi-
ble, since it measures the resilience of the sensor net-
work, when a random sensor node is compromised.
So our schemes have high resiliency.
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Figure 4: Fail(1) values of our scheme

3). Computation Overhead
Since communication is the most energy-

consuming activity, we will analyze and discuss it in
more detail. While designing our scheme, we have
tried to minimize the communication as much as pos-
sible. This also helps in reducing the computation
overhead. Fig. 5 shows the number of nodes that can
be supported using our scheme.

Note that the graph is drawn on logarithmic scale
because the number of nodes that can be supported
increases exponentially with respect to the number of
keys used. Our scheme is inherently able to support
a large number of nodes with a small number of keys
using combinatorial designs.
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Figure 5: Number of nodes that can be supported

5 Conclusion
In the present paper, we present three random

key pre-distribution schemes for sensor networks. In
our schemes, we used some combinatorial designs ap-
proach, in which each node has its own distinct key
spaces. Secure links between nodes are established
through neighbor nodes or base station. Performance
and simulation results show that these new schemes
based on combinatorial designs produce high secure
connectivity and substantially strong node capture re-
siliency while consuming minimal memory.
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