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Abstract: A graph G is called randomly H − decomposable if every maximal H − packing in G uses all edges
in G. G is called H − equipackable if every maximal H − packing in G is also a maximum H − packing in
G. M2 − decomposable graphs, randomly M2 − decomposable graphs and M2 − equipackable graphs have
been characterized. The definitions could be generalized to multigraphs. And M2 − decomposable multigraphs
has been characterized. In this paper, all randomly M2 − decomposable multigraphs and M2 − equipackable
multigraphs are characterized, and some notes about randomly Mt − decomposable multipraphs are given.
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1 Introduction
The common notes and definitions of graphs can be
found in [1]. The path and cycle on k vertices are
denoted by Pk and Ck, respectively. The star with l
edges is denoted by K1,l. A matching in a graph is a
set of independent edges. By Mt (t ≥ 1), we denote a
matching having t edges. Let H be a subgraph of G.
ByG−H , here we denote the graph left after deleting
the edges of H from G and any resulting isolates.

Definition 1 A collection of disjoint copies of H , say
H1,H2, · · · ,Hk, where each Hi is a subgraph of G,
is called an H − packing in G.

An H − packing in G with k copies
H1,H2, · · · ,Hk of H is called maximal if
G −

∪k
i=1E(Hi) contains no subgraph isomor-

phic to H . An H − packing in G with k copies
H1,H2, · · · ,Hk of H is called maximum if no more
than k disjoint copies of H can be packed into G.Let
p(G : H) denote the number of copies of H in the
maximum H-packing of G.

Definition 2 A graph G is called H−decomposable
if there exists an H − packing of G which uses all
edges in G.

Definition 3 A graph G is called randomly H −
decomposable if every maximal H − packing in G
uses all edges in G.

Definition 4 A graph G is called H − equipackable
if every maximalH−packing inG is also a maximum
H − packing in G.

Definition 5 A graph G is H − decomposable, if F
is a subgraph of G, and F is H − decomposable but
not randomly H − decomposable, then F is called
H − forbidden.

There have been many results on H − decom−
posable graphs, randomly H − decomposable
graphs andH−equipackable graphs. Here give some
results.

Theorem 6 ([2]) Let G be a graph of size 2m > 0
and without isolates. Then G is M2 − decomposable
if and only if ∆(G) ≤ m and G is not isomorphic to
K3 ∪K2.

Theorem 7 ([2]) Let G be a graph of size 2m > 0
without isolates and G isn’t isomorphic to M2, then
G is randomly M2 − decomposable if and only if
G ∈ F , where F = {K4, C4, 2K3,K3 ∪ K1,3} ∪
{2mK2, 2K1,m|m ≥ 2}.

Theorem 8 ([11]) A graph G is randomly M3 −
decomposable if and only if it is isomorphic to one
of the following: 3nK2, 3K1,n, C6, C4

∪
K1,2, 3K3,

2K3
∪
K1,3, 2K1,3

∪
K3, K4

∪
K3, K4

∪
K1,3 or

K3,3.

Theorem 9 ([2]) The only connected randomly
K1,2−decomposable graphs are the cycle C4 and the
stars K1,2t.
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Theorem 10 ([1]) For r ≥ 2, a connected graph G
is randomly K1,r−decomposable if and only if it is
Kr,r or it is bipartite with all degrees in one partite
set being multiples of r and all degrees in the other
set being less than r.

Theorem 11 ([1]) Let G be a graph with q edges
and maximum degree d. For q > 8t2

3 − 2t, G is
Mt−packable if and only if t|q and q ≥ td.

Theorem 12 ([1]) For a given integer t ≥ 2, a
graph with at least 2t3 − t2 edges is randomly
Mt−decomposable if and only if it is isomorphic to
tH , where H is either nK2 or K1,n for some n ≥ 1.

All M2 − equipackable graphs have been char-
acterized in [5].

Theorem 13 ([5]) If G is a graph with size 2m, then
G is M2− equipackable if and only if G satisfies one
of the following:

(1) G ∼= K3 ∪K2;
(2) G ∈ F , where F = {K4, C4, 2K3,K3 ∪

K1,3} ∪ {2mK2, 2K1,m|m ≥ 2};
(3) ∆(G) = d > m, and for any vertex v whose

degree is d, the induced subgraph by E(G − v) must
be K1,2m−d or K3.

Theorem 14 ([5]) If G is a graph with size 2m + 1
and ∆(G) = d ≥ m+2, thenG isM2−equipackable
if and only if for any vertex v whose degree is d, the
induced subgraph by E(G − v) must be K1,2m+1−d

or K3.

Theorem 15 ([5]) If G is a graph with size 2m +
1 > 1 and ∆(G) = d < m + 2, then G is
M2 − equipackable if and only if G satisfies one of
the following:

(1) Neither K3 nor K1,3 is contained in G as a
subgraph.

(2) At least one copy ofK3 orK1,3 is contained in
G as a subgraph and for any subgraph H of G which
is isomorphic to K3 or K1,3, ∆(G−H) > m− 1 or
G−H ∼= K3 ∪K2.

A graph is called a multigraph if it contains
loops or has two edges joining two common vertices.
All multigraphs considered in the following are loop-
less and without isolates. For any pair of adjacent
vertices ofM , say x and y, let n(x, y) denote the num-
ber of multiple edges joining x and y, called the mul-
tiplicity of x and y. The underlying simple graph
of M is a simple spanning subgraphs of M , obtained
by deleting all loops and all but one multiple edges,
such that n(x, y) = 1, for any adjacent vertices x and
y of M .

Definition 16 The multistar Sw1,···,wt is the multi-
graph, whose underlying graph is K1,t, and the mul-
tiplicities of its edges are w1, · · · , wt.

Definition 17 The multitriangle T x1,···,x3 is the multi-
graph, whose underlying graph is a triangle C3, and
the multiplicites of its three edges are x1, x2, x3.

Given a submultigraph (or a subset of vertices)
S, let M [S](= M [x, y, · · · , z] if S comprises vertices
x, y, · · · , z) denote the submultigraph of M induced
by vertices of S.

Definition 18 An edge set in which all edges are mu-
tually adjacent is called a cluster or edge− clique.

Therefore a cluster is a subset of edges of a sub-
multigraph induced by vertices of either a star or a
triangle.

Definition 19 The maximumsize among clusters in
M is called the cluster number ( or edge − clique
number) of M and is denoted by ω1 = ω1(M).

Thus ω1 = ω(L(M)), the clique number of the
line graph L(M) of M . Hence

ω1(M) = max{∆(M), max
K3⊆M

e(M [K3])}.

A cluster of size e(M)/2 is called a critical cluster
in M . By a critical triangle and a critical star we
mean a critical cluster induced by vertices of a triangle
and a star, respectively. The center of a critical star is
called a critical vertex of the multigraph.

The concept of decomposable has been first ex-
tended to multigraphs by Skupień.

Theorem 20 ([4]) A multigraph M is
M2−decomposable if and only if the number of
edges e(M ) is even and every edge-clique includes no
more than half of the edges, i.e., ω1(M) ≤ e(M)/2.

Theorem 21 ([9]) A multigraph M is
M3−decomposable if and only if 3|e(M),
ω1(M) ≤ e(M)/3 and ω2(M) ≤ 2e(M)/3,
where ω2(M) = max{max e(M [V5]) : V5 ⊆
V (M), |V5| = 5}.

In this paper, some of the results will
be generalized to multigraphs. All ran-
domly M2−decomposable multigraphs and
M2−equipackable multigraphs will be characterized
in section 2 and section 4, and in section 3, there
are some notes about randomly Mt−decomposable
multigraphs. When M ∼= K2, M ∼= C2 or M ∼= P3,
there exists no copy of M2 in M , it has no mean-
ing. When M ∼= M2, it is obviously randomly
M2−decomposable and M2−equipackable. So in
the following, we consider the multigraphs with size
larger than 2.
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2 Randomly M2 -decomposable
multigraphs

In order to describe the randomly M2−decomposable
multigraphs, give a family of simple graphs R defined
by

R = {C4,K4, 2K3,K3 ∪K1,r,K1,r ∪
K1,s, 2nK2|r, s = 1, 2, · · · ;n ≥ 2}.

Let G be a family of multigraphs with R as the
underlying simple graphs.

See Figure 1. Here ei has the same multiplicity
with e

′
i (i = 1, 2, 3.) in (a) and (b). In (c), (d) and

(e),

tc =
3∑

i,j=1,i̸=j

n(vi, vj), t
′
c =

3∑
i,j=1,i̸=j

n(v
′
i, v

′
j);

td =
3∑

i,j=1,i̸=j

n(vi, vj), sd =
∑

1≤i≤s

n(v
′
, v

′
i);

se =
∑

1≤i≤r

n(v, vi), s
′
e =

∑
1≤i≤s

n(v
′
, v

′
i),

such that, tc = t
′
c, td = sd, and se = s

′
e. Clearly,

(c) is a disjoint union of two critical triangles, (d) is a
disjoint union of a critical triangle and a critical star,
and (e) shows a disjoint union of two critical stars,
(f) is 2nK2. Let G denote the family of multigraphs
in Figure 1 satisfying the conditions above.
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Figure 1 : the multigraphs set G

Lemma 22 Let M be a multigraph of size 2m(m ≥
1). Suppose thatM /∈ G( described in Figure 1). Then
M can be decomposed into one copy of P3 or C2 and
m− 1 copies of M2 if and only if ω1(M) ≤ m+ 1.

Proof: At first, it is not hard to note that the lemma
holds for m = 1, 2. Then we assume that m ≥ 3.

Suppose that M has been decomposed into one
copy of P3 orC2 andm−1 copies ofM2. If ω1(M) ≤
m + 1 is not true, we consider for ω1(M) ≥ m + 2.
There are two cases:

Case 1: M can be decomposed into one copy of
P3 and m− 1 copies of M2. Consider two subcases.

Subcase 1: ω1(M) = ∆(M).
Then M contains a vertex v of degree ∆(M) ≥

m+ 2. If we delete a copy of P3, which contains v as
an end-vertex, there must exist m + 1 edges incident
with v which belong to different M2. If we delete a
copy of P3 with v as the center, there must exist m
edges incident with v which belong to different M2.
So at least m edges incident with v belong to differ-
ent M2. Then e(M) ≥ n + 2 + n > 2n. This is a
contradiction, so ω1(M) ≤ m+ 1.

Subcase 2: ω1(M) = max
K3⊆M

e(M [K3]).

ThenM contains a submultigraphM [K3], say T ,
with size e(T ) ≥ m + 2. Clearly, ∆(M) ≤ e(T ).
We take any two edges of T , forming a copy of P3,
the remaining m edges of T must belong to different
2K2. Similar to case 1, we get a contradiction.

Case 2: M can be decomposed into one copy of
C2 and m − 1 copies of M2, as the case 1, there are
two cases.

Subcase 1: ω1(M) = ∆(M) ≥ m+ 2.
Let v be a vertex with the biggest degree, then v

must be the end-vertex of C2. As case 1, delete the
copy of C2, there are m edges incident with v which
belong to different M2. A contradiction.

Subcase 2: ω1(M) = max
K3⊆M

e(M [K3]).

ThenM contains a submultigraphM [K3], say T ,
with size e(T ) ≥ m + 2. So T ’s any two multiple
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edges between any two vertices of T , form a copy of
C2. As case 1, get a contradiction.

Conversely, suppose that M /∈ G and ω1(M) ≤
m+ 1, then we have three cases:

Case 1: ω1(M) ≤ m− 1.
Since M /∈ G, so M ̸= 2mK2, then M must

contain P3 or C2, whose removal results in a sub-
multigraph M

′
, which has 2(m − 1) edges, and

ω1(M
′
) ≤ ω1(M) ≤ m − 1. By Theorem 4, M

′
has

an M2−decomposition. So M can be decomposed
into one copy of P3 or C2 and m− 1 copies of M2.

Case 2: ω1(M) = m.
Then M contains either a vertex with degree m

or a M [K3] with size m. Since M /∈ G, M is not
a disjoint union of two critical triangles or two criti-
cal stars, M is not a disjoint union of a critical trian-
gle and a critical star, either. Then M at most con-
tains a union of two critical stars or two critical tri-
angles with a common vertex, or, contains a union
of a critical stars and a critical triangle with a com-
mon vertex. Let u denote the common vertex. We
can delete such a P3( i.e., K1,2) with u as the cen-
ter vertex and its two edges belong to the two critical
submultigraphs, respectively. Then we get the remain-
ing submultigraph M

′
, which has 2(m−1) edges and

ω1(M
′
) ≤ ω1(M) ≤ m − 1. By Theorem 4, M can

be decomposed into one copy of P3 and m− 1 copies
of M2.

Case 3: ω1(M) = m+ 1.
Then M contains only one vertex u with degree

m + 1 or one M [K3], say M [u, v, w] of size m + 1.
For the former, delete two edges uv and uw from M ,
where u and w have the two largest degrees among
those vertices adjacent to u. For the latter, delete two
edges uv and uw from T , where u has the largest de-
gree in M among x, y, z. Since ω1(M − uv− uw) ≤
m − 1. we proceed as before to obtain the decompo-
sition of M . ⊓⊔

Theorem 23 Let M be a multigraph of size 2m(m ≥
1), then M is randomly M2−decomposable if and
only if M ∈ G.

Proof: If M ∈ G, clearly, M is randomly M2 -
decomposable.

Conversely, let M is randomly
M2−decomposable. We claim that M ∈ G. On
the contrary, suppose that M /∈ G. By Theorem20,
since M is M2−decomposable, ω1(M) ≤ m. It
follows that M can be decomposed into one copy
of P3 or C2 and m − 1 copies of M2, by Lemma
22. These m − 1 copies of M2 do not belong to any
M2−decomposition of M , contradicting to the fact
that M is randomly M2−decomposable. Therefore,
M ∈ G. ⊓⊔

3 Some notes about randomly
Mt−decomposable multigraphs

The following lemma is useful to our work.

Lemma 24 ([1]) If G is a randomly
H−decomposable graph (or multigraph) and F
is an H−decomposable subgraph (or submulti-
graph),

(1) If G is randomly H−decomposable, so is F ;
(2) If F is H−forbidden, then G isn’t randomly

H−decomposable.

Lemma 25 A graph M is randomly
Mt−decomposable, then the following conditions are
necessary:

(1) t|e(M),
(2) ω1(M) ≤ e(M)

t .

The conditions above are not sufficient, for ex-
ample, C2

∪
P4
∪
K2 satisfies both the two con-

ditions for t = 3, however it isn’t randomly
M3−decomposable.

Theorem 26 ([6]) A path Pn is Mt−equipackable if
and only if n = kt (k ∈ N, k ≥ 2).

Theorem 27 ([6]) A circle Cn is Mt−equipackable
if and only if 2t ≤ n ≤ 3t − 2, or n = kt + t − 1
(k ∈ N, k ≥ 2).

It is easy to prove the lemma below by the Defi-
nition 3 and Definition 4.

Lemma 28 If graph G if H−decomposable, then G
is randomly H−decomposable if and only if G is
H−equipackable.

By Theorem 26, Theorem 27 and Lemma 28, get
the following corollary.

Corollary 29 Only C2t is a randomly
Mt−decomposable path or circle.

Theorem 30 Let a multigraph M be a con-
nected graph which doesn’t contain submultigraphs
isomorphic to K3, K1,3 or S1,2, then M is
Mt−decomposable if and only if M ∼= C2t.

Proof: If M is a connected graph satisfying the con-
ditions, thenM is a simple path or circle. So by Corol-
lary 29, M ∼= C2t. ⊓⊔

Theorem 31 If a multigraph M is both ran-
domly Mp−decomposable and randomly
Mq−decomposable, and p(M : Mp) = m,
p(M : Mq) = l, where p, q,m, l ∈ N , p ̸= q, and
p ∗m = q ∗ l = k. Then M ∼=Mk.
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Proof: Without losing of generality, let p > q, so
m < l.

Assume that M isn’t isomorphic with Mk, then
M must contain P3 or C2 as submultigraphs. Let the
two edges of the P3 or C2 are e and f , respectively.
Then e and f must belong to different Mp’s copies
and Mq’s copies in M . Let H be a submultigraph of
M composed of the copy of Mp containing e , say
H1, and the copy of Mp containing f , say H2. As M
is randomly Mp−decomposable, by Lemma 24, H is
also randomly Mp−decomposable. Obviously, in H1

there is a copy of Mq containing e, say F1, and in H2

there is a copy of Mq containing f , say F2. Consider
two cases:

Case 1: Consider subgraph P3. There are two
subcases.

Subcase 1: No edge except e in F1 has neighbor
edge in F2.

Then replace any edge in F1, say g, with f , where
g ̸= e. Now F2 is still isomorphic with Mq, while F1

contains P3. And M − F1 − F2 is the union of l − 2
copies of Mq. So there is a maximal Mq−packing in
M , which doesn’t use up all edges of M , that means
M is not randomly Mq−decomposable. A contradic-
tion.

Subcase 2: There exits at least one edge, which is
adjacent to F2, except e in F1. See Figure 2, where
g, e ∈ F1 and f, h ∈ F2.
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Figure 2

(1) and (2): g is adjacent to h, but not adjacent to
f .

If F1
∪
F2 is an union of q copies of clusters with

size of 2, mean K1,2 or C2. Then M must be the

union of q clusters of size l. ( Because otherwise,
there exists a cluster with size a, where a < l. We
just consider the worst case: a = l − 1. And by
Lemma 25, ω1(M) ≤ l. So M is the disjoint union
of q − 1 copies of K1,l, one copy of K1,l−1 and one
copy of K2. Then we can take the K2 and the other
q − 1 edges form the copy of K1,l−1 and from q − 2
copies of K1,l. These q edges form a copy of Mq.
Obviously the remaining graph has only q − 2 copies
of Mq. So M has q − 1 copies of K1,l, a contra-
dict.) So go back to M ∼= qK1,l. In this condition,
ω1(M) = e(M)

q = l > m. However, M is also ran-

domly Mp−decomposable, and ω1(M) = e(M)
q =

m, a contradiction.
If F1

∪
F2 isn’t an union of q copies of clusters

with size of 2, then F1
∪
F2 may contain subgraphs

as P4 or K2, but not clusters with size of 3, for defini-
tions of F1 and F2. So if there is a copy of P4 orK2, e
or f can be replaced, by subcase 1, get a contradiction.

So (1) and (2) are not correct.
(3): g is adjacent to h and f , and h isn’t adjacent

with e. So replace h with g. As same as subcase 1,
F1

∼= Mq, but F2 has P3 as a subgraph, so F1
∪
F2 is

not randomly Mq−decomposable. A contradiction.
(4): e, f , g and h form a copy of C4. Because

of Lemma 25, the copy of C4 is independent of other
edges of H . Except e, f , g and h, if in F1 ( or F2 )
there exists an edge, say e

′
, which isn’t adjacent to any

of edges in F2 ( or F1 ), then replaced h ( or g ) with
e
′
, as above get a contradiction. Otherwise, all edges

in F1 have adjacent edges in F2 and all edges in F2

have adjacent edges inF1, and note that by Lemma 25,
∆(F1

∪
F2) ≤ 2. Then F1

∪
F2 is the union of paths

and cycles. Obviously, if odd cycles or odd paths are
contained in F1

∪
F2, then F1

∪
F2 is not randomly

Mq−decomposable. So F1
∪
F2 is the union of even

paths and even cycles. If F1
∪
F2 contains copies of

P5, we can take the two end-edges of a copy of P5 as
a M2 belonging to a copy of Mq, then the remaining
edges can’t form a copy of Mq. A contradiction. So
F1
∪
F2 contains no paths with size larger than 2. It’s

easy to see that if F1
∪
F2 is the union of even cycles

and P3 orC2, it is randomlyMq−decomposable. As a
result, H is also the union of even cycles, P3 or C2 by
the same analytical procedure. Now, because p > q,
so at least there is a component in H not belonging to
F1
∪
F2. This component would be a even cycle, P3

or C2, whatever, we can replace one edge of the com-
ponents with e or f , then new F1

∪
F2 is not randomly

Mq−decomposable, contradict to Lemma 24.
So that M doesn’t contain P3 as a subgraph has

been proved. Now consider the case 2.
Case 2: Consider subgraph C2. As case 1, there

are also two subcases.
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Subcase 1: No edge except e in F1 has neighbor
edge in F2.

As same as subcase 1 in case 1, get a contradic-
tion.

Subcase 2: There exits at least one edge, which
is adjacent to F2, except e in F1. By Lemma 25, see
Figure 3, where g, e ∈ F1 and f, h ∈ F2.

b
b

b
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�
�

A
A
A

g

h

b be

f

(1)

b bg

h
b be

f

(2)

Figure 3

In (1) and (2) it is easy to get a contradict by the
same thought process of subcase 2 in case 1.

Above all, it has been proved that M doesn’t con-
tain P3 or C2, so M ∼=Mk. ⊓⊔

The lemmas given below is obvious.

Lemma 32 ntK2 is randomly Mt−decomposable,
where n, t ∈ N and n ≥ 1.

Lemma 33 The disjoint union of t clusters,
whose sizes are equal to each other, is randomly
Mt−decomposable, where t ∈ N .

Lemma 34 Let multigraph F1 is randomly
Mp−decomposable with n copies of Mp, and
multigraph F2 is randomly Mq−decomposable with
n copies ofMq, where n ∈ N . Then the disjoint union
of F1 and F2 is randomly Mp+q−decomposable with
n copies of Mp+q.

Proof: Let F1 + F2 denote the disjoint union of F1

and F2, and let t = p+ q.
Assume that F1 + F2 isn’t randomly

Mt−decomposable. Then, a maximal Mt−packing
of F1 + F2 doesn’t use all of edges of F1 + F2, that
is p(F1 + F2 : Mt) = m < n. So there are at least
t edges that cannot form a copy of Mt. As a result
F1+F2 must contain copies of P3 orC2 as subgraphs.
Consider P3 and C2 in two cases respectively.

Case 1: At least one copy of P3 is contained in
F1 + F2.

So the copy of P3 belongs to either F1 or F2.
Without loss of generality, let the copy of P3 ⊆ F1.

Let in F1 − P3 there be k copies of Mp, then n− 2 ≤
k ≤ n− 1.

Subcase 1: k = n− 1.
Then e(F1) − ke(Mp) = ne(Mp) − (n −

1)e(Mp) = e(Mp) = p ( e(G) is the number of the
edges of G, where G is a graph. ), it means that the
copy of P3 is in the p edges. This is contradict to that
F1 is randomly Mp−decomposable.

Subcase 2: k = n− 2.
Then e(F1) − ke(Mp) = ne(Mp) − (n −

2)e(Mp) = 2e(Mp) = 2p. Different from subcase
1, the two edges of P3 belongs to the 2 copies of Mp

separately. So the remaining 2p edges are union of p
clusters of size 2 or even cycles. (Otherwise, we can
choose a Mp, but remain p edges which cannot form a
Mp. So it is not randomly Mp−decomposable.) If so,
there is no copy of Mp containing P3. This is contra-
dict to the assumption.

Case 2: At least one copy of C2 is contained in
F1 + F2. By case 1, easy to get a contradict.

All above, we prove the lemma. ⊓⊔

Theorem 35 Let M is a non-connected multi-
graph with k components, when t ≥ 2, M is
randomly Mt−decomposable and p(M : Mt) = n (
n ≥ 1, n ∈ N ), if and only if M ∈ Ψ, where Ψ =
{
∑k

j=2 Fj |Fj ∈ RD(Mσ(j), n), σ(j) ∈ N,
∑
σ(j) = t},

where Fj ∈ RD(Mσ(j), n) means graph
Fj(2 ≤ j ≤ k) is randomly Mσ(j)−decomposable
and p(Fj : Mσ(j)) = n. Especially, ntK2 ∈ Ψ and t
clusters with size of n belong to Ψ

Proof: By Lemma 32, Lemma 33 and Lemma 34,
sufficiency of the theorem is obvious, here only prove
it’s necessity.

Let M ∈ RD(Mt, n), and M is non-connected.
Consider number of components of M , denoted by
w(M), in three cases.

Case 1: w(M) > t.
Now M must contain more than two copies of

Mt. Assume that M ̸= ntK2, then at least one com-
ponent of M contains P3 or C2. There is always a
subgraph H composed of two copies of Mt, such that
H contains the copy of P3 or C2, and each of the two
edges of P3 or C2 belongs to the two copies of Mt

separately. If H is not union of clusters with size
of 2 (means P3 or C2) and even cycles, then H is
Mt−forbidden. If H is the union of clusters with size
of 2 and even cycles, then arbitrarily replace one edge
of other components of M except these t components
with one edge ofH . Easy to see, H isMt−forbidden.
So, M ∼= ntK2.

Case 2: w(M) = t.
Because that randomly Mt−decomposable, so a

subgraph sayH ofM , composed by any two copies of
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Mt, is still randomly Mt−decomposable by Lemma
24. Let Wi denote the ith(1 ≤ i ≤ t) component of
M and let e(W1) is largest. Assume that exits one of
the components in M is not a cluster with size of n.
And by Lemma 25, ω1(M) ≤ n, then there must be a
copy of P4 as a subgraph.

Claim that in W2, · · · ,Wt, at least one of them
contains P3 or C2.

(The existing of P3 or C2 is true. Otherwise, let
M = M

′
+ (t − 1)K2), where M

′
is W1 and other

components are K2. So, in W1 there must be a copy
of Mt, and because W1 is connected, any two edges
of the copy of Mt must be in a same path. Then this
copy of Mt and any common neighbor edge of it’s
two edges, with other (t − 1)K2 form a subgraph H

′

of M , such a subgraph is Mt−forbidden. So M ̸=
M

′
+ (t− 1)K2).)
Let W2 ⊇ P3 or W2 ⊇ C2, and let P4 ⊆ W1,

and P4 = v1ev2fv3gv4, where e,f and g are edges
of P4. Take e and g from W1, and take one edge
each from W2, · · · ,Wt−1, the t edges form a copy of
Mt. And take f , with t − 1 edges from W2, · · · ,Wt,
form a copy of Mt, where make sure at least one edge
from W2. And the two copies of Mt form a subgraph
H of M and the two edges taken from W2 is adja-
cent, that is P3 or C2. From H , take edges each from
W3, · · · ,Wt with e and f form a copy of Mt. Obvi-
ously, the t edges left can’t form a copy of Mt. So H
isMt−forbidden. A contradiction. So all components
of M are clusters with same size of e(M)

t .
Case 3: 2 ≤ w(M) < t.
Let the components of M is W1, · · · ,Wk(2 ≤

k < t). W1
∪
· · ·
∪
Wk is randomly

Mt−decomposable, then Wj must be randomly
Mσ(j)−decomposable, where 1 ≤ j ≤ k, σ(j) ∈ N

and
∑k

j=1 σ(j) = t. Otherwise, assume thatW1 is not
randomly Mσ(1)−decomposable. Then in W1, there
is a maximalMσ(1)−packing which doesn’t use up all
edges in W1, with other maximal Mσ(j)−packing of
Wj(2 ≤ j ≤ k), form a Mt−packing is till maximal
and doesn’t use all edges of M , A contradiction. ⊓⊔

The non-connected randomlyMt−decomposable
multigraphs have been characterized. Frankly speak-
ing, it is hard to character connected randomly
Mt−decomposable multigraphs. If once they are
characterized, then Theorem 35 would be rewrite
more clearly.

4 M2 -equipackable multigraphs
Firstly, we prove a lemma.

Lemma 36 Let M be a multigraph with size n, and
cluster number ω1(M) = ω1. If ω1 > ⌈n2 ⌉, then the

number of M2 in the maximum M2 − packing of M
is n− ω1, i.e., p(M :M2) = n− ω1.

Proof: Since ω1(M) =
max{∆(M), max

K3⊆M
e(M [K3])}, we have two

cases:
Case 1: ω1(M) = ∆(M) = ω1 > ⌈n2 ⌉.
Assume that v is a vertex with degree ω1 and has k

neighbor vertices. Let the set of v’s neighbor vertices
is

{vi|
∑k

i=1 n(v, vi) = ω1, i = 1, 2, · · · , k.}.

Let E1 be the edges set which are adjacent to v,
andE2 = E(M)−E1 = {e1, e2, . . . , en−ω1}. |E1| =
ω1, |E2| = n − ω1 < ⌈n2 ⌉. It’s obvious that each
edge of E2 is adjacent to at most two edges of E1. Let
n(vi, vj) = l, i ̸= j. We have n(v, vi)+n(v, vj)+l ≤
ω1. Hence, l ≤ ω1 − n(v, vi) − n(v, vj). That is, for
any ei ∈ E2, there exists an edge e

′
i ∈ E1 such that

{ei, e
′
i} forms a copy of M2. Remove {ei, e

′
i}. Let

E
(1)
1 = E1−{e′i} and E(1)

2 = E2−{ei}. In the same
way, each edge in E(1)

2 has at most two neighbors in
E

(1)
1 , we can get another copy of M2. We remove it

and repeat this process (n−ω1) times, thus removing
all the edges of E2 each of which along with one edge
of E1 forms a copy of M2, while the remaining edges
in E1 contains no M2. So the removed n− ω1 copies
of M2 form a maximal M2−packing of M . Because
all edges in E1 are adjacent and there are no edges in
E2, this M2−packing is maximum.

Case 2: ω1(M) = max
K3⊆M

e(M [K3]) = ω1.

Let T be aM [K3] of size ω1,E1 = E(T ), |E1| =
ω1, V (T ) = {x, y, z}. E2 = E(M)− E1 = n− ω1.
Obviously, any edge in E2 is adjacent to at most one
of {x, y, z}. Without loss of generality, we take any
vertex of T , say x, let ex be the edge set adjacent to
x in E2 and Tx be edges between y and z, which are
not adjacent to x in T , that is, |Tx| = n(y, z). we
have ex ≤ ∆(M) − n(x, y) − n(x, z) ≤ ω1(M) −
n(x, y) − n(x, z) = ω1 − (ω1 − Tx) = Tx. Hence,
for any e ∈ E2, there exists an edge e

′
i ∈ E1 such that

{ei, e
′
i} forms a copy of M2. The proof is completed

similar to Case 1. ⊓⊔

Theorem 37 Let M be a multigraph of size n, ω1 >
⌈n2 ⌉, then M is M2−equipackable if and only if M
satisfies one of the following:

(1) ω1(M) = ∆(M) = ω1 > ⌈n2 ⌉, and for
any vertex v whose degree is ω1, the submultigraph
M [M − v] must be a member of the multigraphs
family M [K1,r] or M [K3], where e(M [K1,r]) =
e(M [K3]) = n− ω1.
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(2) ω1(M) = max
K3⊆M

e(M [K3]) = ω1 > ⌈n2 ⌉,

and for any submultigraph T = M [K3] of size ω1,
the submultigraph M [M − T ] must be a member
of the multigraphs family M [K1,r] or M [K3], where
e(M [K1,r]) = e(M [K3]) = n− ω1.

Proof: We can easily verify that the multigraphs sat-
isfying (1) or (2) are all M2−equipackable.

Conversely, letM be anM2−equipackable multi-
graph.

Case 1: ω1(M) = ∆(M) = ω1 > ⌈n2 ⌉.
By Lemma 36, the number of M2 in the max-

imum M2 − packing in M is n − ω1. Let v be
a vertex with maximum degree. If there are two
edges (say {e, f}) in M − v which are not adjacent,
then after removing {e, f} (we denote M − {e, f}
by M1), ∆(M1) = ω1 > ⌈n2 ⌉ > ⌈n−2

2 ⌉. The
graph M1 also satisfies Lemma 36. So we can get
a maximum M2−packing in M1 with n − 2 − ω1

copies ofM2 which along with {e, f} form a maximal
M2−packing ofM . Obviously this resulting maximal
packing with only n−1−ω1 copies ofM2 is not maxi-
mum, which contradicts that M is M2−equipackable.
So all edges in M − v are mutually adjacent. That
is, the submultigraph M [M − v] must be a member
of the multigraphs family M [K1,r] or M [K3], where
e(M [K1,r]) = e(M [K3]) = n− ω1.

Case 2: ω1(M) = max
K3⊆M

e(M [K3]) = ω1 >

⌈n2 ⌉.
Let T be a submultigraph M [K3] of size ω1.

Similar to Case 1, suppose there are two edges (say
{e, f}) in M − T which are not adjacent, by Lemma
36, we can get a maximal, but not a maximum
M2−packing, which contradicts to the fact that M is
M2−equipackable. Hence, all edges in M − T are
mutually adjacent. ⊓⊔

Now, we shall consider the multigraphsM of size
n, with ω1 ≤ ⌈n2 ⌉.

Theorem 38 Let M be a multigraph of size 2m, and
ω1(M) ≤ m. Then M is M2−equipackable if and
only if M ∈ G.

Proof: Obviously, any multigraph M ∈ G is
M2−equipackable.

Conversely, letM be anM2−equipackable multi-
graph with size 2m, then by Theorem 20, M is
M2−decomposable. So p(M : M2) = m. If M is
not randomly M2−decomposable, then there exists a
maximalM2−packing which does not use all edges in
M and consequently which is not maximum. It con-
tradicts to the fact thatM isM2−equipackable. SoM
must be randomly M2−decomposable. By Theorem
23, M ∈ G. ⊓⊔

Lemma 39 Let M be a multigraph with size 2m+1,
and F be a maximal M2−packing. If F satisfies one
of the following:

(1) F omits all the edges of a subgraph K3;
(2) F contains a copy (say {e, f}) of M2 such

that neither e nor f is incident with the center of the
star K1,3;

(3) F contains a copy (say {e, f}) of M2 such
that neither e nor f is incident with the center of the
submultigraph S1,2. Then the multigraph M is not
M2−equipackable.

Proof: We just prove (3). Now we assume that F
satisfies (3).

Without loss of generality, we denote the edges of
the submultigraph by S1,2 by vv1, vv2 and vv

′
2, where

n(v, v1) = 1 and n(v, v2) = 2. Neither e nor f is in-
cident with v. For the edge e, there are three subcases:

Subcase 1: The edge e is not incident with any
vertex of {v1, v2}.

Since there are at most two vertices of {v1, v2}
which are incident with f , say v1, we can replace
{e, f} with {f, vv2}(or {f, vv′

2}) and {e, vv1} to get
a maximum M2−packing whose size is larger than
that of the given maximal M2−packing. So M is not
M2−equipackable.

Subcase 2: The edge e is incident with v1.
Then f is not incident with v1 since e and f are

independent. We can replace {e, f} with {vv1, f}
and {e, vv2} (or {e, vv′

2}) to get another larger max-
imal M2−packing which is maximum. So M is not
M2−equipackable.

Subcase 3: The edge e is incident with v2.
Then v2 is not incident with f since e and f are

independent. We can replace {e, f} with {f, vv2}(or
{f, vv′

2}) and {e, vv1} to get another larger maximal
M2−packing. So M is not M2−equipackable. ⊓⊔

Lemma 40 Let M be a multigraph with size 2m+ 1
and cluster number ω1(M) = ω1, 2 < ω1 ≤ m+1. If
M is M2−equipackable, then for any submultigraph
H of M which is isomorphic to K3, K1,3, or S1,2,
then G−H is not M2−decomposable.

Proof: Here we just give the proof about S1,2. As-
sume that the Lemma is not true, that is, M − H is
M2−decomposable, where H is isomorphic to S1,2.
So M − H can be the union of (m − 1) copies of
M2. There must exists a copy (say {e, f}) of M2 in
M −H such that neither e nor f is incident with the
center of H . Otherwise, each copy of M2 in M −H
has an edge incident with the center (say v) ofH , then
ω1 ≥ ∆(M) ≥ dM (v) ≥ m− 1 + 3 = m+ 2, which
contradicts to the fact that ω1 ≤ m + 1. By Lemma
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39,M is notM2−equipackable, a contradiction. Sim-
ilarly, the other two cases for K3 and K1,3 can also
lead contradictions, respectively. ⊓⊔

Theorem 41 Let M be a multigraph with size 2m +
1 > 1 and ω1(M) = ω1 ≤ m + 1, then M is
M2 − equipackable if and only if M satisfies one of
the following:

(1) None of K3, K1,3 or S1,2 is contained in M
as a submultigraph;

(2)M is isomorphic toM [K1,r1 ]∪M [K1,r2 ]
∪
e,

where e isn’t incident with both of the two centers,
or,M is isomorphic to M [K1,r1 ] ∪ M [K3]

∪
e,

where e is neither incident with the star’s center nor
incident with two vertices of the triangle at the same
time,

or,M is isomorphic to M [K3] ∪ M [K3]
′ ∪

e,
where e isn’t incident with any two vertices of each
triangle at the same time;

(3)M is isomorphic to M [K1,r1 ] ∪M [K1,s],
or, M is isomorphic to M [K1,r1 ] ∪M [K3]

′
,

or,M is isomorphic to M [K3] ∪ [K1,s],
or,M is isomorphic to M [K3] ∪M [K3]

′
.

Above all, they satisfies 1 ≤ r1, r2 ≤ m, 1 ≤ s ≤
m + 1, e(M [K1,r1 ]) = e(M [K1,r2 ]) = e(M [K3]) =

e(M [K3]
′
) = m, and e(M [K1,s]) = e(M [K3]

′
) =

m+ 1.

Proof: We can easily verify that the multigraphs de-
scribed in the theorem are all M2−equipackable.

Let M be M2−equipackable, then we have two
cases:

Case 1: None of K3, K1,3 or S1,2 is contained in
M as a submultigraph.

That is, M is a union of simple odd paths, simple
even paths, simple odd circles or simple even circles,
in which the number of all odd circles and odd paths
is odd. Then for any edge of M , say e, there does
always exist an edge, say f , and the two edges form an
M2. Delete them, and go on taking the same action,
until only disjoint edges of odd number or a P4 are
remained in M . Obviously, M is M2−equipackable.

Case 2: At least one copy of K3, K1,3 or S1,2 is
contained in M as a submultigraph.

By Lemma 39, for any submultigraph H which
is isomorphic to K3, K1,3 or S1,2, M − H is not
M2−decomposable, so by Theorem 20, ω1(M −
H) > m − 1. Then we have m ≤ ω1(M − H) ≤
ω1(M) ≤ m+1. So, ω1(M) has two possible values.
When ω1(M) = m, we get the condition (2). When
ω1(M) = m+ 1, we get the condition (3). ⊓⊔

Hence, we have characterized all the
M2−equipackable multigraphs by Theorem 37,
Theorem 38 and Theorem 41.
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