
Products of Volterra-type Operators and Composition Operators
on logarithmic Bloch space

SHANLI YE
Fujian Normal University

Department of Mathematics
Fuzhou, Fujian 350007

CHINA
shanliye@fjnu.edu.cn

Abstract: Let D = {z : |z| < 1} be the unit disk in the complex plane C, φ be an analytic self-map of D,
and g : D −→ C is an analytic map. We characterize the boundedness and compactness of the products of
Volterra-type operators and composition operators CφUg and UgCφ on the logarithmic Bloch space LB and the
little logarithmic space LB0 over the unit disk. Some necessary and sufficient conditions are given for which CφUg

or UgCφ is a bounded or a compact operator on LB, or LB0, respectively. The results extend the known results
about the composition operator to the logarithmic Bloch space LB.
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1 Introduction
Let D = {z : |z| < 1} be the unit disk in the com-
plex plane C, and H(D) denote the set of all analytic
functions on D. An analytic function f ∈ H(D) is
said to belong to the logarithmic Bloch space LB if

∥f∥LB = sup
z∈D

{(1− |z|2) ln( 2

1− |z|
)|f ′(z)|}

< ∞,

and to the little logarithmic Bloch space LB0 if

lim
|z|→1−

(1− |z|) ln
( 2

1− |z|

)
|f ′(z)| = 0.

It can be easily proved that LB is a Banach space un-
der the norm

∥f∥L = |f(0)|+ ∥f∥LB
and that LB0 is a closed subspace of LB. Some basic
results about the logarithmic Bloch functions we refer
to the references [18, 19, 21, 23] and [25].

Let φ be an analytic self-map on the unit disk D.
Associated with φ the composition operator Cφ is de-
fined by

Cφf = f ◦ φ, f ∈ H(D).

It is interesting to provide a function theoretic charac-
terization when φ induces a bounded or compact com-
position operator on various function spaces. Bound-
edness and compactness of composition operators on

various function spaces were studied by many authors
(see [5, 6, 7, 8, 22, 24]). The author and Yoneda in
[18, 25] studied the pointwise multiplier and the com-
position operator in LB space respectively.

Suppose that g : D −→ C is an analytic map. Let
Ug and Vg denote the Volterra-type operators with the
analytic symbol g on D respectively:

Ugf(z) =

∫ z

0
f(w)g′(w) dw

and

Vgf(z) =

∫ z

0
f ′(w)g(w) dw, z ∈ D.

At the same time, Mg is the pointwise multiplication
determined by

Mg(f)(z) = f(z)g(z) = f(0)g(0)+Ugf(z)+Vgf(z).

When g(z) = z or g(z) = ln( 1
1−z ), Ug is the integral

operator or the Cesáro operator respectively. These
operators Ug, Vg, and Mg are characterized on Qp

spaces by Xiao in [17].
In [9] Pommerenke introduced the Volterra-type

operator Ug and showed that Ug is a bounded operator
on the Hardy space H2 if and only if g ∈ BMOA.
Brown and Shields in [3] proved that Mg is bounded
on the classical Bloch space β1 if and only if g ∈
LB

∩
H∞. In [19] the author studied the boundedness

and compactness of Ug between the α-Bloch spaces
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βα and the logarithmic Bloch space LB. Bounded-
ness and compactness of Ug acting on various func-
tion spaces have been studied in many literature. See
[1, 2, 11, 13, 14, 15, 16] for more information.

Here, we consider the products of Volterra-type
operators and composition operators, which are de-
fined by

(CφUgf)(z) =

∫ φ(z)

0
f(ζ)g′(ζ) dζ,

(UgCφf)(z) =

∫ z

0
(f ◦ φ)(ζ)g′(ζ) dζ, f ∈ H(D)

and

(CφVgf)(z) =

∫ φ(z)

0
f ′(ζ)g(ζ) dζ,

(VgCφf)(z) =

∫ z

0
(f ◦ φ)′(ζ)g(ζ) dζ, f ∈ H(D).

In [4], Li and Stević studied these operators from
H∞ and Bloch spaces to Zygmund spaces. In this pa-
per the boundedness and compactness of these opera-
tors in LB and LB0 are discussed. As consequences
we obtain the boundedness and compactness for Ug

and Vg in LB and LB0 spaces. These results are new
even for a single operator. In what follows C will be
used to stand for positive constants which does not
depend on the functions but possibly different in dif-
ferent formula.

2 Auxiliary results
In this section, we recall some lemmas, which will be
used in the proof of main results of this paper. The
first four lemmas may be found in [18].

Lemma 1 Suppose f ∈ LB, then
(i) |f(z)| ≤ (2 + ln(ln 2

1−|z|))∥f∥L;

(ii) |f(z)| ≤ 2 ln(ln 2
1−|z|)∥f∥L, for |z| ≥ r∗ =

1− 2e−e2;

(iii) |f(z) − f(tz)| ≤ ln(
ln 2

1−|z|
ln 2

1−|tz|
)∥f∥LB, where

0 ≤ t < 1.

Lemma 2 If f ∈ LB0, then

lim
|z|→1−

|f(z)|
ln(ln 2

1−|z|)
= 0.

Lemma 3 Let f(z) =
(1−|z|) ln 2

1−|z|
|1−z| ln 4

|1−z|
, z ∈ D. Then

|f(z)| < 2.

Lemma 4 Let g(x) = (1 − x) ln
2

1− x
, x ∈ [0, 1).

Then
g(x)

g(tx)
≤ 2 for each t ∈ [0, 1].

Lemma 5 Suppose f ∈ LB, then ∥ft∥L ≤ 4∥f∥L,
0 < t < 1, where ft(z) = f(tz).

It can be easily proved by applying Lemma 4.

Lemma 6 Let g be an analytic function on the
unit disc D and φ an analytic self-map of D. If
CφUg(or UgCφ, CφVg, VgCφ) is a bounded oper-
ator in the logarithmic little Bloch space LB0, then
CφUg(or UgCφ, CφVg, VgCφ) is a bounded opera-
tor in the logarithmic Bloch space LB.

Proof: Suppose CφUg is bounded in the logarithmic
little Bloch space LB0. It is clear that for any f ∈ LB,
we have ft ∈ LB0 for any 0 < t < 1. Now applying
Lemma 5, we get

∥CφUg(ft)∥L ≤ ∥CφUg∥∥ft∥L ≤ 4∥CφUg∥∥f∥L.

Letting t→ 1−, we obtain that

∥CφUg(f)∥L ≤ 4∥CφUg∥∥f∥L < +∞,

which shows CφUg is bounded in the logarithmic
Bloch space LB. One may similarly prove the bound-
edness forUgCφ, CφVg, or VgCφ. We omit the details
here.

3 Boundedness and compactness of
CφUg on LB and LB0

In this section we study the boundedness and com-
pactness of the operator

CφUg( or UgCφ) : LB(or LB0) −→ LB(or LB0).

Theorem 7 Let φ be an analytic self-map of the unit
disc and g ∈ H(D). Then the following statements
hold.

(i) CφUg : LB −→ LB is bounded if and only if

sup
z∈D

(1− |z|2) ln 2

1− |z|
ln(ln

2

1− |φ(z)|
)

×|g′(φ(z))||φ′(z)| <∞. (1)

(ii) CφUg : LB0 −→ LB0 is bounded if and only
if (1) holds and

lim
|z|→1−

(1− |z|2) ln( 2

1− |z|
)|g′(φ(z))||φ′(z)| = 0.

(2)
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Proof: (i) Assume that CφUg : LB −→ LB is
bounded. Fix w ∈ D, let

fw(z) = ln ln
4

1− φ(w)z
. (3)

From Lemma 3 we know that fw ∈ LB and ∥fw∥L ≤
5. Since fw(φ(w)) = ln ln

4

1− |φ(w)|2
, it follows

that

(1− |w|2) ln( 2
1−|w|) ln(ln

4
1−|φ(w)|2 )|g

′(φ(w))||φ′(w)|

= (1− |w|2) ln( 2
1−|w|)|(CφUgfw)

′(w)|

≤ ∥CφUg∥∥fw∥L ≤ 5∥CφUg∥ < +∞.

Thus (1) holds.
Conversely, suppose that (1) holds. Then, from

Lemma 1, we have

∥CφUgf∥LB
= sup

z∈D
(1− |z|2) ln( 2

1−|z|)|f(φ(z))g
′(φ(z))φ′(z)|

≤ sup
z∈D

(1− |z|2) ln( 2
1−|z|)|g

′(φ(z))φ′(z)|

×(2 + ln ln 2
1−|φ(z)|)∥f∥L

≤ C∥f∥L

and

|(CφUgf)(0)| = |
∫ φ(0)

0
f(ζ)g′(ζ) dζ|

≤ max
|ζ|≤|φ(0)|

|f(ζ)| max
|ζ|≤|φ(0)|

|g′(ζ)|

≤ (2 + ln ln
2

1− |φ(0)|
) max
|ζ|≤|φ(0)|

|g′(ζ)|∥f∥L.

This shows that CφUg is bounded.
(ii) Assume CφUg : LB0 −→ LB0 is bounded.

Then CφUg : LB −→ LB is bounded by Lemma 6,
which implies that (1) holds by (i).

Next, We take the test function f = 1. It is easily
seen that (2) holds.

On the other hand, given any f ∈ LB0. If
|φ(z)| −→ 1− as |z| → 1−, it follows from Lemma 2
and (1) that

(1− |z|2) ln( 2
1−|z|)|(CφUgf)

′(z)|

= (1− |z|2) ln( 2
1−|z|)|f(φ(z))g

′(φ(z))φ′(z)|

≤ C |f(φ(z))|
ln ln 2

1−|φ(z)|
−→ 0

as |z| → 1−.

If |φ(z)| ≤ r0 < 1 for every z ∈ D, then

(1− |z|2) ln( 2
1−|z|)|(CφUgf)

′(z)|

≤ max
|w|≤r0

|f(w)|(1− |z|2) ln( 2

1− |z|
)

×|g′(φ(z))||φ′(z)| −→ 0 (|z| → 1−)

by (2). Hence CφUgf ∈ LB0 for all f ∈ LB0. On
the other hand, CφUg is bounded in LB by (i). Hence
CφUg is a bounded operator in LB0.

Lemma 8 Let CφUg(or UgCφ, CφVg, VgCφ) :
LB0 −→ LB0 be a bounded operator in LB. Then
CφUg (or UgCφ, CφVg, VgCφ) : LB0 −→ LB0

is compact if and only if for any bounded sequence
{fn} in LB which converges to 0 uniformly on
compact subsets of D, we have ∥CφUg(fn)∥L −→
0 (or ∥UgCφ(fn)∥L, ∥CφVg(fn)∥L, ∥VgCφ(fn)∥L −→
0) as n −→ ∞.

The result can be proved by Montel theorem,
Lemma 1 and 5. The details are omitted here.

Lemma 9 Let U ⊂ LB0. Then U is compact if and
only if it is closed, bounded and satisfies

lim
|z|−→1

sup
f∈U

(1− |z|2) ln( 2

1− |z|
)|f ′(z)| = 0.

The proof is similar to that of Lemma 1 in [5]. The
details are omitted.

Theorem 10 Let φ be an analytic self-map of the unit
disc and g ∈ H(D). Then the following statements
hold.

(i) CφUg : LB −→ LB is compact if and only if

lim
|φ(z)|→1−

(1− |z|2) ln( 2
1−|z|) ln(ln

2
1−|φ(z)|)

×|g′(φ(z))||φ′(z)| = 0
(4)

and

sup
z∈D

(1− |z|2) ln( 2

1− |z|
)|g′(φ(z))||φ′(z)| < +∞.

(5)
(ii) CφUg : LB0 −→ LB0 is compact if and only

if

lim
|z|→1−

(1− |z|2) ln( 2
1−|z|) ln(ln

2
1−|φ(z)|)

×|g′(φ(z))||φ′(z)| = 0.
(6)

Proof: (i) Assume (4) and (5) hold, which implies
(1) holds. Then CφUg : LB −→ LB is bounded by
Theorem 7. Let {fn} be a bounded sequence in LB
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which converges to 0 uniformly on compact subsets of
D. We need only to prove lim

n−→∞
∥CφUg(fn)∥L = 0

by Lemma 8. This amounts to showing that both

sup
w∈D

(1− |w|2) ln( 2
1−|w|)

×|fn(φ(w))g′(φ(w))φ′(w)| −→ 0

and
|CφUgfn(0)| −→ 0.

If |φ(w)| > r, we may assume r > r∗, then

(1− |w|2) ln( 2

1− |w|
)|fn(φ(w))g′(φ(w))φ′(w)|

≤ 2∥fn∥L(1− |w|2) ln( 2

1− |w|
) ln(ln

2

1− |φ(w)|
)

×|g′(φ(w))||φ′(w)|.

If |φ(w)| ≤ r < 1, by (5), we have

(1− |w|2) ln( 2

1− |w|
)|fn(φ(w))g′(φ(w))φ′(w)|

≤ Cmax
|z|≤r

|fn(z)|.

Thus

sup
w∈D

(1− |w|2) ln( 2
1−|w|)|fn(φ(w))g

′(φ(w))φ′(w)|

≤ Cmax a|w|≤r|fn(w)|+ C sup
|φ(w)|>r

(1− |w|2)

× ln( 2
1−|w|) ln(ln

2
1−|φ(w)|)|g

′(φ(w))||φ′(w)|.

First letting n tend to infinity and subsequently r in-
crease to 1, one obtains that

sup
w∈D

(1− |w|2) ln( 2
1−|w|)|fn(φ(w))

×g′(φ(w))φ′(w)| −→ 0

as n −→ ∞.
On the other hand, it is obvious that

|CφUgfn(0)| ≤ max|z|≤|φ(0)| |g′(z)|max|z|≤|φ(0)| |fn(z)|

≤ Cmax|z|≤|φ(0)| |fn(z)| −→ 0

as n −→ ∞.
Conversely, suppose thatCφUg is compact in LB.

It is obvious that CφUg is bounded. Then (1) holds by
Theorem 7, which implies that (5) holds. Next, let
{zn} be a sequence in D such that |φ(zn)| → 1 as
n→ ∞. Choose test functions

fn(z) =
1

an
(ln ln

4

1− φ(zn)z
)2,

where an = ln ln
4

1− |φ(zn)|2
. It is clear that

fn(z) → 0 uniformly on compact subsets of D. From

Lemma 3 and 4, we get fn ∈ LB and supn ∥fn∥L <
∞. Then {fn} is a bounded sequence in LB which
converges to 0 uniformly on compact subsets of D.
Noticing that fn(φ(zn)) = an, we have

∥CφUgfn∥L ≥ ∥CφUgfn∥LB
≥ (1− |zn|2) ln( 2

1−|zn|)|fn(φ(zn))g
′(φ(zn))φ

′(zn)|

= (1− |zn|2) ln( 2
1−|zn|)

× ln(ln 4
1−|φ(zn)|2 )|g

′(φ(zn))φ
′(zn)|.

Then

lim|φ(z)|→1−(1− |z|2) ln( 2
1−|z|) ln(ln

2
1−|φ(z)|)

×|g′(φ(z))||φ′(z)| = 0

by Lemma 8. Hence (4) holds.
(ii) Assume that (6) holds. Then it implies that (1)

and (2) hold, which shows that CφUg : LB0 −→ LB0

is bounded.
Suppose that f ∈ LB0 with ∥f∥L ≤ 1. It follows

from Lemma 1 that

(1− |z|2) ln( 2
1−|z|)|(CφUgf)

′(z)|

= (1− |z|2) ln( 2

1− |z|
)|g′(φ(z))f(φ(z))φ′(z)|

≤ (1− |z|2) ln( 2

1− |z|
)

×(2 + ln ln
2

1− |φ(z)|
)|g′(φ(z))φ′(z)|.

Thus

sup{|(1− |z|2) ln( 2
1−|z|)(CφUgf)

′(z)| :

f ∈ LB0, ∥f∥L ≤ 1}

≤ (1− |z|2) ln( 2

1− |z|
)(2 + ln ln

2

1− |φ(z)|
)

×|g′(φ(z))φ′(z)|,

and hence

lim
|z|→1−

{|(1− |z|2) ln( 2

1− |z|
)(CφUgf)

′(z)| :

f ∈ LB0, ∥f∥L ≤ 1} = 0,

so that CφUg is compact in LB0 by Lemma 9.
Conversely, suppose that CφUg is compact in

LB0. From Lemma 9 we have

lim
|z|→1−

{|(1− |z|2) ln( 2

1− |z|
)(CφUgf)

′(z)| :

f ∈ LB0, ∥f∥L ≤M} = 0,

for some M > 0. Note that the proof of Theorem 7
and the fact that the function given in (3) are in LB0
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and have norms bounded independently of w. We ob-
tain that

lim
|z|→1−

(1− |z|2) ln( 2

1− |z|
) ln(ln

2

1− |φ(z)|
)

×|g′(φ(z))||φ′(z)| = 0.

The proof of the theorem is completed.
Using the same methods as in the proof of the pre-

vious theorems, we can prove the following results.

Theorem 11 Let φ be an analytic self-map of the unit
disc and g ∈ H(D). Then the following statements
hold.

(i) UgCφ : LB −→ LB is bounded if and only if

sup
z∈D

(1−|z|2) ln 2

1− |z|
ln(ln

2

1− |φ(z)|
)|g′(z)| < +∞.

(7)
(ii) UgCφ : LB0 −→ LB0 is bounded if and only

if (7) holds and g ∈ LB0.

Theorem 12 Let φ be an analytic self-map of the unit
disc and g ∈ H(D). Then the following statements
hold.

(i) UgCφ : LB −→ LB is compact if and only if
g ∈ LB and

lim
|φ(z)|→1−

[(1− |z|2) ln( 2
1−|z|)

ln(ln 2
1−|φ(z)|)|g

′(z)|] = 0.
(8)

(ii) UgCφ : LB0 −→ LB0 is compact if and only
if

lim|z|→1−(1− |z|2) ln( 2
1−|z|) ln(ln

2
1−|φ(z)|)

×|g′(z)| = 0.

Taking φ(z) = z from Theorem 7, 10, 11, 12, we
obtain the following results about the characterization
of the boundedness and compactness of the Volterra-
type operator Ug : LB( or LB0) −→ LB( or LB0).

Corollary 13 Let g ∈ H(D). Then
(i) Ug : LB −→ LB is a bounded operator if and

only if Ug : LB0 −→ LB0 is a bounded operator if
and only if

sup
z∈D

(1− |z|2) ln 2

1− |z|
ln(ln

2

1− |z|
)|g′(z)| <∞.

(ii) Ug : LB −→ LB is a compact operator if and
only if Ug : LB0 −→ LB0 is a compact operator if
and only if

lim
|z|→1−

(1− |z|2) ln 2

1− |z|
ln(ln

2

1− |z|
)|g′(z)| = 0.

4 Boundedness and compactness of
CφVg on LB and LB0

In this section, we characterize the boundedness and
compactness of the operator CφVg( or VgCφ) :
LB(or LB0) −→ LB(or LB0).

Theorem 14 Let φ be an analytic self-map of the unit
disc and g ∈ H(D). Then the following statements
hold.

(i) CφVg : LB −→ LB is bounded if and only if

sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|g(φ(z))φ′(z)| < +∞.

(9)
(ii) CφVg : LB0 −→ LB0 is bounded if and only

if (9) holds and

lim
|z|→1−

(1− |z|2) ln( 2

1− |z|
)|g(φ(z))φ′(z)| = 0.

(10)

Proof: Suppose CφVg is bounded on the logarithmic
Bloch space LB. Taking the test function f(z) = z,
we can easily obtain that

sup
z∈D

(1− |z|2) ln( 2

1− |z|
)|g(φ(z))φ′(z)| < +∞.

(11)
For ∀ 0 ̸= w ∈ D, let

fw(z) =

∫ z

0
(1− w2

|w|2
z2)−1(ln

4

1− w2

|w|2 z
2
)−1 dz.

(12)
From Lemma 3, we have

sup
z1∈D

(1− |z1|2)(ln 2
1−|z1|2 )

|1− z21 || ln 4
1−z21

|
< 2 < +∞.

Applying z1 = w
|w|z, we obtain that

sup
z∈D

(1− |z|2)(ln 2

1− |z|2
)|1− w2

|w|2
z2|

×| ln 4

1− w2

|w|2 z
2
|−1 < 2 < +∞.

Hence fw ∈ LB and ∥fw∥L < 4 with w ̸= 0. Then
for w ̸= 0 we obtain that

∥CφVg(fw)∥LB ≤ ∥CφVg(fw)∥L ≤ ∥CφVg∥∥fw∥L

< 4∥CφVg∥ < +∞. (13)
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So for ∀z ∈ D with φ(z) ̸= 0, applying w = φ(z) to
(13), we obtain that

sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 4
1−|φ(z)|2

|g(φ(z))φ′(z)|

= sup
z∈D

(1− |z|2) ln 2

1− |z|
|f ′w(φ(z))g(φ(z))φ′(z)|

= ∥CφVg(fw)∥LB < 4∥CφVg∥ <∞

For ∀z ∈ D with φ(z) = 0, from (11), we have

sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|u(z)φ′(z)|

= sup
z∈D

1

ln 2
(1− |z|2) ln 2

1− |z|
|g(φ(z))φ′(z)|

< +∞.

Hence (9) holds.
Conversely, suppose that (9) holds. For f ∈ LB,

from Lemma 1, we have

∥CφVgf∥LB
= sup

z∈D
(1− |z|2) ln( 2

1− |z|
)|f ′(φ(z))||g(φ(z))φ′(z)|

≤ ∥f∥LB sup
z∈D

(1− |z|2) ln( 2
1−|z|)

(1− |φ(z)|2) ln 2
1−|φ(z)|

|g(φ(z))φ′(z)|

≤ C∥f∥L

and

|(CφVgf)(0)| = |
∫ φ(0)

0
f ′(ζ)g(ζ) dζ|

≤ max
|ζ|≤|φ(0)|

|f ′(ζ)| max
|ζ|≤|φ(0)|

|g(ζ)|

≤
max

|ζ|≤|φ(0)|
|g(ζ)|

(1− |φ(0)|2) ln 2
∥f∥L.

This shows that CφVg is bounded.
(ii) Assume CφVg : LB0 −→ LB0 is bounded.

Then CφVg : LB −→ LB is bounded by Lemma 6,
which implies that (9) holds by (i).

Next, We take the test function f = z. It is easily
seen that (10) holds.

Conversely, given f ∈ LB0. If |φ(z)| −→ 1− as
|z| → 1−, it follows from (9) that

(1− |z|2) ln( 2

1− |z|
)|(CφVgf)

′(z)|

= (1− |z|2) ln( 2

1− |z|
)|f ′(φ(z))g(φ(z))φ′(z)|

≤ C(1− |φ(z)|2) ln 2

1− |φ(z)|
|f ′(φ(z))|

−→ 0

as |z| → 1−.

If |φ(z)| ≤ r0 < 1 for every z ∈ D, then, from
(10),

(1− |z|2) ln( 2

1− |z|
)|(CφUgf)

′(z)|

≤ max
|w|≤r0

|f ′(w)|(1− |z|2) ln( 2

1− |z|
)|g(φ(z))φ′(z)|

−→ 0

as |z| → 1−. Hence CφVgf ∈ LB0 for any f ∈
LB0. Since CφVg is bounded on LB by (i), CφUg is
bounded on LB0.

Theorem 15 Let φ be an analytic self-map of the unit
disc and g ∈ H(D). Then the following statements
hold.

(i) CφVg : LB −→ LB is compact if and only if

lim
|φ(z)|→1−

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|g(φ(z))φ′(z)| = 0.

(14)
and

sup
z∈D

(1− |z|2) ln( 2

1− |z|
)|g(φ(z))φ′(z)| < +∞.

(15)
(ii) CφVg : LB0 −→ LB0 is compact if and only

if

lim
|z|→1−

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|g(φ(z))φ′(z)| = 0.

(16)

Proof: (i) Assume (14) and (15) hold, which implies
(9) holds. Then CφVg : LB −→ LB is bounded by
Theorem 14. Let {fn} be a bounded sequence in LB
which converges to 0 uniformly on compact subsets
of D. It is clear that the sequence {f ′n} converges to
0 uniformly on compact subsets of D. We need only
to prove lim

n→∞
∥CφVg(fn)∥L = 0 by Lemma 8. This

amounts to showing that both

sup
w∈D

(1− |w|2) ln( 2

1− |w|
)|f ′n(φ(w))

×g(φ(w))φ′(w)| −→ 0

and
|CφVgfn(0)| −→ 0.

If |φ(w)| > r, then

(1− |w|2) ln( 2

1− |w|
)|f ′n(φ(w))g(φ(w))φ′(w)|

≤ ∥fn∥LB
(1− |w|2) ln 2

1−|w|

(1− |φ(w)|2) ln 2
1−|φ(w)|

×|g(φ(w))φ′(w)|.
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If |φ(w)| ≤ r < 1, from (15), we have

(1− |w|2) ln( 2

1− |w|
)|f ′n(φ(w))g(φ(w))φ′(w)|

≤ Cmax
|z|≤r

|f ′n(z)|.

Thus

sup
w∈D

(1− |w|2) ln( 2

1− |w|
)|fn(φ(w))g′(φ(w))φ′(w)|

≤ C max
|w|≤r

|f ′n(w)|+ C×

max
|φ(w)|>r

(1− |w|2) ln 2
1−|w|

(1− |φ(w)|2) ln 2
1−|φ(w)|

|g(φ(w))φ′(w)|.

First letting n tend to infinity and subsequently r in-
crease to 1, one obtains that

sup
w∈D

(1− |w|2) ln( 2

1− |w|
)|f ′n(φ(w))

×g(φ(w))φ′(w)| −→ 0

as n −→ ∞.
On the other hand, it is obvious that

|CφVgfn(0)| ≤ max
|z|≤|φ(0)|

|g(z)| max
|z|≤|φ(0)|

|f ′n(z)|

≤ C max
|z|≤|φ(0)|

|f ′n(z)| −→ 0

as n −→ ∞.
Conversely, suppose thatCφVg is compact on LB.

It is obvious that CφVg is bounded. Then (9) holds by
Theorem 7, which implies that (15) holds.

Next assume that (14) fails. Then there exists a
subsequence {zn} ⊂ D and an ϵ0 > 0 such that
|φ(zn)| → 1(n→ ∞) and

(1− |zn|2) ln 2
1−|zn|

(1− |φ(zn)|2) ln 2
1−|φ(zn)|

|φ′(zn)g(φ(zn))| ≥ ϵ0.

Let φ(zn) = rne
iθn . We take

fn(z) =

∫ z

0
(

rn
1− e−iθnrnw

− r2n
1− r2ne

−iθnw
)

×(ln
4

1− r2ne
−iθnw

)−1 dw.

Then

f ′n(z) = (
rn

1− e−iθnrnz
− r2n

1− r2ne
−iθnz

)

×(ln
4

1− r2ne
−iθnz

)−1.

One can obtain that

|fn(z)| ≤
1− rn

(1− |z|)2
(ln

4

1 + |z|
)−1

by a direct calculation and ∥fn∥L ≤ 8 by Lemma 3
and 4. Then {fn} is a bounded sequence in LB which
converges to 0 uniformly on compact subsets of D.

On the other hand, for enough large n, we have

∥CφVg(fn)∥L
≥ (1− |zn|2) ln

2

1− |zn|
|f ′n(φ(zn))|

×|φ′(zn)g((φ(zn))|
= (1− |zn|2) ln

2

1− |zn|

×(
rn

1− r2n
− r2n

1− r3n
)(ln

4

1− r3n
)−1×

|φ′(zn)g((φ(zn))|

≥
(1− |zn|2) ln 2

1−|zn|

6(1− |φ(zn)|2) ln 2
1−|φ(zn)|

×|φ′(zn)g((φ(zn))|
≥ ϵ0

6
(n→ ∞).

This contradicts the compactness of CφVg by Lemma
8. Hence (14) holds.

(ii) Assume that (16) holds. Then it implies that
(9) and (10) hold, which shows that CφUg : LB0 →
LB0 is bounded.

Suppose that f ∈ LB0 with ∥f∥L ≤ 1. Then we
have

(1− |z|2) ln( 2

1− |z|
)|(CφVgf)

′(z)|

= (1− |z|2) ln( 2

1− |z|
)|f ′(φ(z))g(φ(z))φ′(z)|

≤
(1− |z|2) ln 2

1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|g(φ(z))φ′(z)|.

Thus

sup{|(1− |z|2) ln( 2

1− |z|
)(CφVgf)

′(z)|

: f ∈ LB0, ∥f∥L ≤ 1}

≤
(1− |z|2) ln 2

1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|g(φ(z))φ′(z)|,

and

lim
|z|→1−

sup{(1− |z|2) ln( 2

1− |z|
)|(CφVgf)

′(z)|

: f ∈ LB0, ∥f∥L ≤ 1} = 0.

This implies that CφVg is compact in LB0 by Lemma
9.

Conversely, suppose that CφVg is compact in
LB0. From Lemma 9 we have

lim
|z|→1−

sup{(1− |z|2) ln( 2

1− |z|
)|(CφVgf)

′(z)|

: f ∈ LB0, ∥f∥L ≤M} = 0,
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for some M > 0. Note that the proof of Theorem 14
and the fact that the function given in (12) are in LB0

and have norms bounded independently of w. We ob-
tain that

lim
|z|→1−

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|g(φ(z))φ′(z)| = 0

for φ(z) ̸= 0. However, if φ(z) = 0, it follows from
(10) that

lim
|z|→1−

(1− |z|2) ln 2

1− |z|
|g(φ(z))φ′(z)| = 0.

The proof of the theorem is completed.
Using the same methods as in the proof of Theo-

rem 14 and 15, we can prove the following results.

Theorem 16 Let φ be an analytic self-map of the unit
disc and g ∈ H(D). Then the following statements
hold.

(i) VgCφ : LB −→ LB is bounded if and only if

sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|g(z)φ′(z)| < +∞.

(17)
(ii) VgCφ : LB0 −→ LB0 is bounded if and only

if (17) holds and

lim
|z|→1−

(1− |z|2) ln 2

1− |z|
|g(z)φ′(z)| = 0.

Theorem 17 Let φ be an analytic self-map of the unit
disc and g ∈ H(D). Then the following statements
hold.

(i) VgCφ : LB −→ LB is compact if and only if

lim
|φ(z)|→1−

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|g(z)φ′(z)| = 0.

and

sup
z∈D

(1− |z|2) ln( 2

1− |z|
)|g(z)φ′(z)| < +∞.

(ii) VgCφ : LB0 −→ LB0 is compact if and only
if

lim
|z|→1−

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|g(z)φ′(z)| = 0.

Taking φ(z) = z, from Theorem 14, 15, we ob-
tain the following results about the characterization of
the boundedness and compactness of the Volterra-type
operator Vg : LB( or LB0) → LB( or LB0).

Corollary 18 Let g ∈ H(D). Then
(i) Vg : LB → LB is a bounded operator if and

only if Vg : LB0 → LB0 is a bounded operator if and
only if g ∈ H∞, where H∞ denotes the algebra of
bounded analytic functions in D.

(ii) Vg : LB → LB is a compact operator if and
only if Vg : LB0 → LB0 is a compact operator if and
only if g ≡ 0.

Taking g(z) = 1, from Theorem 16, 17, we obtain
the following results.

Corollary 19 Let φ be an analytic self-map of D.
Then

(i) Cφ is a bounded operator in LB if and only if

sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|φ′(z)| < +∞. (18)

(ii) Cφ is a bounded operator in LB0 if and only
if φ ∈ LB0 and (18) holds.

(iii) Cφ is a compact operator in LB if and only
if

lim
|φ(z)|→1−

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|φ′(z)| = 0.

(iv) Cφ is a compact operator in LB0 if and only
if

lim
|z|→1−

(1− |z|2) ln 2
1−|z|

(1− |φ(z)|2) ln 2
1−|φ(z)|

|φ′(z)| = 0.

The facts (i) and (iii) here are proved in Theorem
1 and Theorem 2 of [25].
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different weighted Bloch–type spaces, Acta
Math. Sci. Ser. A. 28, 2008, pp. 349–358.

[20] S. L. Ye, Weighted composition operators from
F (p, q, s) into logarithmic Bloch space, J. Ko-
rean Math. Soc. 45, 2008,pp. 977–991.

[21] S. L. Ye, Weighted composition operator be-
tween the α-Bloch spaces and the little logarith-
mic Bloch, J. Comput. Anal. Appl. 11, 2009, pp.
443–450.

[22] S. L. Ye, Composition operators on logarith-
mic α-Bloch spaces, J. Comput. Anal. Appl. 12,
2010, pp. 780–786.

[23] S. L. Ye, A weighted composition operator on
the logarithmic Bloch space, Bull. Korean Math.
Soc. 47, 2010, pp. 527–540.

[24] S. L. Ye, and Q. X. Hu, Weighted composition
operators on the Zygmund space, Abstract and
applied analysis, vol. 2012, Article ID. 462482,
18 pages, 2012, doi: 10.1155/2012/462482.

[25] R. Yoneda, The composition operators on
weighted Bloch space, Arch. Math. 78, 2002,
pp. 310–317.

[26] K. H. Zhu, Bloch type spaces of analytic
functions, Rocky Mountain J. Math. 23, 1993,
pp. 1143–1177.

WSEAS TRANSACTIONS on MATHEMATICS Shanli Ye

E-ISSN: 2224-2880 188 Issue 2, Volume 12, February 2013




