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Abstract: In this article, a modified gradient-projection algorithm (GPA) is introduced, which combines Xu’s
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some existed results.
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1 Introduction
The gradient-projection algorithm is a powerful tool
for solving constrained convex optimization prob-
lems and has been extensively studied (see [1-4] and
the references therein). The convergence of the se-
quence generated by this method depends on the be-
havior of the gradient of the objective function. If
the gradient is only Lipschitz continuous, the strong
convergence of the sequence generated by gradient-
projection algorithm cannot be guaranteed. Very re-
cently, Xu [5] gave an operator-oriented approach as
an alternative to the gradient-projection algorithm and
to the relaxed gradient-projection algorithm–namely,
an averaged mapping approach. Moreover, he con-
structed a counterexample which shows that the se-
quence generated by the gradient-projection algorithm
does not converge strongly in the setting of an infinite-
dimensional space. He also presented two modifi-
cations of gradient-projection algorithm which have
strong convergence. One is simply a convex combina-
tion of a contraction with the point that is generated
by the gradient-projection algorithm, and the other
involves additional projections. Both modifications
are adaptations of those modifications [13, 18–20]
for Rockafellar’s proximal point algorithm [21] which
has only week convergence in infinite-dimensional
Hilbert spaces [15,22]. Moreover, the first modifica-
tion is of viscosity nature [23,24].

Let H be a real Hilbert space, and C a nonempty
closed and convex subset of H . Consider the follow-

ing constrained convex minimization problem:

min
xϵC

f(x), (1)

where f : C → R is a real valued convex and con-
tinuously Fréchet differentiable function. Then the
gradient-projection algorithm (GPA) generates a se-
quence {xn}∞n=0 determined by the gradient of f and
the metric projection onto C according to the recursive
formula:

xn+1 := ProjC(I − λn∇f)xn, n ≥ 0, (2)

where the initial guess x0 is taken from C arbitrar-
ily, the parameters λn are positive real numbers, and
ProjC is the metric projection from H onto C. We
assume that the minimization problem (1) is consis-
tent, and let S denotes solution set. It is known [1] that
if f has a Lipschitz continuous and strongly mono-
tone gradient, the sequence {xn}∞n=0 generated by (2)
can be convergent strongly to a minimizer of f in C.
If the gradient of f is only assumed to be Lipschitz
continuous, it is proved in [5] that the sequence {xn}
generated by (2) converges weekly to a minimizer of
(1) provided the sequence {λn} satisfies certain con-
ditions that will be made precise in the section 3.

In addition, we know that the Lipschitz continuity
of the gradient of f implies that it is inverse strongly
monotone, its complement is an averaged mapping.
Then the GPA can be rewritten as the composite of a
projection and an averaged mapping, which is an aver-
aged mapping, which is also a nonexpansive mapping.
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Consequently, the GPA can be also rewritten as an it-
erative method for nonexpansive mapping.

On the other hand, Giuseppe Marino and Hong-
Kun Xu [6] introduced the general iterative method
for nonexpansive mappings in Hilbert spaces. Recall
that T :H → H is nonexpansive if ∥Tx − Ty∥ ≤
∥x − y∥ for all x, y ϵ H . The set of fixed pointed of
T is the set Fix(T ) := {x ϵ H : Tx = x}, we as-
sume that Fix(T ) ̸= ∅. Let h be a contraction such
that ∥h(x) − h(y)∥ ≤ ρ∥x − y∥, ∀ x, y ϵ H , where
ρϵ[0, 1) is a constant. A is strongly positive bounded
linear operator; that is, there is a constant γ̄ > 0 such
that⟨Ax, x⟩ ≥ γ̄∥x∥2,∀ x ϵ H . Starting with an ar-
bitrary initial x0 ϵ H , define a sequence {xn} recur-
sively by

xn+1 = θnγh(xn)+(I−θnA)Txn, n ≥ 0. (3)

Where γ is a constant such that 0 < γ < γ̄/ρ,
and {θn} is a sequence in (0,1). It is proved in [6]
that under certain appropriate conditions imposed on
{θn}, the sequence {xn} generated by (3) converges
strongly to the unique solution x∗ in Fix(T) of the vari-
ational inequality:

⟨(A− γh)x∗, x∗ − x⟩ ≤ 0, ∀ x ϵ F ix(T ). (4)

In this paper we will combine the gradient-
projection algorithm (2) with the general iterative
method (3) and consider the following modified
gradient-projection algorithm:

xn+1 = (I − θnA)ProjC(I − λn∇f)xn
+θnγh(xn), n ≥ 0. (5)

In section 3 we will prove that if the sequence {θn}
and the sequence{λn} of parameters satisfy appropri-
ate conditions, the sequence {xn} generated by (5)
converges strongly to a minimizer of (1), which is also
the unique solution of the variational inequality:

⟨(A− γh)x∗, x∗ − x⟩ ≤ 0, ∀ x ϵ S. (6)

Next we introduce some useful properties. Recall
that H is a Hilbert space, C a nonempty closed and
convex subset of H . ProjC is the metric projection
from H onto C.

Proposition 1 Given xϵH , we have:
(i) ⟨x − y, ProjCx − ProjCy⟩ ≥ ∥ProjCx −

ProjCy∥2, ∀ x, y ϵ H .
(ii) ∥x−ProjCx∥2 ≤ ∥x−y∥2−∥y−ProjCx∥2,

∀ x ϵ H , ∀ y ϵ C.

Definition 2 A mapping T : H → H is said to be
firmly nonexpansive, if and only if 2T − I is nonex-
pansive, or equivalently,

⟨x− y, Tx− Ty⟩ ≥ ∥Tx− Ty∥2, x, y ϵ H.

Alternatively, T is firmly nonexpansive, if and only if
T can be expressed as

T =
1

2
(I + S),

where S : H → H is nonexpansive. Projections are
firmly nonexpansive.

Definition 3 A mapping T : H → H is said to be
an averaged mapping, if and only if it can be written
as the average of the identity I and a nonexpansive
mapping; that is,

T = (1− α)I + αS,

where α is a number in [0,1] and S : H → H is
nonexpansive. Thus firmly nonexpansive mappings (in
particular, projections) are (1/2)-averaged mappings.

Some properties of averaged mappings are gathered in
the proposition below.

Proposition 4 Let the operators S, T , V : H → H
be given.

(i)If T = (1 − α)S + αV , for some αϵ[0, 1] and
if S is averaged and V is nonexpansive, then T is av-
eraged.

(ii) T is firmly nonexpansive, if and only if the
complement I − T is firmly nonexpansive.

(iii) If T = (1 − α)S + αV for some αϵ[0, 1], S
is firmly nonexpansive and V is nonexpansive, then T
is averaged.

(iv) The composition of finitely many averaged
mappings is averaged. That is, if each of the map-
pings {Ti}Ni=1 is averaged, then so is the composite
T1 · · ·TN . In particular, if T1 is α1-averaged and T2
is α2-averaged, where α1, α2ϵ[0, 1], then the compos-
ite T1T2 is α-averaged, where α = α1 + α2 − α1α2.

(v) If the mappings {Ti}Ni=1 are averaged and
have a common fixed point, then

N∩
i=1

Fix(Ti) = Fix(T1 · · ·TN ).

Here the notations Fix(T ) denotes the set of fixed
point of the mapping T ; that is, Fix(T ) := {xϵH :
Tx = x}.

Monotone operators are also very useful in the
convergence analysis.

Definition 5 (See [30] for comprehensive theory of
monotone operators.) Let A : H → H be an oper-
ator
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(i) A is monotone, if and only if

⟨x− y,Ax−Ay⟩ ≥ 0, ∀ x, y ϵ H.

(ii) Given is a number η > 0. A is said to be
η-strongly monotone, if and only if

⟨x− y,Ax−Ay⟩ ≥ η∥x− y∥2, ∀ x, y ϵ H.

(iii) Given is a number υ > 0. A is said to be
υ-inverse strongly monotone (υ-ism), if and only if

⟨x− y,Ax−Ay⟩ ≥ υ∥Ax−Ay∥2, ∀ x, y ϵ H.

It is easily seen that, if T is nonexpansive, then
I −T is monotone. It is also easily seen that a projec-
tion ProjC is a one-ism.

Inverse strongly (also referred to as co-coercive)
monotone operators have widely been applied to solve
practical problems in various fields; for instance, in
traffic assignment problems (see [10,11]).

The following proposition gathers some results on
the relationship between averaged mappings and in-
verse strongly monotone operators.

Proposition 6 ([7,12]) Let T : H → H be given. We
have

(i) T is nonexpansive, if and only if the comple-
ment I − T is (1/2)-ism;

(ii)If T is L-Lipschitz continuous, then T is 1/L-
ism;

(iii) If T is υ-ism, then for γ > 0, γT is (υ/γ)-
ism;

(iv) T is averaged, if and only if the complement
I−T is υ-ism for some υ > 1/2; indeed, for αϵ[0, 1],
T is α-averaged, if and only if I − T is (1/2α)-ism.

The organization of this paper is as follows. In
Sect.2, we introduce some useful lemmas which will
be used in the proofs for the main results in Sect.3.
In Sect.3, we propose implicit and explicit iterative
schemes for solving the constrained convex minimiza-
tion problem (1), and prove that the sequences gener-
ated by our schemes converge strongly to a solution of
the constrained convex minimization problem. Such
a solution is also a solution of a variational inequal-
ity defined over the set of solutions to the constrained
convex minimization problem. In Sect.4, we apply
this algorithm to the split feasibility problem.

2 Preliminaries
This section collects some lemmas which will be used
in the proofs for the main results in the next section.
Some of them are known; others are not hard to derive.

Lemma 7 Assume that {an}∞n=0 is a sequence of
nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnδn + βn, n ≥ 0,

where {γn}∞n=0 and {βn}∞n=0 are sequences in [0,1]
and {δn}∞n=0 is a sequence in R such that

(i)
∞∑
n=0

γn = ∞;

(ii) either lim sup
n→∞

δn ≤ 0 or
∞∑
n=0

γn|δn| <∞;

(iii)
∞∑
n=0

βn <∞.

Then lim
n→∞

an = 0.

The so-called demiclosed principle for nonexpan-
sive mappings will often be used.

Lemma 8 (Demiclosed Principle ) ([14]) Let C be a
closed and convex subset of a Hilbert space H and
let T : C → C be a nonexpansive mapping with
Fix(T ) ̸= ϕ. If {xn}∞n=1 is a sequence in C weekly
converging to x and if {(I − T )xn}∞n=1 converges
strongly to y, then (I − T )x = y. In particular, if
y = 0, then xϵF ix(T ).

Lemma 9 Let H be a Hilbert space, C a closed con-
vex subset of H , h : H → H a contraction with
coefficient 0 < ρ < 1, and A a strongly positive
bounded linear operator with coefficient γ̄ > 0. Then,
for 0 < γ < γ̄/ρ,

⟨x− y, (A− γh)x− (A− γh)y⟩
≥ (γ̄ − γρ)∥x− y∥2,∀ x, y ϵ H.

That is, A − γh is strongly monotone with coefficient
γ̄ − γρ.

Recall the metric (nearest point) projection
ProjC from a real Hilbert space H to a closed con-
vex subset C of H is defined as follows: given xϵH ,
ProjCx is the only point in C with the property

∥x− ProjCx∥ = inf{∥x− y∥ : y ϵ C}.

P rojC is characterized as follows.

Lemma 10 Let C be a closed and convex subset of
a real Hilbert space H . Given xϵH and yϵC. Then
y = ProjCx if and only if there holds the inequality

⟨x− y, y − z⟩ ≥ 0, ∀ z ϵ C.

Lemma 11 Assume A is a strongly positive bounded
linear operator on a Hilbert space H with coefficient
γ̄ > 0 and 0 < s ≤ ∥A∥−1. Then ∥I−sA∥ ≤ 1−sγ̄.
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Proof: Recall that a standard result in functional anal-
ysis is that if V is bounded linear self-adjoint operator
on H , then

∥V ∥ = sup{|⟨V x, x⟩| : xϵH, ∥x∥ = 1}.

Now for xϵH with ∥x∥ = 1, we see that

⟨(I − sA)x, x⟩ = 1− s⟨Ax, x⟩ ≥ 1− s∥A∥ ≥ 0

(i.e., I − sA is positive). It follows that

∥I − sA∥ = sup{⟨(I − sA)x, x⟩ : xϵH, ∥x∥ = 1}
= sup{1− s⟨Ax, x⟩ : xϵH, ∥x∥ = 1}
≤ 1− sγ̄ by(2).

We adopt the following notation:

◦ xn → x means that xn → x strongly.

◦ xn ⇀ x means that xn → x weakly.

◦ ωw(xn) := {x : ∃xnj ⇀ x} is the week ω-limit
set of the sequence {xn}∞n=1.

3 Main results
Let H be a real Hilbert space and C a closed and con-
vex subset of Hilbert space H . Let f : C → R be a
real valued convex and continuously Fréchet differen-
tiable function. If the gradient of f is Lipschitz con-
tinuous, namely, there is a constant L > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L∥x−y∥, ∀ x, y ϵ C. (7)

Throughout the rest of this paper, we always as-
sume that the closed and convex subset C satisfies
C±C ⊂ C, andA is strongly positive bounded linear
operator; that is, there is a constant γ̄ > 0 such that

⟨Ax, x⟩ ≥ γ̄∥x∥2, ∀ x ϵ C.

Recall also that a contraction on C is a self-
mapping h such that

∥h(x)− h(y)∥ ≤ ρ∥x− y∥, ∀ x, y ϵ C.

where ρϵ[0, 1) is a constant.
Denote by Π the collection of all contraction on

C; namely,

Π = {h : h is a contraction on C}.

Now given h ϵΠ with contraction coefficient 0 ≤ ρ <
1, s ϵ (0, 1) such that s < ∥A∥−1 and 0 < γ < γ̄/ρ.
Consider a mapping Xs on C defined by

Xs(x) = sγh(x) + (I − sA)ProjC(I − λs∇f)(x).
(8)

where λs is positive real parameters, and λs is contin-
uous with the aspect s.

It is easy to see that Xs is a contraction. Indeed,
by Lemma 11, and noticing that ProjC(I −λs∇f) is
nonexpansive, we have:

∥Xs(x)−Xs(y)∥
≤ ∥ProjC(I − λs∇f)x− ProjC(I − λs∇f)y∥

·∥I − sA∥+ sγ∥h(x)− h(y)∥
≤ (1− sγ̄)∥x− y∥+ sγρ∥x− y∥)
= (1− s(γ̄ − γρ))∥x− y∥. (9)

HenceXs has a unique fixed point, denoted xs, which
solves uniquely the fixed point equation

xs = sγh(xs) + (I − sA)ProjC(I − λs∇f)(xs).
(10)

Note that xs indeed depends on h for simplicity of
notation throughout the rest of this paper. We will
also always use γ to mean a number in (0, γ̄/ρ).

Then the following proposition summarizes the
basic properties of {xs}.

Proposition 12 Let xs be defined via (10).
(i) {xs} is bounded for s ϵ (0, ∥A∥−1).
(ii) lims→0 ∥xs − ProjC(I − λs∇f)(xs)∥ = 0.
(iii) xs defines a continuous curve from

(0, ∥A∥−1) into C.

Proof: First observe that for sϵ(0, ∥A∥−1), we have
∥I − sA∥ ≤ 1 − sγ̄ by Lemma 5. To show (i), we
take a p ϵ S, noticing that p = ProjC(I − λs∇f)(p).
Then we have

∥xs − p∥
= ∥s(γh(xs)−Ap)

+(I − sA)(ProjC(I − λs∇f)(xs)− p)∥
≤ s∥γh(xs)−Ap∥+ (1− sγ̄)∥xs − p∥
= s∥γh(xs)− γh(p) + γh(p)−Ap∥

+(1− sγ̄)∥xs − p∥
≤ sγρ∥xs − p∥+ s∥γh(p)−Ap∥

+(1− sγ̄)∥xs − p∥
= (1− sγ̄ + sγρ)∥xs − p∥+ s∥γh(p)−Ap∥.

It follows that

∥xs − p∥ ≤ ∥γh(p)−Ap∥
γ̄ − γρ

Hence {xs} is bounded.
(ii) We have

∥xs − ProjC(I − λs∇f)(xs)∥
= ∥sγh(xs)− sAProjC(I − λs∇f)(xs)∥
= s∥γh(xs)−AProjC(I − λs∇f)(xs)∥ → 0.

WSEAS TRANSACTIONS on MATHEMATICS Ming Tian, Lihua Huang

E-ISSN: 2224-2880 152 Issue 2, Volume 12, February 2013



since the boundedness of {xs} implies that {h(xs)}
and {AProjC(I − λs∇f)(xs)}.

To prove (iii), take s, s0 ϵ (0, ∥A∥−1) and calcu-
late,

∥xs − xs0∥
= ∥sγh(xs) + (I − sA)ProjC(I − λs∇f)xs

−s0γh(xs0)
−(I − s0A)ProjC(I − λs0∇f)xs0∥

= ∥sγh(xs)− sγh(xs0) + sγh(xs0)

−s0γh(xs0) + (I − sA)ProjC(I − λs∇f)xs
−(I − sA)ProjC(I − λs∇f)xs0
+(I − sA)ProjC(I − λs∇f)xs0
−(I − s0A)ProjC(I − λs0∇f)xs0∥

≤ sγρ∥xs − xs0∥+ γ|s− s0|∥h(xs0)∥
+(1− sγ̄)∥xs − xs0∥
+∥(I − sA)ProjC(I − λs∇f)xs0
−(I − s0A)ProjC(I − λs0∇f)xs0∥

= (sγρ+ 1− sγ̄)∥xs − xs0∥
+γ|s− s0|∥h(xs0)∥
+∥s0AProjC(I − λs0∇f)xs0
−sAProjC(I − λs∇f)xs0
+ProjC(I − λs∇f)xs0
−ProjC(I − λs0∇f)xs0∥

≤ (sγρ+ 1− sγ̄)∥xs − xs0∥
+γ|s− s0|∥h(xs0)∥
+∥(I − λs∇f)xs0 − (I − λs0∇f)xs0∥
+∥s0AProjC(I − λs0∇f)xs0
−sAProjC(I − λs∇f)xs0∥

= (sγρ+ 1− sγ̄)∥xs − xs0∥
+γ|s− s0|∥h(xs0)∥+ |λs − λs0 |∥∇f(xs0)∥
+|s0 − s|∥AProjC(I − λs∇f)(xs0)∥
+∥s0AProjC(I − λs0∇f)(xs0)
−s0AProjC(I − λs∇f)(xs0)∥

≤ (sγρ+ 1− sγ̄)∥xs − xs0∥
+γ|s− s0|∥h(xs0)∥
+|λs − λs0 |∥∇f(xs0)∥
+|s− s0|∥AProjC(I − λs∇f)(xs0)∥
+s0|λsλs0 |||A||||∇f(xs0)∥

= (sγρ+ 1− sγ̄)∥xs − xs0∥
+|s− s0|(γ∥h(xs0)∥
+∥AProjC(I − λs∇f)(xs0)∥)
+|λs − λs0 |(∥∇f(xs0)∥+ s0∥A∥∥∇f(xs0)∥).

It follows that

(sγ̄ − sγρ)∥xs − xs0∥

≤ |s−s0|(γ∥h(xs0)∥
+∥AProjC(I−λs∇f)(xs0)∥
+|λs − λs0 |(∥∇f(xs0)∥+ s0∥A∥∥∇f(xs0)∥).

Consequently,

∥xs − xs0∥

≤ (
γ∥h(xs0)∥+ ∥AProjC(I − λs∇f)(xs0)∥

sγ̄ − sγρ

+
|λs − λs0 |∥∇f(xs0)∥

sγ̄ − sγρ

+
|λs − λs0 |s0∥A∥∥∇f(xs0)∥

sγ̄ − sγρ
→ 0,

as s→ s0.
This shows that xs is continuous because of the

continuity of λs.
Our first result below shows that {xs} converges

in norm to a minimizer of the minimization problem
(1) which solves some variational inequality.

Theorem 13 Assume that the minimization problem
(1) is consistent and let S denote its solution set. As-
sume that the gradient ∇f satisfies the Lipschitz con-
dition (7). Let {λs} satisfies 0 < λs < 2/L. Then
we have that {xs} converges in norm as s → 0 to a
minimizer of (1) which is also the unique solution of
the variational inequality

⟨(A− γh)x∗, x∗ − x⟩ ≤ 0, ∀ x ϵ S. (11)

Equivalently, we have ProjS(I −A+ γh)x∗ = x∗.

Proof: We first show the uniqueness of a solution of
the variational inequality (11), which is indeed a con-
sequence of the strong monotonicity of A− γh. Sup-
pose both x∗ ϵ S and x̂ ϵ S are solutions to (11); then

⟨(A− γh)x∗, x∗ − x̂⟩ ≤ 0 (12)

and
⟨(A− γh)x̂, x̂− x∗⟩ ≤ 0 (13)

Adding up (12) and (13) gets

⟨(A− γh)x∗ − (A− γh)x̂, x∗ − x̂⟩ ≤ 0. (14)

The strong monotonicity of A − γh ( Lemma 9) im-
plies that x∗ = x̂ and the uniqueness is proved. Below
we use x∗ ϵ S to denote the unique solution of (11).

To prove that xs → x∗ (s → 0), we write, for a
given z ϵ S,

xs − z = (I − sA)(ProjC(I − λs∇f)xs − z)

+s(γh(xs)−Az)
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to derive that

∥xs − z∥2

= ⟨(I − sA)(ProjC(I − λs∇f)xs − z), xs − z⟩
+s⟨γh(xs)−Az, xs − z⟩

≤ (1− sγ̄)∥xs − z∥2 + s⟨γh(xs)−Az, xs − z⟩.

It follows that

∥xs − z∥2 ≤ 1

γ̄
⟨γh(xs)−Az, xs − z⟩

=
1

γ̄
{γ⟨h(xs)− h(z), xs − z⟩

+⟨γh(z)−Az, xs − z⟩}

≤ 1

γ̄
{γρ∥xs − z∥2

+⟨γh(z)−Az, xs − z⟩}.

Therefore,

∥xs − z∥2 ≤ 1

γ̄ − γρ
⟨γh(z)−Az, xs − z⟩. (15)

Since {xs} is bounded as s → 0, we see that if {sn}
is a sequence in(0, 1) such that sn → 0 and xsn ⇀ x̃,
then x̃ϵS. Indeed, we assume that λsn → λϵ(0, 2/L),
due to 0 < λs < 2/L. Set Ts := ProjC(I − λs∇f)
and T := ProjC(I − λ∇f). Notice that T is nonex-
pansive and Fix(T ) = S. By Proposition 12 (ii), we
obtain that

∥xsn − Txsn∥
≤ ∥xsn − Tsnxsn∥+ ∥Tsnxsn − Txsn∥
= ∥xsn − Tsnxsn∥

+∥ProjC(I − λsn∇f)xsn − ProjC(I − λ∇f)xsn∥
≤ ∥xsn − Tsnxsn∥

+∥(I − λsn∇f)xsn − (I − λ∇f)xsn∥
= ∥xsn − Tsnxsn∥+ |λsn − λ|∥∇f(xsn)∥ → 0.

So Lemma 8 guarantees that x̃ϵF ix(T ) = S. Then
by (15), we see xsn → x̃.

We next prove that x̃ solves the variational in-
equality (11). Since

xs = sγh(xs)+(I−sA)ProjC(I−λs∇f)xs. (16)

We derive that,

(A− γh)xs = −1

s
(I − sA)(I − ProjC(I − λs∇f))xs.

It follows that, for x ϵ S,

⟨(A− γh)xs, xs − x⟩

= −1

s
⟨(I − sA)(I − ProjC(I − λs∇f))xs, xs − x⟩

= −1

s
⟨(I − ProjC(I − λs∇f))xs

−(I − ProjC(I − λs∇f))x, xs − x⟩
+⟨A(I − ProjC(I − λs∇f))xs, xs − x⟩

≤ ⟨A(I − ProjC(I − λs∇f))xs, xs − x⟩. (17)

Since I − ProjC(I − λs∇f) is monotone ( i.e.,
⟨x− y, (I −ProjC(I −λs∇f))x− (I −ProjC(I −
λs∇f))y⟩ ≥ 0, for x, y ϵ H . This is due to the non-
expansivity of ProjC(I − λs∇f)). Now replacing
s in (17) with sn and letting n → ∞, noticing that
(I − ProjC(I − λsn∇f))xsn → (I − ProjC(I −
λ∇f))x̃ = 0 for x̃ ϵ S, then we obtain

⟨(A− γh)x̃, x̃− x⟩ ≤ 0.

This is, x̃ ϵ S is a solution of (11); hence x̃ = x∗ by
uniqueness.

In a summary, we have shown that each cluster
point of {xs}(as s → 0) equals x∗. Therefore, xs →
x∗ as s→ 0.

The variational inequality (11) can be rewritten as

⟨(I −A+ γh)x∗ − x∗, x∗ − x⟩ ≥ 0, x ϵ S.

By Lemma 10, this is equivalent to the fixed point
equation

ProjS(I −A+ γh)x∗ = x∗

Taking A = I and γ = 1 in Theorem 7, we get

Corollary 14 Let xsϵC be the unique fixed point of
the contraction x 7→ sh(x) + (1 − s)ProjC(I −
λs∇f)x. Then {xs} converges in norm as s → 0
to a minimizer of (1) which is also the unique solution
of the variational inequality

⟨(I − h)x∗, x∗ − x⟩ ≤ 0, x ϵ S.

Next we study a modified gradient-projection al-
gorithm as follows. The initial guess x0 is taken in
C arbitrarily, and the (n + 1)th iterate xn+1 is recur-
sively defined by

xn+1 = θnγh(xn)

+(I − θnA)ProjC(I − λn∇f)xn,
n ≥ 0,

Where {θn} is a sequence in (0, 1), and {λn} is a
sequence such that

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2

L
. (18)

Below is the second main result of this paper.
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Theorem 15 Assume that the minimization problem
(1) is consistent and let S denote its solution set. As-
sume that the gradient ∇f satisfies the Lipschitz con-
dition (7). Let a sequence {xn}∞n=0 be generated by
the following modified gradient-projection algorithm:

xn+1 = θnγh(xn)

+(I − θnA)ProjC(I − λn∇f)xn,
n = 0, 1, 2, · · · (19)

Let the sequence of parameters {λn}∞n=0 satisfy the
condition (18). In addition, the following conditions
are satisfied for {λn}∞n=0 and {θn}∞n=0 ⊂ (0, 1):

(C1) θn → 0;

(C2)
∞∑
n=0

θn = ∞;

(C3)
∞∑
n=0

|θn+1 − θn| <∞;

(C4)
∞∑
n=0

|λn+1 − λn| <∞.

Then the sequence {xn}∞n=0 converges in norm to
a minimizer of (1) which is also the unique solution of
the variational inequality

⟨(A− γh)x∗, x∗ − x⟩ ≤ 0, x ϵ S. (20)

In other words, x∗ is the unique fixed point of the con-
traction ProjS(I −A+ γh); that is, ProjS(I −A+
γh)x∗ = x∗.

Proof: (1◦): The sequence {xn}∞n=0 is bounded. In-
deed, we have, for x̄ ϵ S,

∥xn+1 − x̄∥
= ∥(I − θnA)[ProjC(xn − λn∇f(xn))− x̄]

+θn(γh(xn)−Ax̄)∥
≤ (1− θnγ̄)∥xn − x̄∥

+∥θn(γh(xn)− γh(x̄) + γh(x̄)−Ax̄)∥
≤ (1− θnγ̄)∥xn − x̄∥+ θnγρ∥xn − x̄∥

+θn∥γh(x̄)−Ax̄∥
= (1− (γ̄ − γρ)θn)∥xn − x̄∥+ θn∥γh(x̄)−Ax̄∥

≤ max{∥xn − x̄∥, 1

γ̄ − γρ
∥γh(x̄)−Ax̄∥}.

So, an induction argument shows that

∥xn − x̄∥ ≤ max{∥x0 − x̄∥, 1

γ̄ − γρ
∥γh(x̄)−Ax̄∥},

n ≥ 0.

In particular, {xn}∞n=0 is bounded.
(2◦): We prove that ∥xn+1 − xn∥ → 0, as n →

∞. Setting Vn := Projn(I − λn∇f). Let

M > max{sup
n≥0

∥h(xn)∥, sup
k,n≥0

∥AVk(xn)∥,

sup
n≥0

∥∇f(xn)∥, sup
k,n≥0

∥Vk(xn)∥, ∥A∥}.

We compute

∥xn+1 − xn∥
= ∥θnγh(xn) + (I − θnA)Vnxn

−[θn−1γh(xn−1) + (I − θn−1A)Vn−1xn−1]∥
= ∥θnγ(h(xn)− h(xn−1))

+γ(θn − θn−1)h(xn−1)

+(I − θnA)(Vnxn − Vnxn−1)

+(I − θnA)Vnxn−1

−(I − θn−1A)Vn−1xn−1∥
≤ θnγρ∥xn − xn−1∥+ γ|θn − θn−1|∥h(xn−1)∥

+(1− θnγ̄)∥xn − xn−1∥
+∥(I − θnA)Vnxn−1

−(I − θn−1A)Vn−1xn−1∥
≤ (1− θn(γ̄ − γρ))∥xn − xn−1∥

+|θn − θn−1|γM
+∥(I − θnA)Vnxn−1

−(I − θn−1A)Vn−1xn−1∥ (21)

and

∥(I − θnA)Vnxn−1 − (I − θn−1A)Vn−1xn−1∥
= ∥Vnxn−1 − θnAVnxn−1 − Vn−1xn−1

+θn−1AVn−1xn−1∥
≤ ∥Vnxn−1 − Vn−1xn−1∥

+∥(θn − θn−1 + θn−1)AVnxn−1

−θn−1AVn−1xn−1∥
≤ ∥Vnxn−1 − Vn−1xn−1∥

+|θn − θn−1|∥AVnxn−1∥
+θn−1∥A(Vnxn−1 − Vn−1xn−1)∥

≤ ∥Vnxn−1 − Vn−1xn−1∥(1 +M)

+M |θn − θn−1| (22)

and

∥Vnxn−1 − Vn−1xn−1∥
= ∥ProjC(I − λn∇f)xn−1

−ProjC(I − λn−1∇f)xn−1∥
≤ ∥(I − λn∇f)xn−1 − (I − λn−1∇f)xn−1∥
= |λn − λn−1|∥∇f(xn−1)∥
≤ M |λn − λn−1|, (23)

combining (21),(22) and (23), we obtain

∥xn+1 − xn∥ ≤ (1− θn(γ̄ − γρ))∥xn − xn−1∥
+(γM +M)|θn − θn−1|
+(M2 +M)|λn − λn−1|. (24)

Apply Lemma 1 to (24) to conclude that

∥xn+1 − xn∥ → 0
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as n→ ∞.
(3◦): We prove that ωw(xn) ⊂ S. Let x̂ϵωw(xn)

and assume that xnj ⇀ x̄ for some subsequence
{xnj}∞j=1 of {xn}∞n=0. We may further assume that
λnj → λ ϵ (0, 2/L), due to condition (18). Set
V := ProjC(I − λ∇f). Notice that V is nonex-
pansive and Fix(V ) = S. It turns out that

∥xnj − V xnj∥
≤ ∥xnj − Vnjxnj∥+ ∥Vnjxnj − V xnj∥
≤ ∥xnj − xnj+1∥+ ∥xnj+1 − Vnjxnj∥

+∥ProjC(I − λnj∇f)xnj
−ProjC(I − λ∇f)xnj∥

≤ ∥xnj − xnj+1∥+ θnj∥γh(xnj)−AVnjxnj∥
+∥(I − λnj∇f)xnj − (I − λ∇f)xnj∥

≤ ∥xnj − xnj+1∥+ |λ− λnj |M
+θnj(γM +M) → 0,

as j → ∞.
So Lemma 8 guarantees that ωw(xn) ⊂

Fix(V ) = S.
(4◦): We prove that xn → x∗ as n → ∞, where

x∗ϵS is the unique solution of the variational inequal-
ity (20). First observe that there is some x̂ϵωw(xn) ⊂
S, such that

lim sup
n→∞

⟨xn − x∗, γh(x∗)−Ax∗⟩

= ⟨x̂− x∗, γh(x∗)−Ax∗⟩ ≤ 0. (25)

We now compute

∥xn+1 − x∗∥2

= ∥θnγh(xn) + (I − θnA)Vnxn − x∗∥2

= ∥θnγh(xn)− θnA(x
∗)

+(I − θnA)(Vnxn − x∗)∥2

= ∥θnγ(h(xn)− h(x∗)) + θnγh(x
∗)− θnAx

∗

+(I − θnA)(Vnxn − x∗)∥2

≤ ∥θnγ(h(xn)− h(x∗))

+(I − θnA)(Vnxn − x∗)∥2

+2θn⟨xn+1 − x∗, γh(x∗)−Ax∗⟩
= ∥θnγ(h(xn)− h(x∗))∥2

+∥(I − θnA)(Vnxn − x∗)∥2

+2θnγ⟨h(xn)− h(x∗), (I − θnA)(Vnxn − x∗)⟩
+2θn⟨xn+1 − x∗, γh(x∗)−Ax∗⟩

≤ θ2nγ
2ρ2∥xn − x∗∥2 + (1− θnγ̄)

2∥xn − x∗∥2

+2θnγρ(1− θnγ̄)∥xn − x∗∥2

+2θn⟨xn+1 − x∗, γh(x∗)−Ax∗⟩
= [1− (2θ2nγργ̄ + 2θnγ̄ − 2θnγρ

−θ2nγ2ρ2)]∥xn − x∗∥2

+2θn⟨xn+1 − x∗, γh(x∗)−Ax∗⟩.

It follows that

∥xn+1 − x∗∥2 ≤ (1− γn)∥xn − x∗∥2 + δn. (26)

where

γn = 2θ2nγργ̄ + 2θnγ̄ − 2θnγρ− θ2nγ
2ρ2

δn = 2θn⟨xn+1 − x∗, γh(x∗)−Ax∗⟩

By (25), we get

lim sup
n→∞

δn/γn ≤ 0.

Now applying Lemma 7 to (26) concludes that xn →
x∗ as n→ ∞.

Corollary 16 Let {xn} be generated by the following
hybrid gradient-projection algorithm:

xn+1 = θnh(xn) + (1− θn)ProjC(I − λn∇f)xn,
n = 0, 1, 2, · · ·

Let the sequence of parameters {λn}∞n=0 satisfy the
condition (18). Assume that the sequence {θn}∞n=0
and {λn}∞n=0 satisfy conditions (C1)–(C4). Then
{xn}∞n=0 converges in norm to a minimizer of (1)
which is obtained in Corollary 14.

4 Application of the modified GPA

In this section, we give an application of Theorem 15
to the split feasibility problem (say SFP, for short)
which was introduced by Censor and Elfving [26].
Since its inception in 1994, the split feasibility prob-
lem (SFP) has received much attention due to its ap-
plications in signal processing and image reconstruc-
tion, with particular progress in intensity-modulated
radiation therapy.

The SFP can mathematically be formulated as the
problem of finding a point x with the property

x ϵ C, and Bx ϵ Q, (27)

where C and Q are nonempty closed convex subset of
Hilbert space H1 and H2, respectively. B : H1 → H2

is a bounded linear operator.
It is clear that x∗ is a solution to the split feasi-

bility problem (27) if and only if x∗ϵC and Bx∗ −
ProjQBx

∗ = 0. We define the proximity function f
by

f(x) =
1

2
∥Bx− ProjQBx∥2,

and consider the constrained convex minimization
problem

min
xϵC

f(x) = min
xϵC

1

2
∥Bx− ProjQBx∥2. (28)
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Then, x∗ solves the split feasibility problem (27) if
and only if x∗ solves the minimization problem (28)
with the minimize equal to 0. Byrne [28] introduced
the so-called CQ algorithm to solve the (SFP).

xn+1 = ProjC(I−λB∗(I−ProjQ)B)xn, n ≥ 0,
(29)

where 0 < λ < 2/ρ(B∗B) and ρ(B∗B) is the spec-
tral radius of the self-adjoint operator B∗B. He ob-
tained that the sequence {xn} generated by (29) con-
verges weekly to a solution of the (SFP).

In order to obtain strong convergence iterative se-
quence to solve the (SFP). We propose the following
algorithm:

xn+1

= (I − θnA)ProjC(I − λnB
∗(I − ProjQ)B)xn,

+θnγh(xn), n ≥ 0, (30)

where h : C → C is a contraction such that ∥h(x) −
h(y)∥ ≤ ρ∥x − y∥,∀ x, y ϵ C, and ρ ϵ [0, 1) is a
constant. A : C → C is strongly positive bounded
linear operator; that is, there is a constant γ̄ > 0 such
that ⟨Ax, x⟩ ≥ γ̄∥x∥2, ∀ x ϵ C. Where 0 < γ <
γ̄/ρ. We can show that the sequence {xn} generated
by (30) converges strongly to a solution of the (SFP)
(27) if the sequence {θn} ⊂ [0, 1] and the sequence
{λn} of parameters satisfy appropriate conditions.

Applying Theorem 15, we obtain the following
result.

Theorem 17 Assume that the split feasibility prob-
lem (27) is consistent. In addition, if 0ϵC or C is
closed convex cone. Let 0 < lim infn→∞ λn ≤
lim supn→∞ λn < 2/∥B∥2. Let the sequence
{xn} be generated by (30). Where the sequence
{θn} ⊂ [0, 1] and the sequence {λn} satisfy the con-
ditions (C1)–(C4). Then the sequence {xn} converges
strongly to a solution of the split feasibility problem
(27).

Proof: By the definition of the proximity function f ,
we have

∇f(x) = B∗(I − ProjQ)Bx,

and ∇f is Lipschitz continuous, i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,

where L = ∥B∥2. Then the iterative scheme (30) is
equivalent to

xn+1 = θnγh(xn)+(I−θnA)ProjC(I−λn∇f)xn.

Due to Theorem 15, we have the conclusion immedi-
ately.
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